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Abstract— In data integration applications, a join matches
elements that are common to two data sources. Often, however,
elements are represented slightly different in each source, so an
approximate join must be used. For XML data, most approxi-
mate join strategies are based on some ordered tree matching
technique. But in data-centric XML the order is irrelevant: two
elements should match even if their subelement order varies.

In this paper we give a solution for the approximate join of
unordered trees. Our solution is based on windowed pq-grams.
We develop an efficient technique to systematically generate win-

dowed pq-grams in a three-step process: sorting the unordered
tree, extending the sorted tree with dummy nodes, and computing
the windowed pq-grams on the extended tree. The windowed
pq-gram distance between two sorted trees approximates the
tree edit distance between the respective unordered trees. The
approximate join algorithm based on windowed pq-grams is
implemented as an equality join on strings and avoids to evaluate
the distance between every pair of input trees. Our experiments
with synthetic and real world data confirm the analytic results
and suggest that our technique is both useful and scalable.

I. INTRODUCTION

The amount of data that is stored and exchanged in XML

is increasing. When XML data from different sources is inte-

grated in a single data collection, data items that correspond to

the same real world object must be matched. But exact matches

often fail due to inconsistent representations and missing

global keys, so approximate matching techniques must be

applied. For instance, when companies merge, their customer

data will need to be integrated, but the companies may have

different ways to represent customer data. As another example,

an internet shop may want to enrich its product description

with data provided by third parties, which each have slightly

different descriptions for the same product.

One way to approximately match a pair of XML docu-

ments is to compute the minimal edit distance between the

documents [1]–[3]. An XML document can be modeled as an

ordered, labeled tree. The edit distance between two such trees

is the minimum number of node insertions, deletions, and/or

renamings that transform one tree into the other. Though order

is important in document-centric scenarios (e.g., paragraph

tags in XHTML), most data-centric applications ignore the

sibling order when considering whether two data items are

the same. Data-centric XML items are usually modeled as

unordered, labeled trees. While the minimal tree edit distance

between ordered trees can be computed in polynomial time,

the problem has been shown to be NP-complete for unordered

trees [4].

This paper develops an efficient approximate join be-

tween data-centric XML. Our solution is based on windowed

pq-grams, which are small subtrees of a specific shape.

We develop a technique to systematically generate the set

of windowed pq-grams in a three-step process: sorting the

unordered tree, extending the sorted tree with dummy nodes,

and computing the windowed pq-grams on the extended tree.

Intuitively, two unordered trees are similar if their sorted trees

have many windowed pq-grams in common. The windowed

pq-gram distance between sorted trees approximates the tree

edit distance between the respective unordered trees. The tree

sorting approach is not applicable to other common distances

between ordered trees. In particular, it is not possible to

approximate the edit distance between unordered trees with

the edit distance between sorted trees.

A windowed pq-gram consists of a stem and a base. The

stems are invariant to order, and the main challenge is to

compute the bases. Our bases satisfy the following core

properties: all non-root nodes appear in the same number

of bases; the Jaccard distance between two sibling sets is

preserved; and node moves to other parents are detected.

We provide an algorithm to compute the windowed pq-gram

distance in O(n log n) time (n is the number of tree nodes) and

approximately join unordered trees using windowed pq-grams.

Most joins based on distance measures, such as the edit

distance, must evaluate the distance between every pair of

input trees. There is no effective way to sort sets of trees or

partition them into buckets with a hash function. A nested loop

join must be applied. Our algorithm reduces the approximate

join to an equality join on strings (windowed pq-grams are

serialized and represented as strings) that takes advantage of

well-known join optimization techniques.

The rest of the paper is organized as follows. Section II

presents related work. We motivate the approximate join of

data-centric XML in Section III and we discuss the impact

of the sibling order on the tree distance computation in

Section IV. Windowed pq-grams are introduced in Section V.

Section VI discusses core properties of windowed pq-grams,

and we tune windowed pq-grams to optimize these properties



in Section VII. Section VIII provides algorithms, which are

experimentally evaluated in Section IX. In Section X we draw

conclusions and point to future work.

II. RELATED WORK

Most papers that compare similar XML documents rep-

resent the XML data as trees. Labels or (label,value)-pairs

are assigned to the tree nodes. Tree matching techniques

are applied to compute the similarity between trees. A well

known distance function for trees is the tree edit distance,

which is defined as the minimum number of edit operations

(node insertion, node deletion, and renaming) that transforms

one tree into another [5]. The best known tree edit distance

algorithms [6]–[9] for ordered trees have at least O(n3)
runtime for trees with n nodes. The problem is NP-complete

for unordered trees [4].

Guha et al. [2] present an approximate XML join based

on the tree edit distance between ordered trees. They give

upper and lower bounds for the tree edit distance that can

be computed in O(n2) time and use reference sets to take

advantage of the fact that the tree edit distance is a metric,

thus reducing the actual number of distances to compute in a

join. Guha et al. [2] do not address joins of unordered XML.

Garofalakis and Kumar [10] discuss approximate joins in

the context of data streaming applications. They focus on

performing a match in a limited amount of space and present

an efficient approximation of the tree edit distance; but their

approximation assumes ordered trees.

pq-Grams were introduced by Augsten et al. [11] as an

effective and efficient approximation of the tree edit distance

between ordered trees. In this paper, we present windowed

pq-grams that extend pq-grams to approximate the edit dis-

tance between unordered trees, and we develop an efficient

join technique based on windowed pq-grams.

In change detection scenarios two versions of the same

document are given and the difference is computed. Most

research in this area assumes that the trees are ordered [1],

[3], [12]. Cobéna et al. [1] take advantage of existing element

IDs, which can not be assumed for joins of data from different

sources. Chawathe et al. [13] present a heuristic solution for

unordered trees that runs in O(n3) time and for many cases

in O(n2). The X-Diff algorithm by Wang et al. [14] allows

leaf and subtree insertion and deletion, and node renaming.

To achieve O(n2 × fmax log fmax ) runtime (fmax is the

maximum fanout of the nodes) they match only nodes with the

same path to the root node. Our windowed pq-gram distance

has O(n log n) runtime complexity. The distance measures

proposed for change detection are evaluated between pairs

of documents. Used as a join predicate there is no obvious

way to avoid an expensive nested loop join. We transform the

distance-based join to an equality join on windowed pq-grams

and can apply well-known join optimization techniques.

Weis and Naumann [15] propose an XML similarity mea-

sure for a duplicate detection framework. In the worst case,

all pairs of elements must be compared. Puhlmann et al. [16]

improve the efficiency by applying the Sorted Neighborhood

method to nested objects. Both approaches assume a known,

common schema of the matched documents and require a

configuration step. No join algorithm using the proposed

similarity measure is presented.

Sanz et al. [17] develop a similarity-based inverted index to

identify regions of XML documents that are similar to a given

pattern. Adjacent regions are merged into new regions if the

new region better matches the pattern than each of the merged

regions. The merging algorithm assumes ordered trees. Joins

are not addressed.

A core operation in XML query processing is to find all oc-

currences of a twig pattern [18], [19], which, in common with

approximate join techniques, concerns identifying patterns in

a tree. But we split the tree into subtrees in order to calculate

the distance between trees, not to answer queries.

Several papers deal with the related, but different problem

of detecting the structural similarity between XML docu-

ments [20]–[22]. Two documents are considered structurally

similar if they are valid for a similar DTD. The text content

of the elements and the values of the attributes are ignored.

III. MOTIVATION

In our application scenario we consider building an online

database about music CDs that integrates data from two

sources: a song lyric store and CD warehouse.1 The integrated

database will store the artists and songs of an album, infor-

mation about individual songs such as the lyrics, guitar tabs,

and information about the artists.

Example 3.1: Figure 1 shows tree representations of two

different XML documents. Intuitively, both represent data

about the same song album. Yet exact ordered tree matching

would not consider the items as the same for a number of

reasons. The song lyric store has an element year that is

absent from the CD warehouse. The CD warehouse has a

price for the album. For one track the databases list different

artists. Also the document order of elements differs, i.e., the

two documents have different sibling orders.

One way to match items from the two sources is to join

the documents. The join attribute is (the part of) the XML

document that represents the album. Two albums match if they

are “similar.” The join condition can not be equality, as the data

items representing the same album in the different databases

may not match exactly.

The following XQuery expression returns all album pairs

that are within distance $tau. The distance function, dist,

is a user-defined function that returns the distance between a

pair of XML documents.

for $a in doc("lyricstore.xml")//album,

$b in doc("warehouse.xml")//album

where dist($a,$b) <= $tau

return <match>{$a}{$b}</match>

1We do not assume that the sources use a common schema, but we assume
a common vocabulary to describe the data; the problem of integrating data
vocabularies or ontologies is separate from matching the data. Terms in one
source can be converted to the vocabulary of the second source prior to
matching. We focus on the data matching problem.
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Fig. 1. Two XML Trees Representing the Same Album.

In the XQuery expression, $a and $b are bound to elements

of the sets doc("lyricstore.xml")//album and

doc("warehouse.xml")//album, respectively. Each

album element is a (small) XML document itself. We de-

fine the approximate XML join between two sets of XML

documents as follows [2].

Definition 3.1 (Approximate XML Join): Given two sets of

XML documents, F1 and F2, a distance measure, dist(Ti, Tj),
between the documents Ti ∈ F1 and Tj ∈ F2, and a threshold

τ . The approximate XML join computes all pairs (Ti, Tj) ∈
F1 × F2, such that dist(Ti, Tj) ≤ τ .

Our goal is to find a distance function for unordered trees

that is effective for data-centric XML and can be computed

efficiently. We use this function as the basis of a scalable

approximate join.

IV. ORDERED VS. UNORDERED TREE MATCHING

In this section we introduce basic concepts and discuss the

impact of the sibling order on the tree distance computation.

a) XML and Trees: In order to make approximate tree

matching applicable for XML, we represent an XML docu-

ment as a rooted, labeled tree. The tree is unordered in the case

of data-centric XML. Each node in the tree is a triple (i, l, v),
where i is the node index, l is the node label, and v is the

node’s value. A node in the tree represents an XML element

(or attribute). The node index is any number that identifies

the node in the document, such as the ordinal position of the

element (or attribute) in document order. The node is labeled

with the name of the element (or attribute). The value of a node

represents the text content of the corresponding element (or

the value of the corresponding attribute). If the corresponding

element contains only sub-elements and no content, then the

node value is the empty string, ǫ. An edge connects an element

node with each of its subelements (or attributes).

The function λ(n) maps a node n=(i, l, v) to the pair (l, v)
of label and value. While nodes are unique within a tree, the

(label,value)-pairs are not. To simplify the discussion we refer

to a node by its label and omit node indexes and empty values.

b) Ordered and Unordered Trees: In an ordered tree the

children of a node form a sequence, in an unordered tree the

children of a node are not ordered and form a set. Ordered

trees that differ only in the sibling order are permutations of

each other. In a sorted tree the siblings are lexicographically

ordered by their node labels and values. An unordered tree

is transformed to an ordered tree by ordering the siblings.

Graphically we represent an unordered tree as a set consisting

of a node and the subtrees rooted in the node’s children.

Example 4.1: The trees T0 and T′
0 in Figure 2 are ordered

(but not sorted), the trees T1 and T2 are unordered. T
′
0 is a

permutation of T0. The unordered tree T1 can be transformed

to the ordered tree T0 (or any of its permutations) by choosing

the appropriate sibling order. T1 differs from T2 in that the

node with label g is moved between the trees. There is no

sibling order that transforms T2 to T0.
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Fig. 2. Ordered and Unordered Trees.

c) Approximating the Edit Distance between Unordered

Trees: The edit distance between two trees (ordered or un-

ordered) is the minimum number of node edit operations that

transform one tree into the other. The problem is substantially

harder for unordered trees (NP-complete [4]) as the distance

algorithm can not rely on a sibling order and must consider all

sibling permutations. The edit distance between two unordered

trees is approximated by the smallest edit distance between

permutations of the respective ordered trees. Transforming an

unordered tree to an ordered tree is straightforward. The key

issue is to find the permutations of two ordered trees that

yield the smallest edit distance. This is non-trivial as illustrated

below.

It is obviously not feasible to compute the edit distance

between all permutations of two ordered trees. Alternatively,

consider an approach that sorts the siblings of both trees by

their string labels and values. This heuristic fails for the tree

edit distance between ordered trees. When the siblings of a tree

are sorted, also the subtrees rooted in the siblings are sorted.

But two subtrees that should match may appear in a different

order in the two sorted trees. For example, if a subtree root

is renamed between two trees, it may result in a different sort

position. The edit distance between ordered trees then moves

back permuted subtrees node by node. A subtree rooted in a

sibling can be of size O(n), where n is the number of tree

nodes. Even if the edit distance between two unordered trees is

zero or a small constant (for example, a single renamed node),

the edit distance between the respective sorted trees may be

O(n).
Example 4.2: Consider the two trees T and T′ in Figure 3.

The children of the root node have the same label such that



the label sort is not unique. Although both trees are sorted,

the subtrees t1 and t2 are permuted between T and T′. The

edit distance between the respective unordered trees is zero as

they differ only in the sibling order. The edit distance between

the ordered trees is about the tree size as the subtrees t1 and

t2 must be moved back node by node.

T r

x

t1

x

t2

T′
r

x

t2

x

t1

edit-distuo = 0
edit-disto = O(n)

windowed pq-gram dist = 0

Fig. 3. Edit Distance and Windowed pq-Grams Distance.

By contrast, sorting trees is a valid approach for the win-

dowed pq-grams introduced in the following section. We show

that the permutation of a constant number of siblings changes

only a constant number of windowed pq-grams. Thus, we can

sort the unordered trees and compute the windowed pq-grams

on the sorted trees. The resulting distance approximates the

edit distance between the unordered trees, and the windowed

pq-gram distance computed from identical unordered trees is

always zero (see Figure 3).

V. WINDOWED pq-GRAMS

In this section we introduce windowed pq-grams. We define

properties that we require for our solution, and we show that

sorting trees is a valid approach for windowed pq-grams.

Proofs are omitted due to space constraints.

A. Requirements for Windowed pq-Grams

pq-Grams were introduced by Augsten et al. [11] as an

approximation of the edit distance between ordered, labeled

trees. Intuitively, a pq-gram is a small subtree of a specific

shape composed of two parts: a stem that consists of an

anchor node with p−1 ancestors and a base that consists of q

consecutive children of the anchor node. For example, consider

the ordered tree T0 in Figure 2. The stem (a, c) with anchor

node c and the base (k, j) form a pq-gram with p=q=2.

Stems are node chains of length p. They are invariant to

order, and the strategy for choosing stems in ordered trees

carries over to unordered trees. The bases in ordered trees are

formed by consecutive siblings. This strategy is not applicable

to unordered trees, since no sibling order is defined. A different

strategy is required.

A sibling set is the set of all children of a tree node. In an

unordered tree the bases are formed from subsets of sibling

sets. A strategy to choose all possible sibling subsets of size

q weights nodes differently. There are
(

f
q

)

subsets of size q

in a sibling set of f siblings. pq-Grams produced from large

sibling sets disproportionally contribute to the total number of

pq-grams. Changes covered by these pq-grams are amplified,

other changes are disregarded.

Bases that consist of a single node ignore the sibling order.

However, pq-grams with such bases fail to detect sibling

moves to another parent if the ancestors in the old and the new

position have identical labels and values. For example, they

cannot distinguish between the trees T1 and T2 in Figure 2.

The ancestors of the moved node g have identical labels (and

empty values), resulting in identical stems, (a, b). Ancestors

with identical labels and values are frequent in data-centric

XML (e.g., all title elements have the ancestors track and

album in the XML of Figure 1).

Larger bases encode sibling information and can detect

sibling moves, as nodes with homonymous ancestors may have

siblings with different labels and/or values. In our example, g

has a sibling i in T2 but not in T1. A base (g, i) exists only

in T2 and distinguishes it from T1.

A sibling order may be given implicitly, for example, by the

XML document order. This order is random for data-centric

XML. Bases formed over randomly ordered sibling sets may

be very different even for identical sibling sets.

In our approach we sort the trees and use a window to

control the computation of the bases. We seek to build bases

with the following properties:

P1: Equal Base-Node Frequency. Each non-root node of

the tree appears in the same number of bases, independent

of the number of siblings.

P2: Preservation of the Sibling Distance. For bases build

from two different sibling sets the percentage of overlap

between the bases is equal to the percentage of overlap

between the sibling sets. In Figure 2 there is a 50%
overlap between the two sibling sets that contain node

g, hence also 50% of the bases should match.

P3: Detection of Node Moves to Other Parents. In Fig. 2,

node g is moved to another parent with the same label

(b) and value (ǫ). All pq-grams with anchor node b have

the same stem. To distinguish T1 from T2 the bases must

differ.

B. Solution

We introduce windowed pq-grams that have the required

properties for the bases. We proceed in three steps:

a) sort the unordered tree,

b) extend the sorted tree, and

c) compute the windowed pq-grams on the extended tree.

a) Sorting the Unordered Tree: In the first step we sort

the trees by imposing a horizontal order among siblings. The

siblings are sorted by node label and value. Due to nodes with

identical (label,value)-pairs an unordered tree can be sorted in

different ways. But all possible sorts of the same unordered

tree yield identical pq-grams and so are equivalent for our

purpose. Figure 4(a) shows Tsort
1 , the sorted example tree T1.

Definition 5.1 (Sorted Tree): A tree T is sorted if its sib-

lings are ordered and for each sibling pair, n = (i, l, v) and

n′ = (i′, l′, v′), the order satisfies

l < l′ ∨ (l = l′ ∧ v < v′)⇒ n < n
′.

b) Extending the Sorted Tree: The next step extends the

sorted tree with dummy nodes (•). Dummy nodes have a

special (label,value)-pair, which is the same for all dummy

nodes, λ(•i) = (*,*) = λ(•j) for all i, j. The number of
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Fig. 4. (a) Sorted Tree, (b) Extended Tree, and (c) Windowed pq-Grams.

dummy nodes depends on the size of the window that we

shift over the tree for a systematic generation of the windowed

pq-grams. Figure 4(b) shows the extended tree Text
1 for w=3

and p=q=2.

Definition 5.2 (Extended Tree): Let Tsort be a sorted tree,

p > 0 and q > 0 be the parameters determining the shape

of the windowed pq-grams, w ≥ q be the window size, and

f denote the fanout of a node. The extended tree, Text, is

defined as Tsort extended with dummy nodes as follows:

• root: p−1 ancestors are prepended to the root node;

• leaves: q children are added to each leaf node;

• siblings: w−f siblings are appended to each sib-

ling sequence (c1, . . . , cf ) of size 0<f<w, yielding

(c1, . . . , cf , •1, . . . , •w−f).

c) Computing the pq-Grams: We give a definition of

windowed pq-grams based on the extended tree.

Definition 5.3 (Windowed pq-Grams): Let T be an un-

ordered tree with extended tree Text, n be a node of T, ci

be the ith child of n in Text (1 ≤ i ≤ fext), and window

Wi = (c′i, c
′
i+1, . . . , c

′
i+w−1), c

′
k = c(k−1) mod fext+1, be a

node sequence of length w ≥ q that is wrapped around the

right border. A windowed pq-gram (p > 0, q > 0) of T

with anchor node n is defined as an ordered subtree of Text

that is composed of a stem and a base. The stem is a node

chain (ap−1, . . . , a1, n), where ak is n’s ancestor at distance

k. The base is a sequence of mutually different siblings

(c′i, b2, . . . , bq) chosen from a window Wi preserving the node

order; c
′
i is the first node of the window, {b2, . . . , bq} ⊆

{c′i+1, . . . , c
′
i+w−1}. If n is a leaf in T, the base is formed

by q dummy nodes. Each base that satisfies these constraints

produces a windowed pq-gram with anchor node n. The

set of windowed pq-grams of all nodes of T is called the

windowed pq-gram profile of T.

We use a linear encoding and represent a windowed pq-gram

as a tuple g = (ap−1, . . . , a1, n, b1, . . . , bq). With λ(g) =
(λ(ap−1), . . . , λ(n), . . . , λ(bq)) we denote a pq-gram’s node

labels and values, called its label-value tuple. While a win-

dowed pq-gram is unique within a tree, different windowed

pq-grams may yield identical label-value tuples.

The bases are systematically computed by producing for

each window Wi only the bases that contain the first window

node. For each window position,
(

w−1
q−1

)

bases are produced.

Example 5.1: Figure 4(c) shows all windowed pq-grams

for p = q = 2 that can be formed in Text
1 for the anchor

node with label c. Initially, the window covers the nodes

j, k,* , which according to the above procedure yields

two bases of size 2 and produces the first two windowed

pq-grams with label-value tuples ((a, ǫ), (c, ǫ), (j, ǫ), (k, ǫ))
and ((a, ǫ), (c, ǫ), (j, ǫ), (*,*)). Next, the window is moved

right and covers k,*, j . Notice that the window is wrapped

around. Two other windowed pq-grams are produced. The final

position of the window covers *, j, k .

Theorem 5.1 (Profile Size): If T is an unordered tree with

n nodes, then the size of its windowed pq-gram profile, P (T),
q > 1, is linear in the tree size, |P (T)| ≤ nq

(

w
q

)

. If T

has l leaves, and all other nodes have fanout f ≥ w, then

|P (T)| = (n− 1)
(

w−1
q−1

)

+ l.

Definition 5.4 (Windowed pq-Gram Index): Let T be an

unordered tree with windowed pq-gram profile P(T), p > 0,

q > 0. The windowed pq-gram index, I, of tree T is the bag

of all label-value tuples of T, i.e.,

I(T) =
⊎

g∈P(T)

λ(g).

The windowed pq-gram distance is computed from the num-

ber of windowed pq-grams that the indexes of the compared

trees have in common. For two unordered trees, T and T
′, the

windowed pq-gram distance is

dist(T, T′) = 1− 2
|I(T) ∩ I(T′)|

|I(T) ⊎ I(T′)|
.

The windowed pq-gram distance is 1 if two trees share no

windowed pq-grams, and 0 if they have the same windowed

pq-gram index, which does not necessarily imply that the trees

are equal.

Sorting trees involves subtree permutations. The windowed

pq-gram distance is independent of the size of the permuted

subtrees. Only the windowed pq-grams that contain the root

nodes of the permuted subtrees in the bases change. This core

feature qualifies windowed pq-grams for our approach and sets

it apart from other distance measures such as the edit distance

between ordered trees.

Theorem 5.2 (Local Effect of Subtree Permutations): Given

a sorted tree T (index I) that is transformed to a tree T′

(index I′) by permuting the order of the f ≥ w children of

a node n, then the permutation affects only O(f) windowed

pq-grams:

|I \ I
′| ≤ O(f).

VI. PROPERTIES OF WINDOWED pq-GRAM BASES

We discuss the base properties of windowed pq-grams. We

denote sibling sets with S, the respective bags of (label,value)-

pairs with L, and bases formed over L with B.

P1: Equal Base-Node Frequency. Dummy nodes, win-

dows, and window wrapping guarantee that each node of a

tree is in the same number of bases, thus giving each node the



same weight. Dummy nodes prevent a node from appearing

twice in the same window when the window is wrapped. Due

to the window wrapping each node appears in all w positions

of a window exactly once, independent of the number of left

and right siblings. Only bases within windows are formed,

thus each node is in the same number of bases.

P2: Preservation of the Sibling Distance. We analyze the

windowed pq-grams of two anchor nodes that have the same

stem and differ only in the bases. The bases represent the

sibling sets formed by the children of the anchor nodes. The

distance between the bases should approximate the distance

between the sibling sets.

Sibling Distance. Let L1 and L2 be the bags of (label,value)-

pairs of two sibling sets. We use the Jaccard distance [23]

(modified for bags) between L1 and L2 to compute the

distance between the respective sibling sets.

J(L1, L2) = 1−
2|L1 ∩ L2|

|L1 ⊎ L2|
(L1 6= ∅ or L2 6= ∅)

The sibling distance is 1 if all siblings are different, and 0 if

L1 and L2 have identical (label,value)-pairs.

Base Error. Let B1 and B2 be the bases formed over L1

and L2, respectively. We define the base error,

ε(L1, L2, B1, B2) = |J(L1, L2)− J(B1, B2)|, (1)

where J(B1, B2) is the Jaccard distance between the bases.

The base error ε ranges between 0 and 1, ε = 0 means that

the base distance is equivalent to the sibling distance.

Example 6.1: Let2L1 = {a, c, d, f, g, i} and L2 = {a, b, c,
d, e, f, g, h, i}. For q = 2 and w = 3, we get B1 = {ac, ad,
cd, cf, df, dg, fg, fi, gi, ga, ia, ic} and B2 = {ab, ac, bc,
bd, cd, ce, de, df, ef, eg, fg, fh, gh, gi, hi, ha, ia, ib}. With

|B1 ∩B2|=6, |B1 ⊎B2|=30, and |L1 ∩ L2|=6 the base error

is ε= 2
5 . For q=w=3 no bases match, and ε= 4

5 .

P3: Detection of Node Moves to Other Parents. We define

base recall and base precision to measure the sensitivity of the

bases to node moves. A node move is detected if at least one

of the bases changes. We consider bases of size q = 2 and

discuss larger bases in the next section.

A base without dummy nodes encodes exactly one sibling

pair. Due to the window wrapping, the same sibling pair

may be encoded twice. Two bases formed from the same

sibling pair are called duplicates, regardless of the node order.

Bases with dummy nodes give no sibling information. Let

#pairs(S, B) denote the number of unique sibling pairs of

S encoded by the bases B, i.e., only bases without dummy

nodes and only one copy of each duplicate are counted.

Base Recall. For a sibling set S with f ≥ 2 nodes,
(

f
2

)

=
f(f−1)

2 pairs can be formed. Given the respective bases B, we

define the base recall, ρ, as the ratio of sibling pairs encoded

by the bases to the number of possible pairs.

ρ(S, B) = 2
#pairs(S, B)

f(f − 1)
, f = |S| ≥ 2 (2)

2To simplify the notation of this example, we represent a (label,value)-
pair by its label and a base by the concatenation of its node labels, e.g., the
(label,value)-pair (a, ǫ) is denoted as a, the base ((a, ǫ), (c, ǫ)) as ac.

ρ = 1 if all possible pairs of S are in B, ρ = 0 if none of

the possible pairs is encoded. Bases with low recall may not

encode relevant sibling pairs and thus miss node moves.

Base Precision. Given a sibling set S and the respective

set of bases B, the base precision is the ratio of sibling pairs

encoded by the bases to the total number of bases:

π(S, B) =
#pairs(S, B)

|B|
. (3)

π = 1 if the bases contain no duplicates/dummy nodes. In the

original tree there are no dummy nodes. A low precision, i.e.,

many bases with dummy nodes, decreases the weight of the

original nodes.

Example 6.2: Let B over siblings S be the bases in Fig-

ure 4(c) (q = 2, w = 3). (j, k) and (k, j) are duplicates, all

other bases contain dummy nodes, thus #pairs(S, B) = 1.

Base recall ρ(S, B) = 1 (all pairs of S are encoded by B),

base precision π(S, B) = 1
6 (only 1 of 6 bases is relevant for

detecting node moves).

VII. OPTIMAL WINDOWED pq-GRAMS

In this section we discuss the choice of the base size q

and the window size w. Specifically, bases of size q = 2
have smaller base error than larger bases (Lemma 7.1), but

can detect exactly the same sibling moves (Lemma 7.2). For

q = 2 we provide base recall and precision (Lemma 7.3).

We choose a window size w that optimizes both recall and

precision, and we show that all nodes in the resulting bases

have equal weight (Theorem 7.4).

Lemma 7.1 (Optimal Base Size): Let S and S′ be sibling

sets with the bags of (label,value)-pairs L and L′, respectively,

let S be transformed to S′ by one of the following edit

sequences:

a) k insertions of new nodes with (label,value)-pairs not in L;

b) k renamings of nodes with new (label,value)-pairs not in

L (k ≤ |S|);
c) k node deletions (k ≤ |S|).

For a given window size w ≤ min(|S|, |S′|), small bases

of size 2 (Bq=2, B
′
q=2) have equal or smaller base error than

larger bases (Bq>2, B
′
q>2):

ε(L, L′, Bq=2, B
′
q=2) ≤ ε(L, L′, Bq>2, B

′
q>2)

Lemma 7.2 (Sibling Move Detection): Given the sibling

sets S1 and S′
1 with the bases B1 and B′

1. We move a node n

from S1 to S′
1 and get the sibling sets S2 and S′

2 with the bases

B2 and B′
2. For a given window size w, if the sibling move

is detected for bases with q > 2, i.e., B1 ∪ B′
1 6= B2 ∪ B′

2,

then it is also detected for bases with q = 2.

Lemma 7.3 (Recall and Precision): Let S be a sibling set

with f ≥ 2 nodes, B be the bases of size q = 2 formed over S

with windows size w. Base recall, ρ(S, B), and base precision,

π(S, B), are

ρ =

{

2w−1
f−1 w < f+1

2

1 w ≥ f+1
2

π =

{

1 w < f+1
2

f−1
2(w−1) w ≥ f+1

2



Theorem 7.4: (Optimal Windowed pq-Grams) Given an un-

ordered tree with fixed fanout f ≥ 2 for the non-leaf nodes.

For base size q = 2 and window size w = f+1
2 we get

windowed pq-grams with the following properties:

(a) Each non-root node appears
in exactly 2w − 2 bases.

(b) ε ≤











k
f for rename

2k
2f+k for insert

2k
2f−k for delete

(c) ρ = 1 for w = ⌈
f + 1

2
⌉

(d) π = 1 for w = ⌊
f + 1

2
⌋

The optimal base size w depends on the fanout f . For a

degenerated tree (consisting only of the root node and n− 1
leaves) w = f−1

2 = O(n). Even in this case, the windowed

pq-gram profile can not grow larger than O(n2) (Theorem 5.1,

f≥w, q=2).

VIII. ALGORITHMS

A. Building the pq-Gram Index

Algorithm 1 computes the windowed pq-gram profile P for

q = 2 by recursively traversing the tree T in preorder. The

algorithm is initialized with the root node n of T, the window

size w, a stem of dummy nodes (•1, . . . , •p), and the empty

profile P = ∅. Whenever the last sibling (in document order)

of a sibling set is reached, the siblings are sorted (dummy

nodes to the end), and the windowed pq-grams are produced.

The runtime is O(n + fmax log fmax ) for documents with n

nodes, a maximal fanout of fmax, and constant window size.

Our experiments confirm the analytic runtime result.

The index, I, is computed by aggregating and counting

the label-value tuples of the windowed pq-grams in the pro-

file P(treeId , pqg): I← ΓtreeId,λ(pqg)→pqg,COUNT(∗)→cnt (P).
The runtime is O(n log n) (sorting the profile of size O(n)).
The index of a forest is the union of the indexes of its trees.

To deal with node labels and values of different length, such

as element names and text values in XML documents, we use

a fingerprint hash function (e.g., the Karp-Rabin fingerprint

function [24]) that maps a string s to a hash value h(s) of

fixed length that is unique with a high probability. Instead of

storing the label-value tuples of windowed pq-grams, we store

the concatenation of the hashed labels and values. Note that

the only operation we need to perform on the (label,value)-

pairs is to check equality.

Example 8.1: Figure 5 shows an example hash function

and part of the windowed pq-gram indexes of the two XML

documents in Figure 1, the music albums from the song

lyric store (TLS ) and the CD warehouse (TWH ). We choose

p = q = 2, w = 3, λ(•) = (*,*). The label-value tuple

((*,*), (album, ǫ), (track, ǫ), (track, ǫ)) with hash value

9999410032003200 appears twice in the index of TLS

Algorithm 1: getPQGrams(T, n, w, stem, P)

stem← dequeue-first-element(stem) ◦ n;

if n is a leaf then return P ∪ {(T, stem ◦(•, •)};
C← ∅;
foreach child c of n do

C← C ∪ {c};
P← P ∪ getPQGrams(T, c, w, stem, P);

end

C← C ∪
⋃w−f

i=1 {•};
a← sort-by-label-value(C);
for i← 0 to |a| − 1 do

for j ← i + 1 to i + w − 1 do
P← P ∪ {(T, stem ◦ a[i] ◦ a[j mod |a|])};

end

end

return P;

and has two matches in the other index. The label-value tu-

ple ((album, ǫ), (year, 2000), (*,*), (*,*)) with the hash value

4100549799999999 appears only once in the index of

TLS and has no match in the index of TWH .

B. Approximate XML Join

Algorithm 2 computes the approximate join of two sets of

unordered trees, F1 and F2, given their windowed pq-gram

indexes, I1 and I2, and the threshold, τ . All pairs (Ti, Tj) ∈
F1 × F2 that satisfy dist(Ti, Tj) ≤ τ < 1 are returned. PSi

is initialized with the profile sizes for the trees in forest Fi.

Algorithm 2: pqGramJoin(I1, I2, τ)

foreach Ii do
Ii ← ρtreeId/treeIdi,cnt/cnti

(Ii);
PSi ← ΓtreeIdi,SUM(cnti)→sizei

(Ii);
end

return πtreeId1,treeId2
(σ1−2 cnt

size1+size2
≤τ (

ΓtreeId1,treeId2,SUM(min(cnt1,cnt2))→cnt (I1 ⋊⋉ I2)
⋊⋉ PS1 ⋊⋉ PS2))

As pointed out by Guha et al. [2], hash and sort-merge

joins do not carry over to approximate tree joins that use the

edit distance, since the distance function must be evaluated

between every input pair. There is no effective way to sort

trees or partition them into buckets with a hash function. The

only approach readily applicable is the nested loop join [2].

This does not hold for the windowed pq-gram distance.

For the calculation of the windowed pq-gram distance a tree

is represented by its windowed pq-gram index. Instead of

computing the distance between each pair of trees directly,

we check for each windowed pq-gram in which pairs of trees

it appears. We transform the distance-based join to an equality

join on all windowed pq-grams represented as strings. We can

apply well known techniques to optimize this join (e.g., sort-

merge and hash join). The approximate join is computed by

counting windowed pq-grams in the join result.



s h(s)

* 99

ǫ 00

album 41

track 32

title 02

artist 11

year 54

price 19

s h(s)
So far away 67

Mark 86

John 15

2000 97

15 73

Wish you where here 42

Roger 26

Dave 09

Nick 37

(a) Hash Function.

treeId pqg cnt

. . . . . . . . .

TLS 9999410032005497 2

TLS 9999410032003200 2

TLS 9999410054973200 2

TLS 4100549799999999 1

TLS 4100320002671186 1

TLS 4100320002671115 1

TLS 4100320011861115 1

. . . . . . . . .

(b) pq-Gram Index of the Song Lyric Store.

treeId pqg cnt

. . . . . . . . .

TWH 9999410032003200 2

TWH 9999410032001973 2

TWH 9999410019733200 2

TWH 4100197399999999 1

TWH 4100320002671115 1

TWH 4100320002671186 1

TWH 4100320011151186 1

. . . . . . . . .

(c) pq-Gram Index of the CD Warehouse.

Fig. 5. Implementation of the Windowed pq-Gram Index.

In the worst case the joined forests consist of identical

copies of the same tree. Let N be the cardinality of the forest,

n the number of nodes per tree. The indexes are of size O(Nn)
for a constant window size. In a sort-merge join the complexity

of sorting the relations is O(Nn log(Nn)). Each windowed

pq-gram in one index matches O(N) tuples in the other index.

The overall complexity is O(Nn(N + log n)). Note that for

this worst case scenario the join result is of size O(N2), thus

no algorithm can improve on the quadratic runtime.

Different from the nested loop join, our join algorithm can

take advantage of the diversity of trees in a forest. In the

best case, when no two trees in the forest share windowed

pq-grams, the runtime is O(Nn log(Nn)) for the index size

O(Nn). In our experiments we show the performance advan-

tages of the optimized join for large forests.

IX. EXPERIMENTS

A. Profile and Index Computation.

We analyze the scalability of the windowed pq-gram index

computation. Our test data are XML documents that range

between 100kB and 1.2GB (2k to 20M nodes), p = q = 2
and w = 3. The index computation in Figure 6(a) includes

the profile computation (Algorithm 1) and the aggregation of

duplicate pq-grams within each tree. The index computation

scales to very large trees. The test documents are generated

with xmlgen, provided by the XML benchmark project

XMark3.

3http://monetdb.cwi.nl/xml/

B. Approximate Join Based on Windowed pq-Grams.

We compare the scalability of the “optimized join” (Al-

gorithm 2) with the scalability of a join that computes the

windowed pq-gram distance between each pair of documents

(“nested loop join”). We join two sets of synthetic XML

documents. Each set consists of 1000 documents with 100 to

17000 nodes and stores 58MB of data. The documents within a

set are different, each document has a match in the other set.

Figure 6(b) shows the results. The optimized join computes

only the distance between documents that have pq-grams in

common. Unlike the nested loop join, it can take advantage

of the diversity of the trees that result in a small join results

set. The runtime is close to linear.
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Fig. 6. Index Creation and Join Scalability.

C. Quality of Matches.

We use real world XML data sets and add noise (spelling

mistakes and missing elements). We approximately join the

original and the noisy set.

The Data Sets. We use the DBLP4 (bibliography), the

SwissProt5 (protein sequence database), and the Treebank6

(parts of speech tagged English sentences) XML databases. We

split each database into a set of (sub)documents by deleting

the root node, and we randomly choose 200 of the resulting

documents for our experiments (requiring their size to be larger

than the number of errors we introduce).

The resulting document sets are structurally very different:

DBLP contains small and flat documents (15 nodes and depth

1.9 on average) with about ten times more elements than

attributes, the SwissProt documents are larger and deeper with

almost the same number of attributes and elements (104 nodes

and depth 3.5 on average), the Treebank documents have deep

recursive structure (49 nodes and depth 6.9 on average, with

a maximum depth of 30).

Adding Noise. We modify the original documents by delet-

ing and renaming random nodes. Node deletions simulate

missing elements or attributes and modify the document struc-

ture. Renamed nodes represent different tag names or spelling

mistakes in the text values. The resulting noisy document is

the match of the original document, all other noisy documents

are non-matches. In our figures we show the percentage of

changed nodes (norm-edit-dist).

4http://dblp.uni-trier.de
5http://us.expasy.org/sprot/
6http://www.cis.upenn.edu/˜treebank/



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

p
q

-g
ra

m
 d

is
ta

n
c
e

norm-edit-dist

closest non-match
match

(a) DBLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5

p
q

-g
ra

m
 d

is
ta

n
c
e

norm-edit-dist

closest non-match
match

(b) SwissProt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

p
q

-g
ra

m
 d

is
ta

n
c
e

norm-edit-dist

closest non-match
match

(c) Treebank

 0

 20

 40

 60

 80

 100

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

p
re

c
is

io
n

 /
 r

e
c
a

ll 
[%

]

norm-edit-dist

precision
recall

(d) 1:1 Matches for SwissProt

Fig. 7. (a-c) Distance between Matches and Non-Matches. (d) 1:1 Matches for SwissProt.

Distance between Matches and Non-Matches. Each original

document has exactly one match. Figures 7(a)–7(c) show the

average distance of the original documents to their match

and to the closest non-match. The SwissProt documents are

more similar to each other than the DBLP and Treebank

documents. The windowed pq-gram distance to the matches is

almost linear to the number of modified nodes. It effectively

approximates the edit distance. All documents are modified,

thus also the distance to the non-matches increases with the

number of changed nodes.

Precision and Recall. Our join algorithm matches each

original document to one or more noisy documents. We count

correct and incorrect matches. With possible we denote the

maximum number of correct matches that exist for a dataset. In

our setting, possible is equal to the number of documents in the

dataset. We compute precision = correct
correct+incorrect

×100% and

recall = correct
possible

×100%. The precision is high if the returned

matches are correct, the recall is high if the algorithm does

not miss correct matches.

Figure 8 shows precision and recall for different thresholds

τ . Moving up the threshold decreases the precision and in-

creases the recall. Precision and recall for DBLP and Treebank

are almost 100%, even for very noisy documents.

For SwissProt the precision drops as we increase the thresh-

old. The SwissProt documents are clustered into groups of very

similar documents (protein variants). For example, two docu-

ments with 64 elements have exactly the same structure and

vary only in 6 text values. The clustering of the data is evident

from the precision values in Figure 8(b) for norm-edit-dist = 0
(approximate self join): Already for τ = 0.2 many documents

match other documents than themselves. We improve the result

for SwissProt using a variable threshold. Each document is

matched to its nearest neighbor. If a document has more than

one nearest neighbor, no match is returned. Figure 7(d) shows

the results for the SwissProt database. The algorithm returns

precise matches, and even for errors of 20% we miss only

about 10% of the matches.

X. CONCLUSION

When XML data from different sources is integrated in a

single data collection, data items that represent the same real

world object must be recognized. Exact matches, however,

often fail in such applications (elements may be missing in

one database, content values may not match due to different

coding conventions and spelling mistakes, and the data may
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Fig. 8. Matching with Different Thresholds.

be arranged in a different structure). Approximate matching

techniques must be applied.

Previous research developed approximate join operations

based on ordered tree-matching, but for data-centric XML

applications the order of siblings should not matter. Data-

centric XML can be represented as unordered trees. In this

paper we propose an approximate join technique for data-

centric XML based on windowed pq-grams.

pq-Grams were developed for the approximate matching

of ordered trees [11]. We introduce windowed pq-grams to

approximately match unordered trees in a three-step process:

sorting the tree, extending the sorted tree with dummy nodes,

and computing the windowed pq-grams on the extended tree.

Windowed pq-grams consist of a stem and a base. The stems

are invariant to order, and the main challenge is to compute

the bases. Our bases enjoy the following important properties:



all non-root nodes appear in the same number of bases;

the Jaccard distance between sibling sets is preserved, and

node moves to other parents are detected. The windowed

pq-gram distance between sorted trees approximates the tree

edit distance between the respective unordered trees.

We show that the permutation of a constant number of sib-

lings changes only a constant number of windowed pq-grams.

This core feature makes windowed pq-grams eligible for our

tree sorting approach and rules out other common distances

such as the edit distance between ordered trees.

We provide an efficient algorithm for the approximate join

of unordered trees, which is implemented as an equality join

on windowed pq-grams and can take advantage of well known

join optimization techniques. To the best of our knowledge,

this is the first work to address the problem of approximately

joining data-centric XML, where the distance algorithm can

not take advantage of a predefined document order. Extensive

experiments on both synthetic and real world data confirm the

analytic results and suggest that our technique is both useful

and scalable.

Future work includes the investigation of persistent, up-

datable index structures for the windowed pq-gram join.

As windowed pq-grams store local information, a document

modification (e.g., an altered text value) affects only a limited

number of windowed pq-grams. The index should be updated

incrementally by substituting the affected pq-grams only, thus

avoiding the recomputation of all windowed pq-grams from

scratch.

Further we plan to combine our approximate join on data-

centric XML with approximate string matching techniques.

The string values of some elements or attributes may be

particularly important to identify a data item, for example, the

title of an article is very significant in a XML database about

publications. We would like to include both the similarity of

the XML structure and the similarity of selected string values

into our approximate join.
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