Approximate Joins for Data-Centric XML

Nikolaus Augsten1 \quad Michael Böhlen1 \quad Curtis Dyreson2 \quad Johann Gamper1

1Free University of Bozen-Bolzano
Bolzano, Italy
\{augsten,boehlen,gamper\}@inf.unibz.it

2Utah State University
Logan, UT, U.S.A.
curtis.dyreson@usu.edu

April 10, 2008
ICDE, Cancún, Mexico
Outline

1 Motivation

2 Windowed pq-Grams for Data-Centric XML
 - Windowed pq-Grams
 - Tree Sorting
 - Forming Bases

3 Efficient Approximate Joins with Windowed pq-Gram

4 Experiments

5 Related Work

6 Conclusion and Future Work
Motivation

Approximate Join on Music CDs

Song Lyric Store

- album
 - track
 - title artist artist title
 - So Far Mark Roger Breathe
 - track
 - title
 - Harvest

CD Warehouse

- album
 - track
 - price
 - artist title
 - Neil Alabama
 - track
 - price
 - artist title
 - Roger Breathe
 - Mark So Far

Query: Give me all album pairs that represent the same music CDs.
Query: Give me all album pairs that represent the same music CDs.

How similar are two XML items?
Motivation

How Similar Are these XMLs?

- **Standard solution** $O(n^3)$: tree edit distance
 - Minimum number of **node edit operations** (insert, delete, rename) that transforms one ordered tree into the other.
Motivation

How Similar Are these XMLs?

- **Standard solution** $O(n^3)$: tree edit distance
 Minimum number of **node edit operations** (insert, delete, rename) that transforms one ordered tree into the other.

- **Problem**: permuted subtrees are deleted/re-inserted node by node
Ordered Trees

sibling order matters

\[
\begin{align*}
\text{Ordered Trees} & \quad \begin{array}{c}
\text{c} \\
\text{d} \\
\text{e}
\end{array} \\
\text{a} & \quad \begin{array}{c}
\text{b}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{a} & \quad \begin{array}{c}
\text{b} \\
\text{d} \\
\text{e}
\end{array}
\end{align*}
\]
Ordered vs. Unordered Trees

Ordered Trees
- sibling order matters

Unordered Trees
= data-centric XML
- sibling order ignored

Notes:
- Ignore order when comparing unordered trees.
- Order matters in ordered trees, as shown by the different structures.
- The example uses a simple tree structure to illustrate the concept.

Source: Nikolaus Augsten (Bolzano, Italy), Approximate Joins for Data-Centric XML, ICDE 2008 – Cancún, Mexico
Ordered vs. Unordered Trees

Ordered Trees
- sibling order matters

Unordered Trees
- \(\text{data-centric XML}\)
 - sibling order ignored

Edit distance between unordered trees: \(\text{NP-complete}\)
- all sibling permutations must be considered!
Problem Definition

Find an **effective distance** for the approximate matching of hierarchical data represented as **unordered labeled trees** that is **efficient** for approximate joins.
Find an **effective distance** for the approximate matching of hierarchical data represented as **unordered labeled trees** that is **efficient** for approximate joins.

Naive approaches that fail:
- unordered tree edit distance: NP-complete
- allow subtree move: NP-hard
- compute minimum distance between all permutations: $O(n!)$
- sort by label and use ordered tree edit distance: error $O(n)$
Outline

1 Motivation

2 Windowed pq-Grams for Data-Centric XML
 • Windowed pq-Grams
 • Tree Sorting
 • Forming Bases

3 Efficient Approximate Joins with Windowed pq-Gram

4 Experiments

5 Related Work

6 Conclusion and Future Work
Our Solution: Windowed pq-Grams

- **Windowed pq-Gram**: small subtree with stem and base

\[
\text{stem} \quad p = 2 \\
\text{base} \quad q = 3
\]
Our Solution: Windowed pq-Grams

- **Windowed pq-Gram**: small subtree with stem and base

- **Key Idea**: split unordered tree into set of windowed pq-grams that is
 - not sensitive to the sibling order
 - sensitive to any other change in the tree

- **Intuition**: similar unordered trees have similar windowed pq-grams
Our Solution: Windowed pq-Grams

- **Windowed pq-Gram**: small subtree with *stem* and *base*

- **Key Idea**: split unordered tree into set of windowed pq-grams that is
 - not sensitive to the sibling order
 - sensitive to any other change in the tree

- **Intuition**: similar unordered trees have similar windowed pq-grams

- **Systematic computation** of windowed pq-grams
 1. sort the children of each node by their label (works OK for pq-grams)
 2. simulate permutations with a **window**
 3. split tree into windowed pq-grams
Implementation of Windowed pq-Grams

- **Set of windowed pq-grams:**

 $\begin{align*}
 a & \quad * & * & * & * & * & a & a & a & a & a & a & c & c \\
 b & c & a & a & a & a & b & c & c & c & c & c & d & e \\
 d & e & b & c & b & c & b & c & b & c & b & c & d & e \\
 \end{align*}$
Implementation of Windowed \(pq\)-Grams

- **Set of windowed \(pq\)-grams:**
 \[
 \begin{array}{c}
 a \\
 b \\ c \\
 d \\ e \\
 \end{array}
 \quad \rightarrow \quad
 \begin{array}{cccccccccccccccc}
 * & * & * & * & * & a & a & a & a & a & a & a & c & c \\
 a & a & a & a & a & b & c & c & c & c & c & c & d & e \\
 b & c & b^* & c^* & c^* & b^* & b^* & c^* & c^* & d & e & d^* & e & d^* & e & d^* & e & e & e & * & * & * & * & * \\
 \end{array}
 \\

- **Hashing:** map \(pq\)-gram to integer:

 \[
 \begin{array}{c}
 * \\
 a \\
 b \\ c \\
 \end{array}
 \quad \rightarrow \quad
 (*, a, b, c) \quad (\text{shorthand}) \quad
 \begin{array}{c}
 \text{serialize} \\
 \rightarrow \quad
 *abc \quad \rightarrow \quad
 \text{hash} \quad \rightarrow \quad
 0973
 \end{array}
 \\

 \begin{array}{ccc}
 \text{label} & l & h(l) \\
 * & 0 & \\
 a & 9 & \\
 b & 7 & \\
 c & 3 & \\
 \ldots & \ldots & \\
 \end{array}
 \\

 \textbf{Note:} labels may be strings of arbitrary length!
Implementation of Windowed \(pq \)-Grams

- **Set of windowed \(pq \)-grams:**

 \[
 \begin{array}{c}
 a \\
 b \\
 c \\
 d \\
 e \\
 \end{array}
 \rightarrow
 \begin{array}{c}
 * \\
 a \\
 b \\
 c \\
 d \\
 e \\
 \end{array}
 \]

- **Hashing:** map \(pq \)-gram to integer:

<table>
<thead>
<tr>
<th>label</th>
<th>(h(l))</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>9</td>
</tr>
<tr>
<td>b</td>
<td>7</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

 \[
 \text{serialize: } (*, a, b, c) \rightarrow *abc \quad \text{(shorthand)} \quad \text{hash: } \rightarrow 0973
 \]

 \textbf{Note:} labels may be strings of arbitrary length!

- **\(pq \)-Gram index:** bag of hashed \(pq \)-grams

 \[
 I(T) = \{0973, 0970, 0930, 0937, 0907, 0903, 9700, 9316, 9310, 9360, 9361, 9301, 9306, 3100, 3600\}
 \]

 \textbf{Tree is represented by a bag of integers!}
The **windowed pq-gram distance** between two trees, T and T':

$$\text{dist}^{pq}(T, T') = |\mathcal{I}(T) \cup \mathcal{I}(T')| - 2|\mathcal{I}(T) \cap \mathcal{I}(T')|$$
The windowed pq-gram distance between two trees, T and T':

$$\text{dist}^{pq}(T, T') = |\mathcal{I}(T) \cup \mathcal{I}(T')| - 2|\mathcal{I}(T) \cap \mathcal{I}(T')|$$

- **Pseudo-metric** properties hold:
 - **self-identity**: $x = y \Rightarrow \text{dist}^{pq}(x, y) = 0$
The windowed pq-gram distance between two trees, T and T':

$$\text{dist}^{pq}(T, T') = |I(T) \cup I(T')| - 2|I(T) \cap I(T')|$$

- **Pseudo-metric** properties hold:
 - self-identity: $x = y \iff \text{dist}^{pq}(x, y) = 0$

 ![Venn diagram](image)

- Different trees may be at distance zero:

 ![Tree diagram](image)
The \textbf{windowed pq-gram distance} between two trees, T and T':

$$\text{dist}^{pq}(T, T') = |\mathcal{I}(T) \cup \mathcal{I}(T')| - 2|\mathcal{I}(T) \cap \mathcal{I}(T')|$$

\textbf{Pseudo-metric} properties hold:

✓ **self-identity**: $x = y \iff \text{dist}^{pq}(x, y) = 0$

✓ **symmetry**: $\text{dist}^{pq}(x, y) = \text{dist}^{pq}(y, x)$

Different trees may be at distance zero:

```
   b
  / \
 b   b
 / \ / \b
b   b b
```

\text{I}(T) \cap \text{I}(T')
The windowed pq-gram distance between two trees, T and T':

$$\text{dist}^{pq}(T, T') = |I(T) \cup I(T')| - 2|I(T) \cap I(T')|$$

- **Pseudo-metric** properties hold:
 - ✓ self-identity: $x = y \iff \text{dist}^{pq}(x, y) = 0$
 - ✓ symmetry: $\text{dist}^{pq}(x, y) = \text{dist}^{pq}(y, x)$
 - ✓ triangle inequality: $\text{dist}^{pq}(x, z) \leq \text{dist}^{pq}(x, y) + \text{dist}^{pq}(y, z)$

- Different trees may be at distance zero:

\[
\begin{array}{c}
\node{b} \\
\node{b} \\
\node{b} \\
\node{b}
\end{array}
\quad
\begin{array}{c}
\node{b} \\
\node{b} \\
\node{b} \\
\node{b}
\end{array}
\]
The windowed \(pq \)-gram distance between two trees, \(T \) and \(T' \):

\[
\text{dist}^{pq}(T, T') = |\mathcal{I}(T) \cup \mathcal{I}(T')| - 2|\mathcal{I}(T) \cap \mathcal{I}(T')|
\]

- **Pseudo-metric** properties hold:
 - ✓ self-identity: \(x = y \Leftrightarrow \text{dist}^{pq}(x, y) = 0 \)
 - ✓ symmetry: \(\text{dist}^{pq}(x, y) = \text{dist}^{pq}(y, x) \)
 - ✓ triangle inequality: \(\text{dist}^{pq}(x, z) \leq \text{dist}^{pq}(x, y) + \text{dist}^{pq}(y, z) \)

- Different trees may be at distance zero:

\[
\begin{array}{c}
 b \quad b \\
 | \quad | \\
 b \quad b \\
 \quad | \\
 b \quad b
\end{array}
\]

- **Runtime** for the distance computation is \(O(n \log n) \).
Outline

1 Motivation

2 Windowed \(pq\)-Grams for Data-Centric XML
 - Windowed \(pq\)-Grams
 - Tree Sorting
 - Forming Bases

3 Efficient Approximate Joins with Windowed \(pq\)-Gram

4 Experiments

5 Related Work

6 Conclusion and Future Work
Idea:

1. sort the children of each node by their label
2. apply an ordered tree distance
Idea:

1. sort the children of each node by their label
2. apply an ordered tree distance

![Diagram](image.png)

- **Edit distance:** tree sorting does not work
- **Windowed pq-Grams:** tree sorting works OK
Edit Distance: Tree Sorting Does Not Work

1. Non-unique sorting:

\[\begin{align*}
\text{unordered} & \quad \text{edit dist} = 0 \\
\end{align*} \]
Edit Distance: Tree Sorting Does Not Work

1. Non-unique sorting:
Edit Distance: Tree Sorting Does Not Work

1. **Non-unique sorting**: edit distance $O(n)$ for identical trees

![Diagram showing non-unique sorting](image)

Example:*

- Unordered: $\text{edit dist} = 0$
- Ordered: $\text{edit dist} = O(n)$
2. Node renaming:

\(T_2 \)

\(a \)

\(e \)

\(f \)

\(g \)

\(d \)

\(j \)

\(k \)

\(c \)

\(b \)

\(h \)

\(i \)

\(1 \) rename

\(T_2 \)

\(a \)

\(b \)

\(e \)

\(f \)

\(g \)

\(d \)

\(j \)

\(k \)

\(c \)

\(b \)

\(h \)

\(i \)
2. Node renaming:

\[
\begin{align*}
T_2 &= \begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{d} \\
\text{e} \\
\text{f} \\
\text{g} \\
\text{h} \\
\text{i} \\
\text{k} \\
\text{j}
\end{array}
\end{align*}
\]

\[
\begin{align*}
T_2 &= \begin{array}{c}
\text{a} \\
\text{b} \\
\text{c} \\
\text{d} \\
\text{e} \\
\text{f} \\
\text{g} \\
\text{h} \\
\text{i} \\
\text{k} \\
\text{j}
\end{array}
\end{align*}
\]

\[
\begin{align*}
1 \text{ rename} \\
\text{sort} \quad \rightarrow \quad \text{sort}
\end{align*}
\]

\[
\begin{align*}
\text{dist} = 1
\end{align*}
\]
2. **Node renaming:**

\[T_2 \]

- \(a \)
 - \(e \)
 - \(f \)
 - \(g \)
 - \(d \)
 - \(j \)
 - \(k \)
- \(b \)
 - \(h \)
 - \(i \)

\[1 \text{ rename} \]

- \(a \)
 - \(e \)
 - \(f \)
 - \(g \)
 - \(d \)
 - \(j \)
 - \(k \)
- \(b \)
 - \(h \)
 - \(i \)

\[\text{sort} \]

- \(a \)
 - \(b \)
 - \(c \)
 - \(d \)
 - \(e \)
 - \(f \)
 - \(g \)
 - \(h \)
 - \(i \)
 - \(j \)
 - \(k \)

\[\text{dist} = 1 \]

\[\text{sort} \]

- \(a \)
 - \(b \)
 - \(c \)
 - \(d \)
 - \(e \)
 - \(f \)
 - \(g \)
 - \(h \)
 - \(i \)
 - \(j \)
 - \(k \)

\[\text{sort} \]

- \(a \)
 - \(b \)
 - \(c \)
 - \(d \)
 - \(e \)
 - \(f \)
 - \(g \)
 - \(h \)
 - \(i \)
 - \(j \)
 - \(k \)

\[\text{sort} \]

- \(a \)
 - \(b \)
 - \(c \)
 - \(d \)
 - \(e \)
 - \(f \)
 - \(g \)
 - \(h \)
 - \(i \)
 - \(j \)
 - \(x \)
2. **Node renaming**: edit distance depends on node label

$$T_2$$

```
      a
  f
/   \
|     |
|     |
|     |
```

$$T_2$$

```
      b
  f
/   \
|     |
|     |
|     |
```

$$T_2$$

```
      x
  e
/   \
|     |
|     |
|     |
```

- Sort
- $$\text{dist} = 1$$
- $$\text{sort}$$
- $$\text{dist} = O(n)$$
Theorem (Local Effect of Node Reordering)

If k children of a node are reordered, i.e., their subtrees are moved, only $O(k)$ windowed pq-grams change.

Proof (idea):

- pq-grams consist of a **stem** and a **base**
- **stems** are invariant to the sibling order
- **bases**: only the $O(k)$ pq-grams with the reordered nodes in the bases change
Theorem (Local Effect of Node Reordering)

If k children of a node are reordered, i.e., their subtrees are moved, only $O(k)$ windowed pq-grams change.

Proof (idea):
- pq-grams consist of a stem and a base.
- Stems are invariant to the sibling order.
- Bases: only the $O(k)$ pq-grams with the reordered nodes in the bases change.

✓ Non-unique sortings are equivalent: distance is 0 for identical trees.
✓ Node renaming is independent of the node label.
Outline

1. Motivation

2. Windowed pq-Grams for Data-Centric XML
 - Windowed pq-Grams
 - Tree Sorting
 - Forming Bases

3. Efficient Approximate Joins with Windowed pq-Gram

4. Experiments

5. Related Work

6. Conclusion and Future Work
How To Form Bases?

- **Goal** for windowed pq-grams:
 - not sensitive to the sibling order
 - sensitive to any other change in the tree

```
  stem
  p = 2

  base
  q = 3
```
How To Form Bases?

Goal for windowed pq-grams:
- **not sensitive** to the sibling order
- **sensitive** to any other change in the tree

Stems: ignore sibling order

```
  a
/ \                          * a a c c
 b  c  →  | | | | | |
/ \   a b c d e
 d  e
```

Diagram:
```
  stem
    p = 2
  base
    q = 3
```
How To Form Bases?

Goal for windowed pq-grams:

- **not sensitive** to the sibling order
- **sensitive** to any other change in the tree

Stems: ignore sibling order

```
  a
 /\  
b  c  * a a c c
 /\    1 1 1 1 1
 d  e  a b c d e
```

Bases: do not ignore sibling order!
Requirements for Bases

- **Requirements** for bases:
 - detection of node moves
 - robustness to different sortings
 - balanced node weight
Requirements for Bases

Requirements for bases:
- detection of node moves
- robustness to different sortings
- balanced node weight

Our solution:
- **windows**: simulate all permutations within a window
- **wrapping**: wrap windows that extend beyond the right border
- **dummies**: extend small sibling sets with dummy nodes
Solution: Windowed pq-Gram Bases

Algorithm 1: **Form bases** from a sorted sibling sequence

- **Example:** stem, sorted sibling sequence, window $w = 3$

```
    a
   /|
  b / |
 /  |
/   |
/    d e
```
Solution: Windowed pq-Gram Bases

Algorithm 2: **Form bases** from a sorted sibling sequence

1. if sibling sequence $<$ window then extend with dummy nodes;

- **Example:** stem, sorted sibling sequence, window $w = 3$

```
      a
     / \
    b   c
   /   /\
  d   e  *
```
Solution: Windowed \(pq\)-Gram Bases

Algorithm 3: **Form bases** from a sorted sibling sequence

1. if sibling sequence < window then extend with dummy nodes;
2. initialize window: start with leftmost node;

Example: stem, sorted sibling sequence, window \(w = 3\)

```
    a
   / \
  b   c
 / \  / \
d  e  *  
```
Solution: **Windowed pq-Gram Bases**

Algorithm 4: **Form bases** from a sorted sibling sequence

1. if sibling sequence < window then extend with dummy nodes;
2. initialize window: start with leftmost node;
3. repeat
4. form bases in window: all q-permutations that contain start node;
7. until processed all window positions

Example: stem, sorted sibling sequence, window \(w = 3 \)

```plaintext
     a
    /|
   / |-----------------
  b  c
  /   /  d e *  \  
   \ /\       /   /
    \  \   /     /
       \   /     /
         \ /     /
          \   /   
           \ /   
            d  e
```

Nikolaus Augsten (Bolzano, Italy)
Solution: Windowed pq-Gram Bases

Algorithm 5: **Form bases** from a sorted sibling sequence

1. **if** sibling sequence $<$ window **then** extend with dummy nodes;
2. **initialize** window: start with leftmost node;
3. repeat
4. **form bases** in window: all q-permutations that contain start node;
7. **until** processed all window positions

Example: stem, sorted sibling sequence, window $w = 3$

```
  a
 /\  
 b  c
 
  d e *

\[ \rightarrow \]

  a  a
 / \ / 
 c  c
 
  d e d *
```
Solution: Windowed pq-Gram Bases

Algorithm 6: **Form bases** from a sorted sibling sequence

1. if sibling sequence $< \text{window}$ then extend with dummy nodes;
2. initialize window: start with leftmost node;
3. repeat
4. form bases in window: all q-permutations that contain start node;
5. shift window to the right by one node;
6. until processed all window positions

Example: stem, sorted sibling sequence, window $w = 3$

```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
```

```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Nikolaus Augsten (Bolzano, Italy) Approximate Joins for Data-Centric XML ICDE 2008 – Cancún, Mexico 19 / 33
Solution: Windowed \(pq \)-Gram Bases

Algorithm 7: Form bases from a sorted sibling sequence

1. if sibling sequence < window then extend with dummy nodes;
2. initialize window: start with leftmost node;
3. repeat
4. form bases in window: all \(q \)-permutations that contain start node;
5. shift window to the right by one node;
6. if window extends the right border then wrap window;
7. until processed all window positions

Example: stem, sorted sibling sequence, window \(w = 3 \)

\[
\begin{array}{c}
\text{a} \\
\text{b} \quad \text{c} \\
\text{d} \quad \text{e} \star
\end{array}
\rightarrow
\begin{array}{c}
\text{a} \\
\text{c} \\
\text{d} \quad \text{e} \quad \text{d} \star
\end{array}
\]
Algorithm 8: **Form bases** from a sorted sibling sequence

1. if `sibling sequence < window` then extend with dummy nodes;
2. initialize window: start with leftmost node;
3. repeat
4. form bases in window: all \(q \)-permutations that contain start node;
5. shift window to the right by one node;
6. if `window extends the right border` then wrap window;
7. until processed all window positions

Example: stem, sorted sibling sequence, window \(w = 3 \)

```
   a
  / \       a     a     a     a
 b   c     c     c     c
|   |     |     |     |     |
|   |     |     |     |     |
|   |     |     |     |     |
|   |     |     |     |     |
```

```
      d e  d *  e *  e d
```
Solution: Windowed pq-Gram Bases

Algorithm 9: Form bases from a sorted sibling sequence

1. if sibling sequence $<$ window then extend with dummy nodes;
2. initialize window: start with leftmost node;
3. repeat
4. form bases in window: all q-permutations that contain start node;
5. shift window to the right by one node;
6. if window extends the right border then wrap window;
7. until processed all window positions

Example: stem, sorted sibling sequence, window $w = 3$
Solution: Windowed pq-Gram Bases

Algorithm 10: **Form bases** from a sorted sibling sequence

1. if sibling sequence $< \text{window}$ then extend with dummy nodes;
2. initialize window: start with leftmost node;
3. repeat
4. form bases in window: all q-permutations that contain start node;
5. shift window to the right by one node;
6. if window extends the right border then wrap window;
7. until processed all window positions

Example: stem, sorted sibling sequence, window $w = 3$

```
  a
 /|
 b c
 /  
 d e*
```

```
  a  a  a  a  a  a
 /|
 c  c  c  c  c  c
 /  
 d  e  d  e  e  d  e
```
Theorem (Optimal Windowed \(pq\)-Grams)

For trees with fanout \(f\), windowed \(pq\)-grams with base size \(q = 2\) and window size \(w = \frac{f+1}{2}\) have the following properties:
Theorem (Optimal Windowed pq-Grams)

For trees with fanout f, windowed pq-grams with base size $q = 2$ and window size $w = \frac{f+1}{2}$ have the following properties:

1. **Detection of node moves:**
 - base recall $\rho = 1$ (all sibling pairs are encoded)
 - base precision $\pi = 1$ (each pair is encoded only once)
Theorem (Optimal Windowed pq-Grams)

For trees with fanout f, windowed pq-grams with base size $q = 2$ and window size $w = \frac{f + 1}{2}$ have the following properties:

1. **Detection of node moves:**
 - **base recall** $\rho = 1$ (all sibling pairs are encoded)
 - **base precision** $\pi = 1$ (each pair is encoded only once)

2. **Robustness to different sortings:** (k edit operations)
 - **base error** $\epsilon \leq \frac{2k}{f}$
Theorem (Optimal Windowed pq-Grams)

For trees with fanout f, windowed pq-grams with base size $q = 2$ and window size $w = \frac{f+1}{2}$ have the following properties:

1. **Detection of node moves:**
 - **Base recall** $\rho = 1$ (all sibling pairs are encoded)
 - **Base precision** $\pi = 1$ (each pair is encoded only once)

2. **Robustness to different sortings:** (k edit operations)
 - **Base error** $\epsilon \leq \frac{2k}{f}$

3. **Balanced node weight:**
 - Each non-root node appears in exactly $2w - 2$ bases.
Illustration: Detection of Node Moves

- **Single Node:** each node forms a base of size $q = 1$
Illustration: Detection of Node Moves

- **Single Node:** each node forms a base of size $q = 1$

![Diagram of node moves]

Goal: bases must change
Single Node: each node forms a base of size $q = 1$

Goal: bases must change

| Single Node: | c, d, e | no bases change | c, d, e |
Illustration: Detection of Node Moves

Single Node: each node forms a base of size $q = 1$

Goal: bases must change

- **✗ Single Node:** c, d, e no bases change c, d, e

Diagram:

```
        a
       / \
      b   b
     / \  /
    c   d e
```

1 node move

```
        a
       / \
      b   b
     /     /
    c     d
```

Illustration: Detection of Node Moves

- **Single Node:** each node forms a base of size $q = 1$
- **Window:** $q \geq 2$ nodes of a window form a base

Goal: bases must change

<table>
<thead>
<tr>
<th>Single Node:</th>
<th>Window:</th>
</tr>
</thead>
<tbody>
<tr>
<td>X c, d, e no bases change c, d, e</td>
<td>cd, c*, d*, dc, c, d, e, ... 33% bases change c, c*, **, *c, *c, **, de, ...</td>
</tr>
</tbody>
</table>
Illustration: Detection of Node Moves

- **Single Node**: each node forms a base of size $q = 1$
- **Window**: $q \geq 2$ nodes of a window form a base

![Diagram of node moves](image)

Goal: bases must change

- **× Single Node**: c, d, e no bases change c, d, e
- **✓ Window**: $cd, c^*, d^*, dc, *c, *d, e^*, \ldots$ 33% bases change $c^*, c^*, **, *c, *c, **, de, \ldots$

Windowed pq-grams detect node moves.
Illustration: Robustness to Different Sortings

- **Consecutive siblings** form a base (no permutation)
Illustration: Robustness to Different Sortings

- **Consecutive siblings** form a base (no permutation)

```
  x a b d  1 rename  x a c d
    Sorting A                      Sorting A
      x a b d                      x a c d
        Sorting B                  Sorting B
          x a b d                  x a c d
```

Goal: Same number of bases change for both sortings.
Illustration: Robustness to Different Sortings

- **Consecutive siblings** form a base (no permutation)

<table>
<thead>
<tr>
<th>Goal:</th>
<th>Same number of bases change for both sortings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consecutive:</td>
<td>Sorting A</td>
</tr>
<tr>
<td>Sort A</td>
<td>ab bc</td>
</tr>
<tr>
<td>Sort B</td>
<td>ad db</td>
</tr>
</tbody>
</table>
Illustration: Robustness to Different Sortings

- **Consecutive siblings** form a base (no permutation)

Goal: Same number of bases change for both sortings.

<table>
<thead>
<tr>
<th>Consecutive:</th>
<th>Sort A</th>
<th>Sort B</th>
<th>100% bases change</th>
<th>50% bases change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort A</td>
<td>ab bc</td>
<td>ad db</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sort B</td>
<td>ac cd</td>
<td>ad dc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Illustration: Robustness to Different Sortings

- **Consecutive siblings** form a base (no permutation)
- **Window**: all sibling permutations within the window form bases

\[
\begin{array}{ccc}
\times & a & d \\
\times & b & d \\
\times & a & b & d \\
\end{array} & \xrightarrow{1 \text{ rename}} & \begin{array}{ccc}
\times & a & d \\
\times & c & d \\
\times & a & c & d \\
\end{array}
\]

Sorting A

\[
\begin{array}{ccc}
\times & a & b \\
\times & a & d \\
\times & a & c & d \\
\end{array}
\]

Sorting B

\[
\begin{array}{ccc}
\times & a & c \\
\times & a & d \\
\times & a & d & c \\
\end{array}
\]

Goal: Same number of bases change for both sortings.

<table>
<thead>
<tr>
<th>Consecutive</th>
<th>Sort A</th>
<th>ab bc</th>
<th>100% bases change</th>
<th>Sort B</th>
<th>ad db</th>
<th>50% bases change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>Sort A</td>
<td>ad ab db...</td>
<td>33% bases change</td>
<td>Sort B</td>
<td>ad ac dc...</td>
<td>33% bases change</td>
</tr>
<tr>
<td></td>
<td>Sort B</td>
<td>ad ab db...</td>
<td>33% bases change</td>
<td></td>
<td>ad ac dc...</td>
<td>33% bases change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nikolaus Augsten (Bolzano, Italy) Approximate Joins for Data-Centric XML ICDE 2008 – Cancún, Mexico
Illustration: Robustness to Different Sortings

- **Consecutive siblings** form a base (no permutation)
- **Window**: all sibling permutations within the window form bases

<table>
<thead>
<tr>
<th></th>
<th>Sort A</th>
<th>Sort B</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consecutive</td>
<td>ab bc</td>
<td>ad db</td>
<td>100%</td>
</tr>
<tr>
<td>Window</td>
<td>ad ab db...</td>
<td>ad ac dc...</td>
<td>33%</td>
</tr>
</tbody>
</table>

Goal: Same number of bases change for both sortings.

Windowed pq-grams: Robust to different sortings.
Illustration: Balancing the Node Weight

- **Permutations**: all permutations of size q form a base
Illustration: Balancing the Node Weight

- **Permutations**: all permutations of size q form a base

![Diagram showing permutations and renames]

Goal: Same number of bases change for both renames.
Permutations: all permutations of size q form a base

Goal: Same number of bases change for both renames.

Permutations: 60/137 bases change 6/137 bases change
Illustration: Balancing the Node Weight

Permutations: all permutations of size q form a base

- **Goal:** Same number of bases change for both renames.

- **Permutations:** $\frac{60}{137}$ bases change vs $\frac{6}{137}$ bases change
Illustration: Balancing the Node Weight

- **Permutations**: all permutations of size q form a base
- **Window**: only permutations within window form a base

Goal: Same number of bases change for both renames.

<table>
<thead>
<tr>
<th></th>
<th>Permutations</th>
<th>Window</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60/137 bases change</td>
<td>12/51 bases change</td>
</tr>
<tr>
<td>✗ Permutations:</td>
<td>6/137 bases change</td>
<td>12/51 bases change</td>
</tr>
</tbody>
</table>
Illustration: Balancing the Node Weight

- **Permutations**: all permutations of size q form a base
- **Window**: only permutations within window form a base

Goal: Same number of bases change for both renames.

<table>
<thead>
<tr>
<th></th>
<th># of Bases Change</th>
<th># of Bases Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permutations</td>
<td>60/137</td>
<td>6/137</td>
</tr>
<tr>
<td>Window</td>
<td>12/51</td>
<td>12/51</td>
</tr>
</tbody>
</table>

Windowed pq-grams: Node weight is independent of sibling number.
Outline

1 Motivation

2 Windowed pq-Grams for Data-Centric XML
 - Windowed pq-Grams
 - Tree Sorting
 - Forming Bases

3 Efficient Approximate Joins with Windowed pq-Gram

4 Experiments

5 Related Work

6 Conclusion and Future Work
Approximate Join

\[
F
\begin{array}{c|c}
\text{tid} & \text{tree} \\
\hline
T_1 & x \ y \ w \\
& v \ z \\
T_2 & a \ b \ c \ b \\
T_3 & a \ e \ b \ h \\
\end{array}
\]

\[
F'
\begin{array}{c|c}
\text{tree} & \text{tid} \\
\hline
a \ b \ c \ d \ e \\
T_1' \\
T_2' & d \ a \ h \ i \\
T_3' & x \ y \ w \\
& w \ z \\
\end{array}
\]
Approximate Join

- **Simple approach:** distance join
 - 1. compute **distance** between all pairs of trees
Approximate Join

Simple approach: distance join

1. compute distance between all pairs of trees
2. return document pairs within threshold
Simple approach: distance join
1. compute distance between all pairs of trees
2. return document pairs within threshold

Very expensive: N^2 distance computations!
Usual Join Optimization Does not Apply

- **Distance join**: expensive
 - nested loop join: evaluate distance function between every input pair

- **Equality join**: efficient
 - implementation as sort-merge or hash join
Usual Join Optimization Does not Apply

- **Distance join**: expensive
 - nested loop join: evaluate distance function between every input pair

- **Equality join**: efficient
 - implementation as sort-merge or hash join

- **Sort-merge and hash join**:
 - *first step*: treat each *join attribute in isolation* (sort/hash)
 - *second step*: evaluate equality function

- **Sort-merge and hash not applicable to distance join**:
 - there is **no sorting** that groups similar trees
 - there is **no hash function** that partitions similar trees into buckets
Efficient Approximate Joins with Windowed pq-Gram

Usual Join Optimization Does not Apply

- **Distance join**: expensive
 - nested loop join: evaluate distance function between every input pair
- **Equality join**: efficient
 - implementation as sort-merge or hash join

Sort-merge and hash join:
- *first step*: treat each join attribute in isolation (sort/hash)
- *second step*: evaluate equality function

Sort-merge and hash **not applicable to distance join**:
- there is **no sorting** that groups similar trees
- there is **no hash function** that partitions similar trees into buckets

Solution: reduce **distance join to equality join** on pq-grams
Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags

 \[
 \begin{align*}
 \{1, 7\}_a & \quad \{1, 7\}_d \\
 \{1, 0\}_b & \quad \{5, 5\}_e \\
 \{4, 6\}_c & \quad \{0, 8\}_f
 \end{align*}
 \]
Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags

 \[
 \begin{align*}
 \{1, 7\}_a & \quad \{1, 7\}_d \quad |a \cap d| = 2 \\
 \{1, 0\}_b & \quad \{5, 5\}_e \quad |a \cap e| = 0 \\
 \{4, 6\}_c & \quad \{0, 8\}_f \quad |a \cap f| = 0
 \end{align*}
 \]
Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags

 - $\{1, 7\}_a \cap \{1, 7\}_d = 2$
 - $\{1, 7\}_a \cap \{0, 8\}_f = 0$
 - $\{1, 7\}_a \cap \{5, 5\}_e = 0$

 - $\{1, 0\}_b \cap \{1, 7\}_d = 1$
 - $\{1, 0\}_b \cap \{0, 8\}_f = 1$
 - $\{1, 0\}_b \cap \{5, 5\}_e = 0$

 - $\{4, 6\}_c \cap \{1, 7\}_d = 0$
 - $\{4, 6\}_c \cap \{0, 8\}_f = 0$
 - $\{4, 6\}_c \cap \{5, 5\}_e = 0$
Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags

 | | | | | |
|---|---|---|---|---|
 | $\{1, 7\}_a$ | $\{1, 7\}_d$ | $|a \cap d| = 2$ |
 | $\{1, 0\}_b$ | $\{5, 5\}_e$ | $|b \cap d| = 1$ |
 | $\{4, 6\}_c$ | $\{0, 8\}_f$ | $|c \cap d| = 0$ |

- **Optimized pq-gram join**: empty intersections are never computed!
Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags
 \[
 \{1, 7\}_a \cap \{1, 7\}_d = 2 \quad |a \cap d| = 2 \\
 \{1, 0\}_b \cap \{5, 5\}_e = 0 \quad |b \cap e| = 0 \\
 \{4, 6\}_c \cap \{0, 8\}_f = 0 \quad |c \cap f| = 0
 \]

- **Optimized pq-gram join**: empty intersections are never computed!
 1. union
 \[
 \{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\} \quad \{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}
 \]
Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags

 \[
 \{1, 7\}_a \cap \{1, 7\}_d | a \cap d | = 2 \\
 \{1, 0\}_b \cap \{5, 5\}_e | b \cap e | = 1 \\
 \{4, 6\}_c \cap \{0, 8\}_f | c \cap f | = 0
 \]

- **Optimized pq-gram join**: empty intersections are never computed!

 1. union

 \[
 \{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\} \cup \{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}
 \]

 2. sort

 \[
 0_b, 0_f, 1_a, 1_d, 1_b, 5_e, 4_c, 5_e, 6_c, 7_d, 7_a, 8_f
 \]
Reduction of a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags
 \[
 \{1, 7\}_a \quad \{1, 7\}_d \\
 \{1, 0\}_b \quad \{5, 5\}_e \\
 \{4, 6\}_c \quad \{0, 8\}_f \\
 \]
 \[
 |a \cap d| = 2 \quad |a \cap e| = 0 \quad |a \cap f| = 0 \\
 |b \cap d| = 1 \quad |b \cap e| = 0 \quad |b \cap f| = 1 \\
 |c \cap d| = 0 \quad |c \cap e| = 0 \quad |c \cap f| = 0 \\
 \]

- **Optimized pq-gram join**: Empty intersections are never computed!
 1. union
 \[
 \{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\} \quad \{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\} \\
 \]
 2. sort
 3. merge-join
 \[
 0_b \quad 0_f \\
 1_a \quad 1_d \\
 1_b \quad 5_e \\
 4_c \quad 5_e \\
 6_c \quad 7_d \\
 7_a \quad 8_f \\
 \]
Reducing a Distance Join to an Equality Join

- **Distance join** between trees: N^2 intersections between integer bags
 \[
 \begin{align*}
 \{1, 7\}_a & \cap \{1, 7\}_d = 2 & a \cap d &= 2 \\
 \{1, 0\}_b & \cap \{5, 5\}_e = 1 & b \cap e &= 1 \\
 \{4, 6\}_c & \cap \{0, 8\}_f = 0 & c \cap f &= 0
 \end{align*}
 \]

- **Optimized pq-gram join**: empty intersections are never computed!
 1. union
 \[
 \begin{align*}
 \{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\} & \cup \{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}
 \end{align*}
 \]
 2. sort
 3. merge-join
 \[
 \begin{align*}
 0_b & \cap 0_f = 0 \\
 1_a & \cap 1_d = 1 \\
 1_b & \cap 5_e = 1 \\
 4_c & \cap 5_e = 1 \\
 6_c & \cap 7_d = 1 \\
 7_a & \cap 8_f = 1
 \end{align*}
 \]
Reducing a Distance Join to an Equality Join

- **Distance join** between trees: \(N^2 \) intersections between integer bags

\[
\begin{array}{ccc}
\{1, 7\}_a & \{1, 7\}_d & |a \cap d| = 2 \\
\{1, 0\}_b & \{5, 5\}_e & |b \cap d| = 1 \\
\{4, 6\}_c & \{0, 8\}_f & |c \cap d| = 0
\end{array}
\]

- **Optimized pq-gram join**: empty intersections are never computed!

1. union

\[
\begin{array}{ccc}
\{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\} & \{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}
\end{array}
\]

2. sort

3. merge-join

\[
\begin{array}{c}
\begin{array}{c}
0_b \\
1_a \\
1_b \\
4_c \\
6_c \\
7_a
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
0_f \\
1_d \\
5_e \\
5_e \\
7_d \\
8_f
\end{array}
\end{array}
\]

\[
\begin{array}{c}
|b \cap f| \\
|a \cap d|
\end{array}
\]
Reducing a Distance Join to an Equality Join

- **Distance join** between trees: \(N^2 \) intersections between integer bags

 \[
 \begin{align*}
 \{1, 7\} & \cap \{1, 7\} = 2 \\
 \{1, 0\} & \cap \{5, 5\} = 1 \\
 \{4, 6\} & \cap \{0, 8\} = 0
 \end{align*}
 \]

- **Optimized \(pq \)-gram join**: empty intersections are never computed!

 1. union
 \[
 \{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\} \cup \{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}
 \]
 2. sort
 3. merge-join

\[
\begin{array}{c}
1_a & 1_b & 4_c & 6_c & 7_a & 0_b & 0_f & 1_d & 5_e & 5_e & 7_d & 8_f \\
\end{array}
\]
Reducing a Distance Join to an Equality Join

- **Distance join** between trees: \(N^2 \) intersections between integer bags

\[
\begin{align*}
\{1, 7\} \cap \{1, 7\} &= 2 \\
\{1, 0\} \cap \{5, 5\} &= 1 \\
\{4, 6\} \cap \{0, 8\} &= 0
\end{align*}
\]

- **Optimized \(pq \)-gram join**: empty intersections are never computed!

 1. union

\[
\begin{align*}
\{1_a, 7_a, 1_b, 0_b, 4_c, 6_c\} \\
\{1_d, 7_d, 5_e, 5_e, 0_f, 8_f\}
\end{align*}
\]

 2. sort

 3. merge-join
Outline

1. Motivation
2. Windowed pq-Grams for Data-Centric XML
 - Windowed pq-Grams
 - Tree Sorting
 - Forming Bases
3. Efficient Approximate Joins with Windowed pq-Gram
4. Experiments
5. Related Work
6. Conclusion and Future Work
Experiments

Effectiveness of the Windowed pq-Gram Join
Experiments

Effectiveness of the Windowed pq-Gram Join

Experiment: match DBLP articles
- add noise to articles (missing elements and spelling mistakes)
- approximate join between original and noisy data
- measure precision and recall for different thresholds

Windowed pq-grams are effective for data-centric XML
Experiments

Effectiveness of the Windowed pq-Gram Join

Experiment: match DBLP articles
- add noise to articles (missing elements and spelling mistakes)
- approximate join between original and noisy data
- measure precision and recall for different thresholds

Datasets:
- **DBLP:** articles
depth 1.9, 15 nodes (max 1494 nodes)
- **SwissProt:** protein descriptions
depth 3.5, 104 nodes (max 2640 nodes)
- **Treebank:** tagged English sentences
depth 6.9 (max depth 30), 43 nodes

Windowed pq-grams are effective for data-centric XML
Efficiency of the Optimized pq-Gram Join
Efficiency of the Optimized pq-Gram Join

Optimized pq-gram join: very efficient

- compute nested-loop join between trees
- compute optimized pq-gram join between trees
- measure wallclock time
Outline

1. Motivation

2. Windowed \(pq \)-Grams for Data-Centric XML
 - Windowed \(pq \)-Grams
 - Tree Sorting
 - Forming Bases

3. Efficient Approximate Joins with Windowed \(pq \)-Gram

4. Experiments

5. Related Work

6. Conclusion and Future Work
Distances between Unordered Trees

Edit Distances between Unordered Trees
- [Zhang et al., 1992]: proof for NP-completeness
- [Kailing et al., 2004]: lower bound for a restricted edit distance
- [Chawathe and Garcia-Molina, 1997]: $O(n^3)$ heuristics
- Our solution: $O(n \log n)$ approximation

Approximate Join
- [Gravano et al., 2001]: efficient approximate join for strings
Windowed \(pq \)-grams for unordered trees:

- \(O(n \log n) \) approximation of NP-complete edit distance
- **Key problem:** all permutations must be considered
- **Our approach:** sort trees and simulate permutations with window
- **Sorting:** works for \(pq \)-grams, but not for edit distance
- **Window technique** guarantees core properties
 - detection of node moves
 - robustness to different sortings
 - balanced node weight
- **Efficient approximate join:** reduces distance join to equality join
Windowed \(pq \)-grams for unordered trees:

- \(O(n \log n) \) approximation of NP-complete edit distance
- **Key problem:** all permutations must be considered
- **Our approach:** sort trees and simulate permutations with window
- **Sorting:** works for \(pq \)-grams, but not for edit distance
- **Window technique** guarantees core properties
 - detection of node moves
 - robustness to different sortings
 - balanced node weight
- **Efficient approximate join:** reduces distance join to equality join

Future work:

- incremental updates of the windowed \(pq \)-gram index
- include approximate string matching into XML distance

Kaizhong Zhang, Richard Statman, and Dennis Shasha.
On the editing distance between unordered labeled trees.