
Load Balancing in MapReduce Based on Scalable
Cardinality Estimates

Benjamin Gufler †1, Nikolaus Augsten #2, Angelika Reiser †3, Alfons Kemper †4

†Technische Universität München
Boltzmannstraße 3, 85748 Garching bei München, Germany

1 benjamin.gufler@in.tum.de
3 angelika.reiser@in.tum.de
4 alfons.kemper@in.tum.de

#Free University of Bozen-Bolzano
Dominikanerplatz 3, 39100 Bozen, Italy

2 augsten@inf.unibz.it

Abstract—MapReduce has emerged as a popular tool for
distributed and scalable processing of massive data sets and is
increasingly being used in e-science applications. Unfortunately,
the performance of MapReduce systems strongly depends on an
even data distribution, while scientific data sets are often highly
skewed. The resulting load imbalance, which raises the processing
time, is even amplified by the high runtime complexities of the
reducer tasks. An adaptive load balancing strategy is required
for appropriate skew handling.

In this paper, we address the problem of estimating the cost
of the tasks that are distributed to the reducers based on a given
cost model. A realistic cost estimation is the basis for adaptive
load balancing algorithms and requires to gather statistics from
the mappers. This is challenging: (a) Since the statistics from
all mappers must be integrated, the mapper statistics must be
small. (b) Although each mapper sees only a small fraction
of the data, the integrated statistics must capture the global
data distribution. (c) The mappers terminate after sending the
statistics to the controller, and no second round is possible. Our
solution to these challenges consists of two components. First, a
monitoring component executed on every mapper captures the
local data distribution and identifies its most relevant subset for
cost estimation. Second, an integration component aggregates
these subsets and approximates the global data distribution.

I. INTRODUCTION

MapReduce [1] has emerged as a popular tool for processing
batch-style jobs on massive data sets in cloud computing
environments. Both industry and science are porting analytical
workflows to this programming pattern in order to exploit the
elasticity of the cloud. However, the simplistic assumptions of
current systems about the data distribution limit the scaling
of complex applications. As also identified by prior work [2],
[3], data skew, i. e., clearly non-uniform distributions of single
attribute values, and complex, non-linear reducer algorithms
are the key problems that limit the scalability of MapReduce
for analytic applications, for example, in e-science.

The mappers in a MapReduce system produce (key,value)
pairs. The pairs are grouped by their keys and an individual
group (called a cluster) is guaranteed to be processed by a
single reducer. Each reducer is loaded with a set of clusters
that it must process. The overall runtime of a map-reduce
cycle is determined by the longest running reducer. The next

cycle can only start when all reducers are done. Unbalanced
reducer work loads lead to high runtime differences, paral-
lelism is poorly exploited, and the overall runtime increases.
In e-science applications we experienced runtime differences
of hours between the reducers.

Current MapReduce frameworks like Apache Hadoop1 use
a simplistic approach to distribute the work load and assign the
same number of clusters to each reducer. This approach fails
if the key distribution is skewed since the individual clusters
have different sizes. Reducers with many large clusters have
a high work load since they must process more tuples. If in
addition the reducer task is non-linear, it is not enough to load
each reducer with the same number of tuples. For example, a
reducer with runtime complexity n3 that processes two clusters
with a total of 6 tuples requires 33 + 33 = 54 operations if
both clusters are of size 3, but 13 +53 = 126 operations, i.e.,
twice as many, if the clusters’ sizes are 1 and 5.

Data skew is a well-studied phenomenon in distributed
databases and solutions for operations like joins and group-
ing/aggregation have been proposed [4], [5], [6]. However,
these solutions are not generally applicable to MapReduce
systems. The key finding of the database solutions is that
tuples sharing the same value of the partitioning attribute need
not necessarily be processed as a single group. MapReduce
systems, on the other hand, provide the user with the guarantee
that all tuples sharing the same partitioning key, i. e., all tuples
of a cluster, are processed on the same reducer.

In prior work [2] we presented two load balancing al-
gorithms, fine partitioning and dynamic fragmentation, that
seamlessly integrate with current MapReduce systems. The
clusters are grouped into partitions that are distributed to the
reducers depending on their cost. The cost of a partition is the
sum of the costs of its clusters. In order to give each reducer
a similar amount of work, the cost of each partition must be
computed. The quality of the load balancing is determined by
the quality of the cost estimation.

Computing the partition costs is challenging. Each mapper

1http://hadoop.apache.org/mapreduce

sees only a small fraction of the data and has only partial
information about the cluster sizes. In particular, the mapper
can not know which fraction of a specific cluster it sees.
Sending all partial cluster sizes to the controller and summing
the costs for all clusters centrally is not feasible since the
number of clusters can be in the order of the data size. The
controller must base its cost estimation on small summaries. In
addition, not all mappers do necessarily run at the same time.
Thus the controller cannot incrementally retrieve information
as is done, for example, in distributed top-k scenarios, where
the distributed rankings are incrementally consumed until the
central ranking is accurate enough.

In this paper we present TopCluster, a sophisticated
distributed monitoring approach for MapReduce systems.
TopCluster requires a single parameter, the cluster threshold
τ , which controls the size of the local statistics that are sent
from each mapper to the controller. The result is a global
histogram of (key,cardinality) pairs, which approximates the
cardinalities of the clusters with the most frequent keys.
TopCluster provides the following guarantees:

• Completeness: All clusters with cardinalities above the
cluster threshold τ are in the global histogram.

• Error Bound: The approximation error of the cluster
cardinalities is bound by τ/2.

The global histogram is used to estimate the partition
cost. Since the global histogram contains the largest clusters,
the data skew is considered in the cost estimation. For the
remaining clusters, i. e., the clusters that are not present in
the global histogram, TopCluster assumes uniform distribution
and their total cost is efficiently computed in constant time.
Capturing the largest clusters with high precision is important
for an accurate cost estimation.

We further provide a strategy to automatically choose a good
threshold τ based on the data skew and discuss an extension
of TopCluster which approximates the local histograms that
must be computed on the mappers.

This paper is structured as follows. We revisit the partition
cost model for MapReduce and discuss a base line tech-
nique for monitoring cluster cardinalities in Section II. Our
distributed monitoring approach, TopCluster, is presented in
Section III. Formal error bounds for TopCluster are derived
in Section IV. We discuss optional extensions to TopCluster
for environments with limited memory resources, and for
higher-dimensional monitoring in Section V. An experimental
evaluation of TopCluster is given in Section VI. We discuss
related work in Section VII, and finally conclude and point to
future work in Section VIII.

II. EXACT GLOBAL HISTOGRAMS

In this section we briefly introduce the architecture of
MapReduce systems, revisit the cost model underlying our
load balancing, and introduce the exact global ranking, which
is approximated by our TopCluster algorithm.

M

M

M

R

R

controller calculate global rankings
and partition assignment

local monitoring (per partition)

monitoring data

partition assignment

Fig. 1: MapReduce Architecture

A. The MapReduce Architecture

Figure 1 illustrates the architecture of MapReduce systems.
The input is split into blocks of constant size and the tuples
of each block are processed independently by a mapper (M).
Since the block size per mapper is constant, the number of
mappers depends on the data size, and the mappers do not
necessarily run concurrently. A mapper transforms its input
tuples into (key,value) pairs. The set of all (key,value) pairs
is called intermediate data. The intermediate data are hash-
partitioned by their keys. Each partition is written to a separate
file on disk. Since all mappers employ the same hash function
for the partitioning, all tuples sharing the same key, called
a cluster, are assigned to the same partition. The controller
assigns the partitions to reducers (R), which process the parti-
tions cluster by cluster. This processing scheme is guaranteed
by the MapReduce paradigm and cannot be changed by the
load balancing algorithm.

B. The Partition Cost Model

We briefly revisit the partition cost model [2] for load bal-
ancing in MapReduce, which underlies our TopCluster algo-
rithm. The partition cost model takes into account both skewed
data distributions and complex reducer side algorithms. The
cost for each partition is computed and the partitions are
distributed to the reducers such that the work load per reducer
is balanced. Since the clusters within a partition are processed
sequentially and independently, the partition cost is computed
as the cost sum of all clusters in the partition. The cluster
cost, in turn, is a function of the cluster cardinality and the
complexity of the reducer side algorithm. While the reducer
complexity is a parameter specified by the user, the cluster
cardinalities must be monitored by the framework.

Monitoring the cluster cardinalities is challenging. The
computation of the partition cost is treated as a black box in the
partition cost model. The only approach presented in previous
work [2] assumes uniform distribution of cluster cardinalities
within each partition. This simplistic assumption limits the
effectiveness of the load balancing algorithm when the data are
skewed. Our TopCluster algorithm is a sophisticated approach
to monitor the cluster cardinalities. TopCluster takes into

L1 a:20 b:17 c:14 f:12 d:7 e:5

L2 c:21 a:17 b:14 f:13 d g
3

2

L3 d:21 a:15 f:14 g:13 c:4 e:1

(a) Local Histograms

G a:52 c:39 f:39 b:31 d:31 g:15 e:6

(b) Global Histogram

Fig. 2: Local and Exact Global Histograms.

account data skew and allows us to compute good partition
cost estimations also when the data are highly skewed.

C. Global Histogram

We introduce the exact global histogram, which stores all
information required to compute the exact cost for all parti-
tions. Unfortunately, computing the exact global histogram is
not feasible for large data sets. Our TopCluster algorithm is
an efficient and effective approximation of the exact global
histogram. We use the exact global histogram as a baseline to
assess the quality of our approximation.

Definition 1 (Local Histogram): Let Ii be the bag of all
intermediate (key,value) pairs produced by mapper i. The
local histogram Li is defined as a set of pairs (k, v), where
k ∈ {x | ∃y((x, y) ∈ Ii)} is a key in Ii and v is the number
of tuples in Ii with key k.

Definition 2 (Global Histogram): Given m local histo-
grams Li, 1 ≤ i ≤ m, of pairs (k, v), where k is the key
and v is the associated cardinality, and the presence indicator
pi(k), which is true for k if and only if k exists in Li,

pi(k) =

{
true if ∃v((k, v) ∈ Li),
false otherwise,

the global histogram G is the set {(k, v)} with
(i) ∃v((k, v) ∈ G)⇔ ∃i(pi(k) = true)

(ii) ∀(k, v) ∈ G : v =
∑

1≤i≤m
(k,v′)∈Li

v′

The global histogram maps all keys in the intermediate
data I to the cardinality of the respective cluster. It is a sum
aggregate over all local histograms. Since a global cluster can
consist of 1 to m local clusters, the cardinality of the exact
global histogram is bounded by

max
1≤i≤m

|Li| ≤ |G| ≤
∑

1≤i≤m

|Li|.

Example 1: We compute the global histogram from the
local histograms in a scenario with m = 3 mappers:

L1 = {(a, 20), (b, 17), (c, 14), (f, 12), (d, 7), (e, 5)}
L2 = {(c, 21), (a, 17), (b, 14), (f, 13), (d, 3), (g, 2)}
L3 = {(d, 21), (a, 15), (f, 14), (g, 13), (c, 4), (e, 1)}

The exact global histogram (see Figure 2) is

G = {(a, 52), (c, 39), (f, 39), (b, 31), (d, 31), (g, 15), (e, 6)}.

Lemma 1: Consider a scenario with m mappers, which
each produces O(|I|/m) tuples for the intermediate re-
sult I . The computation of the local histogram requires
O(|I|/m log(|I|/m)) time and O(|I|/m) space; the computa-
tion of the exact global histogram requires O(|I| log |I|) time
and O(|I|) space.

Proof: In the worst case, all keys are unique such that
the number of clusters is equal to the number of tuples.
The local histogram for O(|I|/m) clusters requires O(|I|/m)
counters. We store and update the counters in a binary search
tree, which requires O(|I|/m log(|I|/m)) time and O(|I|/m)
space. Since the keys of all mappers can be different, the size
of the global histogram can be of size O(|I|). The global
histogram is aggregated from the local histograms using an
m-way merge in O(|I| log |I|) time.

Lemma 1 assumes that all mappers generate a similar
number of tuples. This is a reasonable assumption since each
mapper gets the same share of the input data. The number
of mappers, m, increases with the size of the overall input
such that the input per mapper is constant. Thus the space
complexity O(|I|/m) is independent of the overall size of
the input data. For linear mappers processing a few hundred
megabytes of data (the typical case), the local histogram
is efficiently computed on each mapper. For mappers that
produce very large intermediate results, such that the exact
local histogram computation is too expensive, we present an
approximate solution in Section V-B.

The complexity of the global histogram computation is a
problem. Recall that |I| is the data volume that is processed
in a distributed manner in the reduce phase. This data volume
is of the same scale as the input data to the MapReduce job
or even larger [3]. Storing and processing monitoring data of
this size on a central controller is infeasible and approximate
solutions must be applied.

D. Problem Statement

Our goal is to develop an algorithm that approximates
the global histogram. The approximation algorithm must be
efficient, and the complexity of the algorithm should be
independent of the data volume, |I|. The approximation error
should be small, also in the presence of heavy data skew.

We measure the error of an approximation to the exact
global histogram as the percentage of tuples that the approx-
imated histogram assigns to a different cluster than the exact
histogram. For the error computation, we do not identify the
clusters by their key, but we order the clusters by their size
and compare clusters with the same ordinal number in sort
order, i. e., we compare the largest clusters from the exact and
approximated histograms, then the second-largest clusters, etc.
This is reasonable since the processing cost of a cluster in the
partition cost model is independent of its key.

Example 2: Consider the exact histogram G =
{(a, 20), (b, 16), (c, 14)} and the approximated histogram
G̃ = {(a, 20), (c, 17), (b, 13)}. The difference between the
largest clusters in both these histograms is 0. For the second
largest, b in G and c in G̃, we note a difference of 1, the

same as for the smallest clusters. So, in total we have a
difference of 0 + 1 + 1 = 2 tuples. Both the histograms
contain information on 50 tuples. As every tuple assigned
to a wrong cluster is counted twice (once for the cluster it
is missing in, and once for the cluster it is assigned to), we
obtain an approximation error of 1/50 = 2%.

III. TOPCLUSTER

The exact global histogram discussed in the preceding
section is infeasible for large scale data of, e. g., e-science
applications. In this section we propose TopCluster, an ap-
proximation algorithm for the global histogram, which scales
to massive data sets. The quality guarantees of TopCluster are
discussed in Section IV.

A. Overview

Given the cluster threshold τ , the TopCluster algorithm
computes an approximation of the global histogram for each
partition in three steps.

1) Local histogram (mapper): For each partition a local
histogram Li is maintained on mapper i.

2) Communication: When mapper i is done, for each parti-
tion it sends the following information to the controller:
(a) the presence indicator for all local clusters and (b)
the histogram for the largest local clusters (histogram
head).

3) Global histogram (controller): The controller approxi-
mates the global histogram by (a) sum-aggregating the
heads of the local histograms from all m mappers and
(b) by computing a cardinality estimation for all clusters
that are not in the local histograms.

To simplify the discussion, we consider the computation of
the global histogram for a single partition. The same procedure
is repeated for each partition.

B. The Head of the Local Histograms

The local histograms Li are too large to be processed by the
controller. Each mapper i, 1 ≤ i ≤ m, sends only the head of
the local histogram, which contains only the largest clusters.

Definition 3 (Local Histogram Head): Given a local his-
togram Li and a local threshold τi, the head of the histogram,
Lτii , is defined as a subset of Li such that the cardinalities
of all clusters is at least τi; if there is no cluster of size τi
or larger, the next smallest cluster(s) is (are) also in the head
Lτii :

Lτii ={(k, v) ∈ Li | v ≥ τi ∨
(v < τi ∧ @(k′, v′) ∈ Li(v < v′))}

The local threshold τi can be different for all local his-
tograms; the sum of all local thresholds is the global cluster
threshold τ , which is the input parameter for TopCluster. In
the basic TopCluster algorithm we choose the local threshold
to be τi = τ/m. In Section V we discuss an extension of
TopCluster that adapts τi for each histogram based on the skew
of the data. The following discussion holds independently of
the choice of the local threshold τi.

C. Approximating the Global Histogram

The approximated global histogram has a named and an
anonymous part. The named part is a histogram which stores
cluster cardinalities for specific key values. The goal is to
have the largest clusters in the named part of the global
histogram. The cardinalities of all other keys are covered by
the anonymous part. The clusters in the anonymous part have
no name and we do not store values for each cluster; we only
know the number of clusters and their average size. This is
enough for the cost estimation. Since the largest clusters are
in the named part, the error introduced by the assumption of
a uniform distribution on the anonymous part is small.

a) Lower and Upper Bound Histograms: We define the
upper and lower bound histograms, which are used to define
the global histogram approximation. As we will show in
Section IV, the cardinalities of all clusters in the lower/upper
bound histograms are lower/upper bounds of the exact cardi-
nality values of the respective clusters.

Definition 4 (Upper and Lower Bound Histogram): Given
the head of m local histograms Lτii , 1 ≤ i ≤ m. The lower
bound histogram Gl is defined as follows:

(i) ∃v((k, v) ∈ Gl)⇔ ∃i, v′((k, v′) ∈ Lτii)
(ii) ∀(k, v) ∈ Gl : v =

∑
1≤i≤m

(k,v′)∈Lτii

v′

Let pi be the presence indicator for Li, let vi be the smallest
value in Lτii , i. e.

vi = min
v
{(k, v) ∈ Lτii } 1 ≤ i ≤ m

The upper bound histogram Gu is defined as
(i) ∃v((k, v) ∈ Gu)⇔ ∃i, v′((k, v′) ∈ Lτii)

(ii) ∀(k, v) ∈ Gu : v =
∑

1≤i≤m val(k, i) with

val(k, i) =

v′ if(k, v′) ∈ Lτii
vi if pi(k) ∧ @v′((k, v′) ∈ Lτii)
0 otherwise

Note that both Gl and Gu contain values for the clusters that
appear in at least one of the local histogram heads, so |Gl| =
|Gu|, and the set of keys of both histograms is identical. The
number of items in Gl and Gu is bounded by the largest local
histogram head on the lower end (if this largest local histogram
head contains all keys which appear in any of the other local
histogram heads), and the sum over all local histogram heads
(if all keys in the local histogram heads are distinct):

max
1≤i≤m

|Lti| ≤ |Gl| = |Gu| ≤
∑

1≤i≤m

|Lti|

Example 3: The head of the local histograms Lτii extracted
from the local histograms introduced in Example 1 for τi = 14
are shown in Figure 3. Key a is contained in all three local
histogram heads. Therefore, its exact value is known, and the
upper and lower bounds coincide: 20+17+15 = 52. Key c is
not contained in L14

3 . The corresponding lower bound is thus
14+21+0 = 35. From p3(c) = true, we know c occurred in
L3. As v3 = 14, the upper bound for b is 14 + 21+ 14 = 49.
Key b is not contained in L14

3 as well. The lower bound is

L14
1 a:20 b:17 c:14 . . . (24)

L14
2 c:21 a:17 b:14 . . . (18)

L14
3 d:21 a:15 f:14 . . . (18)

Fig. 3: Head of Local Histograms for τi = 14.

10

20

30

40

50

a b c d f

τ

key

value

Fig. 4: Global Bounds

17 + 14 + 0 = 31. As p3(f) = false, we know f was not
contained in L3 and we can use 0 in the calculation of the
upper bound of f for local histogram 3: 17 + 14 + 0 = 31.
The bounds for the remaining keys are calculated analogously.
We obtain the following bounds, which are also visualised in
Figure 4 (the orange dots are explained in Example 4).

Gl = {(a, 52), (c, 35), (b, 31), (d, 21), (f, 14)}
Gu = {(a, 52), (c, 49), (d, 49), (f, 42), (b, 31)}

b) Named Histogram Part: We define two approxima-
tions for the global histogram. The complete histogram stores
a cardinality value for all keys that exist in at least one local
histogram head, the restrictive histogram is the subset of the
complete histogram in which all cardinalities are at least τ .

Definition 5 (Global Histogram Approximation): Let Gl
and Gu be the pair of lower and upper bound histograms in
a given setting. The complete global histogram is defined as

G̃ =

{(
k,
vu + vl

2

)
: (k, vu) ∈ Gu ∧ (k, vl) ∈ Gl

}
,

the restrictive global histogram is defined as

G̃r =
{
(k, v) ∈ G̃ ∧ v ≥ τ

}
.

Example 4: We approximate the global histogram with
the upper and lower bounds computed in Example 3. For
the complete global histogram approximation, we obtain
G̃ = {(a, 52), (c, 42), (d, 35), (b, 31), (f, 28)}. These values
are symbolised by the orange dots in Figure 4. The restric-
tive global histogram approximation (τ = 42) is G̃r =
{(a, 52), (c, 42)}.

Although the restrictive histogram approximation has a
longer anonymous part in which uniform distribution is as-
sumed, it outperforms the complete histogram, in particular
when the data skew is small. This is explained as follows.

An approximation error is only introduced if a cluster exists
in a local histogram, but is not in the head. This is a frequent

situation for almost uniform distributions. For a key k that is
not in the head of a local histogram, Lτii , but pi(k) = true,
we add vi (the smallest value in Lτii) to the upper bound, and
0 to the lower bound. The cardinality on mapper i for that
cluster is estimated as the arithmetic mean vi

2 , even though,
with an almost uniform data distribution, the real cardinality
is likely to be close to vi. The estimated global cardinality of
such a cluster is typically slightly larger than τ

2 , but smaller
than τ and is thus not contained in G̃r.

Example 5: Consider the cardinality estimation for the clus-
ter with key f (see Figures 3 and 4). Although key f exists in
all three local histograms, it is not in the heads of L1 and L2.
With v1 = v2 = 14, we approximate the cardinality of cluster
f with 14/2 = 7 for both local histograms, leading to a value
28 in the global histogram approximation. The correct value
is 39. Cluster f is not included in the restrictive histogram
since its estimated cardinality is below τ = 42.

c) Anonymous Histogram Part: The named part of the
global histogram approximation contains cardinality values
only for the largest clusters. In order to compute the partition
cost, however, we need to consider all clusters in the parti-
tion. We assume uniform distribution on the small clusters
that are not in the named histogram part. To compute the
average cluster size, we determine the global sum of cluster
cardinalities and the number of different clusters. The sum of
the cluster cardinalities is easy to obtain by summing up all
local tuple counts monitored on the mappers. The number of
clusters, however, cannot be computed by counting all local
clusters since two local clusters with the same key form a
single global cluster and should not be counted twice. We
discuss the computation of the cluster count in Section III-D.

Example 6: The sum of cluster cardinalities for the three
local histograms in Example 1 is 75 + 70 + 68 = 213. The
global cluster count is 7. The cardinality sum of the restrictive
approximation, G̃r, in Example 4 is 52 + 42 = 94. Thus, for
each of the four anonymous clusters we estimate a value of
213−94
7−2 = 23.8 tuples. We compute the approximation error as

introduced in Section II-D. The absolute difference between
the exact and the approximated clusters is 59.2, thus 59.2/2 =
29.6 tuples were assigned to the wrong cluster. Even though
the approximate global histogram provides no information on
5 out of 7 clusters (more than 70%), less than 14% of the tuples
were assigned to the wrong cluster. For a reducer with n2

complexity, we obtain an estimated cost of 7300.2, as opposed
to the exact cost of 7929; an error of less than 8%.

D. Approximating the Presence Indicator pi
So far, we assumed the presence indicators pi to provide

exact information. This may not be feasible since each single
cluster must be monitored and the number of clusters may
be O(|I|). We replace the exact presence indicator by an
approximation, p̃i, which is implemented as a bit vector of
fixed length. We use this bit vector like a Bloom filter [7]
on the controller in order to check for the presence of clusters
whose keys were reported by other mappers. p̃i may introduce
false positives, but cannot introduce false negatives.

False positives impact the quality of the approximation
of the global histogram. Recall from the preceding section
that we calculate the approximated value of an item as the
arithmetic mean of its upper and lower bound. The lower
bound, Gl, is not affected by our approximation of pi, as
we do not employ pi in the respective calculation. The upper
bound, Gu, however, may change. Consider the definition of
val(k, i) in Definition 4. For a key k that is not contained
in the local histogram Li, we must add 0. In case of a
false positive on pi(k), however, we add vi (the smallest
value in the local histogram head Lτii) to the upper bound,
thereby overestimating the upper bound. As false negatives are
impossible, we will never underestimate the bound. Hence, the
upper bound remains in place, but it may become looser in
case of false positives.

Regarding the presented variants of the approximated global
histogram, the influence of approximating pi is as follows. If
we overestimate the upper bound of a cluster, the estimated
cluster cardinality raises as well. Therefore, the actual val-
ues in the approximated global histogram may change as a
consequence of approximating pi. As the complete approx-
imation contains all items occurring in any local histogram
head, approximating pi has no influence on which items
are included in the complete approximation. The restrictive
approximation chooses items based on their average values. If
we overestimate the upper bound of an item, its average value
rises as well. Hence, items may be included in the restrictive
approximation of the global histogram which would not have
been included with exact pi.

Example 7: We approximate pi with a bit vector of length
3, based on a hash function h mapping character keys a to
0, b to 1 etc. (mod 3). For the histogram heads with τi =
14 from Example 3, we will have a false positive for key b
on local histogram L3, as p3(b) = false, but p̃3(b) = true
(h(b) = h(e)), and key e is contained in local histogram L3.
We therefore calculate the upper bound for b as 17+14+14 =
45 instead of 17+14+0 = 31. In consequence, the estimated
value for b in G̃ increases from 31 to 38.

For the anonymous part of the histogram we need the num-
ber of clusters in the global histogram. We estimate the cluster
count re-using the bit vectors introduced for approximating pi.
We calculate the disjunction of all bit vectors for a partition.
Linear Counting [8] then allows us to estimate the number of
clusters based on the bit vector length and the ratio of reset
bits, taking into account also the probability of hash collisions.

IV. APPROXIMATION GUARANTEES

A. Upper and Lower Bounds

Since only the head of each local histogram is sent to the
controller, it is not possible to compute the exact global his-
togram, G, at the controller. The approximate global histogram
presented in the previous section takes values between the
lower and upper bound histograms, Gl and Gu. We show that
Gl and Gu are also respectively lower and upper bounds for
the exact global histogram G.

Theorem 1: Gl is a lower bound on G:

∀(k, v) ∈ Gl : ∃(k, v′) ∈ G ∧ v ≤ v′

Proof: As (k, v) ∈ Gl ⇔ ∃i, v′((k, v′) ∈ Lτii),
and Lτii ⊆ Li, it is clear that ∀(k, v) ∈ Gl :
∃(k, v′) ∈ G. Choose (k, v) ∈ Gl and (k, v′) ∈ G.
Let K ′ = {i ∈ {1, . . . ,m} : ∃(k, v′′) ∈ Lτii } and K =
{i ∈ {1, . . . ,m} : ∃(k, v′′) ∈ Li}. From Lτii ⊆ Li follows
K ′ ⊆ K. With v′′ > 0, we obtain v ≤ v′. Moreover,
v = v′ ⇔ K ′ = K, i. e., in that case the bound is tight.

Note that Lτii does not need to contain the largest elements
of Li for Gl to be a lower bound on G. The theorem is valid
for any subsets Si ⊆ Li. For the following theorem to hold,
however, Lτii must consist of the largest elements of Li.

Theorem 2: Gu is an upper bound on G:

∀(k, v) ∈ Gu : ∃(k, v′) ∈ G ∧ v ≥ v′

Proof: Analogously to the proof of Theorem 1, ∀(k, v) ∈
Gu : ∃(k, v′) ∈ G. Choose (k, v) ∈ Gu and (k, v′) ∈
G. Let K ′ = {i ∈ {1, . . . ,m} : ∃(k, v′′) ∈ Lτii } and K =
{i ∈ {1, . . . ,m} : ∃(k, v′′) ∈ Li}. Then, K ′ ⊆ K. For local
histograms i ∈ K ′, the same, exact value is added to both v
and v′. For local histograms i ∈ {1, . . . ,m}\K, pi(k) = false,
and we add 0 to both v and v′. Finally, for local histograms
i ∈ K \ K ′, we add vi to the value of the upper bound, v,
but ve, where (k, ve) ∈ Li, to the value of the exact global
histograms, v. As i /∈ K ′, (k, ve) /∈ Lτii . Lτii contains the t
elements from Li with the largest values, so vi ≥ ve follows,
and in summary also v ≥ v′. Moreover, v = v′ ⇔ K ′ = K,
i. e., in that case the bound is tight.

B. Approximation Error

As an error estimation, we can derive an upper bound on
the cardinality of the clusters that we might have missed in
the approximated global histogram.

Theorem 3: Let Li be local histograms, 1 ≤ i ≤ m, G
the corresponding exact global histogram, and τ a cluster
threshold. Then the complete histogram approximation G̃ has
the following properties:
• Completeness: All clusters of the exact histogram G with

cardinality at least τ are in the approximated histogram:
∀k(∃v((k, v) ∈ G ∧ v ≥ τ)⇒ ∃v′((k, v′) ∈ G̃)).

• Error Bound: The error for the cluster cardinalities in
the approximated histogram is at most τ/2: ∀k((k, v) ∈
G ∧ (k, v′) ∈ G̃⇒ |v − v′| < τ/2.

The error bound also holds for the restrictive histogram
approximation G̃r, but completeness does not.

Proof: Choose (k, v) ∈ G̃ and (k, v′) ∈ G.
Completeness: v ≥ τ = τ1 + . . .+ τm. There must be at least
one local histogram Li with (k, v′′) ∈ Li and v′′ ≥ τi. Then,
(k, v′′) ∈ Lτii and the cluster with key k is contained also in
G̃. As we may underestimate the cardinality of cluster k for
local histograms i which do not contain k in their head, the
cluster might not be contained in G̃r.

Error Bound: Let K ′ = {i ∈ {1, . . . ,m} : ∃(k, v′′) ∈ Lτii }
and K = {i ∈ {1, . . . ,m} : pi(k) = true}. Then, K ′ ⊂ K.
We only make estimation errors for local histograms i ∈
K \ K ′. Recall from Definition 4 that we defined vi to be
the smallest value contained in Lτii . By using the arithmetic
mean as the estimated cardinality, the largest possible error we
make on each of these histograms is vi/2. According to the
definition of Lτii , we know vi ≤ τi. As (k, v) ∈ G̃, K ′ 6= ∅
and there is at least one local histogram for which we know
the exact cluster cardinality. Hence, the global error is at most∑
i∈K\K′

vi
2 ≤

∑
i∈K\K′

τi
2 <

∑m
i=1

τi
2 = τ

2 .

V. EXTENSIONS TO TOPCLUSTER

In this section, we discuss three possible extensions to
TopCluster. First, we show how the parameter τ can be
determined automatically in a distributed manner. Next, we
reconsider our assumption from Section II-C that exact moni-
toring is feasible on all mappers, and analyse the implications
on the approximated global histogram in situations where
this assumption no longer holds. Finally, we discuss cost
functions that depend on other parameters in addition to cluster
cardinality.

A. Adaptive Local Thresholds

So far, we assumed the parameter τ to be supplied by
the user. Finding a suitable value for τ before starting a
MapReduce job is challenging. Therefore, the system should
be able to determine a suitable τ automatically. As explained in
Section II, communication between all mappers is impossible.
We devise a strategy in which every mapper determines the
relevant items in its local histogram autonomously, and only
sends those items to the controller. As we assume uniform
distribution on the items not captured in the named part of the
global histogram approximation, the clusters that depart most
prominently from uniform distribution should be transmitted.

We base the decision on which items to transmit on the
local data distribution, and only send the items with values
exceeding the local mean value on mapper i, µi, by a factor
of ε, where ε is a user-supplied error ratio. This allows us
to keep the local error on every mapper within well-known
bounds. The largest item that we possibly miss in the named
global histogram is within τ = (1 + ε)

∑m
i=1 µi.

With these settings, our approach works well with both
uniform and skewed data distributions. If the data is skewed,
only a small number of items with strong impact on the
partition cost will exceed the local error threshold of (1+ε)µi.
We are therefore able to capture the partition cost reasonably
well while keeping the communication volume for monitoring
very low. If the data is distributed evenly, on the other hand,
our assumption of uniform distribution of the items that are
not communicated to the controller is accurate, and we obtain
good cost estimates as well.

Example 8: Continuing our running example, from the
monitored tuple and cluster counts, we calculate µ1 = 77

7 =
11, µ2 = 70

7 = 10, and µ3 = 68
6 = 11 1

3 , each on the
corresponding mapper. We allow an error of ε = 10%. The

L14
1 a:20 b:17 c:14 . . . (24)

L13
2 c:21 a:17 b:14 f:13 . . . 5

L13
3 d:21 a:15 f:14 g:13 . . . 5

(a) Local Histograms

10

20

30

40

50

a b c d f g

τ

key

value

(b) Bounds for the Global Histograms

Fig. 5: Histogram Aggregation for ε = 10%

thresholds for the local item counts are thus 12.1, 11, and
12.47, respectively. The resulting local histograms are shown
in Figure 5a).
The restrictive global approximation based on this input is

G̃r = {(a, 52), (c, 41.5)}

and thus very close to the approximation we obtained in
Example 4 using the user-supplied value τ = 42 (resulting
in τi = 14).

B. Approximate Local Histograms

Current MapReduce systems choose the number of mappers
for each MapReduce job based on a compromise. High paral-
lelism and fast recovery in the case of node failures favour
a high number of mappers processing a small amount of
data each. On the other hand, the startup and management
costs for each mapper plea for a low number of mappers and
thus a higher data volume per mapper. Collecting monitoring
data on every mapper introduces an additional argument for
processing more data per mapper. We can interpret the local
histogram that we create on every mapper as an approximation
to the global histogram, based on the share of intermediate
data generated by that mapper as a sample of the entire
intermediate data. According to the law of large numbers,
statistical measurements gain precision when the sample size
is increased. Therefore, processing a larger share of input data
on a single mapper is likely to provide us with better local
histograms. We thus propose to increase the amount of data
processed by every mapper. As this reduces the total number
of mapper instances, we have the additional benefit of reducing
the burden on the controller, as fewer local histograms must
be aggregated.

In a worst case scenario, the number of clusters generated
on a mapper could grow linearly with the amount of data
processed. As we locally monitor every cluster, the monitoring
data volume would grow at the same rate as well, occupying

resources which should rather be used for the actual process-
ing. We therefore need to provision a way of limiting the
amount of monitoring data that each mapper must maintain.
In case the exact monitoring data would exceed this imposed
limit, we can switch to approximate ranking algorithms, e. g.
Space Saving [9], which allow to limit the amount of memory
used. Space Saving was originally designed for finding the
top-k items over data streams. At any point in time, it keeps
the most frequent items in a cache of fixed size. A new item
not yet contained in the cache replaces the least frequent item
in the cache. Thereby, Space Saving guarantees that no item
whose actual frequency is higher than the reported frequencies
is missing in the obtained ranking.

Obviously, using approximate instead of exact local moni-
toring affects the cluster bounds computed on the controller.

Theorem 4: For local histograms approximated using the
Space Saving algorithm [9], both the global lower and upper
bound can be overestimated. Underestimation is only possible
for the global lower bound.

Proof: Let L̃τii be the approximate local top-t histogram i
of the exact local histogram Li calculated using Space Saving.
Let k be a key in L̃τii with estimated occurrence count ṽk and
actual occurrence count vk, and let l be the least frequent
item in L̃τii with estimated occurrence count ṽl and actual
occurrence count vl. Then, ṽk ≥ vk and ṽl ≥ vl according
to [9] (Lemma 3.4). Overestimation:

1) Global Lower Bound: We overestimate the global lower
bound for item k if ṽk > vk.

2) Global Upper Bound: Again, we overestimate the global
upper bound of item k if ṽk > vk. For an item k′ not
contained in L̃τii , but appearing in Li according to pi,
we overestimate the global upper bound if ṽl > vl.

Underestimation: Critical situations for underestimation may
arise for an item k′ with actual occurrence count vk′ , which
is not contained in L̃τii , but would be contained in Lτii .

1) Global Lower Bound: As k′ is not contained in L̃τii , we
do not increase the lower bound, thus underestimating
it.

2) Global Upper Bound: As k′ is apparently contained in
Li, we will add ṽl to the global upper bound. According
to [9] (Theorem 3.5), ṽl ≥ vk′ . Therefore, we do not
underestimate the global upper bound.

From Theorem 4 follows that the upper bound calculated as
described in Definition 4 remains valid if it is (completely, or
partially) based on local histograms calculated using Space
Saving. For the lower bound, this does not hold: due to
the possible overestimation, it might no longer be in place.
In consequence, we could overestimate the corresponding
cluster’s size. In order to keep the lower bound in place, we
therefore decide to not increase it at all for mappers using
Space Saving. A flag indicating the usage of Space Saving
can be included in the communication between every mapper
and the controller at the cost of one bit per mapper.

Approximating the local histograms can also interfere with

the choice on how many items to transmit to the controller.
Recall from Section V-A that, with adaptive thresholds, we
base the decision on which items to transmit on the average
local cluster cardinality. In order to calculate this average
cluster cardinality, we need to keep track of the sum of all
cluster cardinalities, and the cluster count. When monitoring
all clusters exactly, we obtain both these values as a side prod-
uct. With approximate monitoring, this is no longer the case.
The total cardinality is still trivial to monitor. For the cluster
count, we re-use the bit vectors created for approximating pi
as described in Section III-D and apply Linear Counting [8]
in order to obtain an estimation. Based on the approximate
average cluster cardinality derived from this information, we
can then pick the relevant items from our monitoring data to
send to the controller. In an extreme case, we might not have
monitored all clusters which should be transmitted, i. e., even
the cardinality of the smallest monitored clusters is larger than
the threshold. If that situation arises, we inform the user on the
actual error margin that we are able to guarantee for the given
memory limit. If better estimates are required, the memory
must be increased.

Switching from exact local histograms to Space Saving is
possible at runtime, if the monitoring data volume exceeds
a predefined threshold. The bit vector pi is not affected by
switching to Space Saving. For the total cluster cardinality on
that mapper, we can initialise the counter with the sum of all
cluster cardinalities counted so far. Then, we can discard the
monitoring data on the clusters with the lowest cardinalities
observed so far, in order to reduce the consumed memory. The
remaining cluster information is the initial state with which we
can continue the monitoring process using Space Saving.

C. Going Beyond Tuple Count

Throughout this paper, we considered the cluster cardinality
being the only parameter for the cost estimation. In some
applications additional parameters might be desirable. For
example, if serialized objects (which are a collection of items
each) are passed as tuples, the data volume per cluster could be
an appropriate additional parameter of the cost function. The
TopCluster technique is not specific to monitoring cardinali-
ties. The same technique is also applicable to other parameters
like data volume. Correlations between the parameters can be
important for an accurate cost estimation, i.e., we need to
know both cardinality and data volume of a specific cluster.
TopCluster reconstructs these correlations on the controller
using the cluster keys.

VI. EXPERIMENTAL EVALUATION

We experimentally evaluate TopCluster, our distributed
monitoring technique for MapReduce systems, on both
synthetic data with different distributions, and real-world
e-science data.

All experiments are run on a simulator. The simulator gen-
erates or loads the input data and distributes it into partitions
the same way standard MapReduce systems do. The simulator
allows us to generate input data with controlled skew in the

key values. Further, the simulator emulates the runtime of the
reducers, which provides us with the ground truth for our cost
estimation.

We use the following parameters in our evaluation. The
synthetic data sets follow Zipf distributions with varying z
parameters. Many real world data sets, for example, word
distributions in natural languages, follow a Zipf distribution.
The skew is controlled with the parameter z; higher z values
mean heavier skew. For the synthetic data sets we run 400
mappers that generate 1.3 million output tuples each. The total
of 2,000 clusters is distributed to 40 partitions with a hash
function; we found the number of 40 partitions being a typical
setting for the MapReduce environments used in scientific
processing. The real e-science data in our experiments is the
merger tree data set from the Millennium simulation [10]. We
distribute the data to the mappers the same way Hadoop does,
resulting in 389 mappers that each process 1.3 million tuples.
We partition the data by the mass attribute, obtain 32 000
clusters, and create 40 partitions. We repeat each experiment
10 times and report averages.

A. Histogram Approximation Error

We analyse the quality of the approximation obtained with
both restrictive and complete TopCluster and compare it to
the state-of-the-art approximation [2], which is referred to as
Closer. Closer counts the number of tuples per partition; the
size of the individual clusters, which is required for the cost
estimation, is assumed to be the same for all clusters in a par-
tition. We compute the approximation error as the percentage
of tuples assigned to the wrong cluster (see Section II-D).

The results for Zipf distributions with varying z parameter
are shown in Figure 6a (ε = 1%). TopCluster-restrictive
outperforms the other approximations in almost all settings,
and the approximation error is very small (below 3h). For
heavily skewed data, TopCluster-complete achieves similar or
even slightly better results than TopCluster-restrictive. The
state-of-the-art solution Closer performs marginally better than
TopCluster-restrictive if the data is perfectly balanced (z = 0).
With increasing skew, this behaviour changes immediately, and
TopCluster-restrictive widely outperforms Closer.

The difference between the restrictive and the complete
variant of TopCluster is explained as follows. If the data is
heavily skewed, the skew is visible on all mappers and a
similar set of clusters is in the heads of all local histograms.
Thus we get exact values for many clusters in the named
part of the global histogram, leading to a small approximation
error. There is little or no benefit in omitting clusters of size
smaller than τ (restrictive variant). For moderate skew, on the
other hand, the restrictive variant is beneficial since the clusters
with higher approximation error are omitted. For z = 0.1, for
instance, the approximation error is reduced by more than an
order of magnitude with respect to the complete variant.

We repeat the experiments using a data distribution which
simulates a trend over time (Figure 6b). Such trends may
appear in scientific data sets, e. g., due to shifting research
interests. In order to simulate a trend, we fix two Zipf

2.5
5

7.5
10

12.5
15

17.5
20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average error (h)

z

(a) Zipf Distributed Data

2.5
5

7.5
10

12.5
15

17.5
20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average error (h)

z

(b) Zipf Distributed Data with Trend

Closer TopCluster complete, ε = 1% TopCluster restrictive, ε = 1%

Fig. 6: Approximation Error for Varying Skew

distributions. For every value drawn by a mapper i, the mapper
follows the first distribution with a probability of i

m , and the
second distribution with a probability of m−i

m , where m is
the total number of mappers. Also in this setting, restrictive
TopCluster shows the best overall result and outperforms the
complete version of TopCluster for almost all skew values.
While both TopCluster variants perform well for high skew
values, the performance of Closer decreases substantially with
increasing skew.

B. Approximation Quality vs. Head Size

The parameter ε controls the length of the local histogram
heads, i.e., the number of cluster cardinalities that the mappers
send to the controller. We evaluate the cluster quality and the
size of the histogram heads depending on ε.

Approximation Quality. The results for a Zipf distribution
and a distribution with trend, both with z = 0.3, i. e., rather
moderate skew, are shown in Figure 7a and Figure 7b, respec-
tively. The results for the heavily skewed Millennium data set
are depicted in Figure 7c. For the complete approximation,
we note an interesting effect: the error decreases for small ε
values before growing again for larger values of ε. This is
explained as follows. The error is minimal for ε values that
allow the skewed clusters to be in the head, but the clusters
with uniform distribution, which introduce the approximation
error, are ignored. Very low values of ε allow too many
non-skewed clusters, very high values of ε miss part of the
skew. The restrictive TopCluster approximation automatically
removes poorly approximated clusters and is robust to this
effect; the approximation error grows with increasing ε (the
shorter the histogram head, the higher the error). The overall
error of both TopCluster variants is very small in all settings:
it is below 5h for all scenarios with synthetic data, and even

0.5
1

1.5
2

2.5
3

3.5
4

0.1 1 2 5 10 20 50 100 200

Average error (h)

ε(%)

(a) Zipf Distributed Data, z = 0.3

0.5
1

1.5
2

2.5
3

3.5
4

4.5

0.1 1 2 5 10 20 50 100 200

Average error (h)

ε(%)

(b) Zipf Distributed Data with Trend, z = 0.3

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.1 1 2 5 10 20 50 100 200

Average error (h)

ε(%)

(c) Millennium Data

TopCluster complete TopCluster restrictive

Fig. 7: Approximation Error for Varying ε

5
10
15
20
25
30

0.1 1 2 5 10 20 50 100 200

Histogram head size (% of complete histogram)

ε(%)

Zipf, z = 0.3 Zipf with trend, z = 0.3 Millennium data

Fig. 8: Histogram Head Size for Varying ε

smaller for the heavily skewed Millennium data.
Histogram Head Size. We measure the size of the local

histogram heads with respect to the full local histogram. Only
the heads of the local histograms are sent from the mappers to
the controller; short histogram heads increase the efficiency.
The experimental results are shown in Figure 8. For the
synthetic data set with moderate skew (z = 0.3) the head
size is decreased to 1/3 of the full local histogram even for
a very low error margin of ε = 0.1%. By increasing the error
margin to ε = 200% the head size is further decreased by an
order of magnitude to 2%. Note that the approximation error
is below 1% also for the highest error margin in our setting
(see Figure 7). For the heavily skewed Millennium data the
histogram head is only about 5% the size of the full local
histogram also for small ε values.

Overall, the results are very encouraging. Due the high
approximation quality of TopCluster, the error margin can be
increased to get head sizes that are 20 to 50 times smaller than
the full local histogram. Thus TopCluster scales to large data
sets with good approximation quality.

C. Cost Estimation Error

We measure the quality of the cost estimation for reducers
with quadratic runtime and compare our restrictive TopCluster
approximation with Closer, the state-of-the-art approach. We
use the histogram approximations to compute the expected
partition cost and compare the result with the exact cost.

3
6
9

12
15

z0.3 z0.8 z0.3 z0.8 Mill.

Average error (%)
67 61 100

←
0.

03

Zipf Trend

Closer
TopCluster restrictive,
ε = 1%

Fig. 9: Cost Estimation Error

Figure 9 shows the average error over all partitions. TopCluster
clearly outperforms Closer in all settings. The advantage of
TopCluster increases with the data skew since Closer assumes
uniform distribution of the cluster sizes within each partition.
For the heavily skewed Millennium data, TopCluster outper-
forms prior work by more than four orders of magnitude. Note
how the approximation error of the histogram (see Figure 6)
is amplified by the non-linear reducer task.

D. Influence on Execution Time

We evaluate the impact of load balancing to the job ex-
ecution time. Following the setting in [2], we assigned the
partitions to 10 reducers and compute the execution time per
reducer for an algorithm with quadratic complexity. Assuming
that all reducers run in parallel, the slowest reducer determines
the job execution time. In Figure 10 we compare the standard
load balancing of MapReduce to both TopCluster and Closer.
The percentage in the figure is the execution time reduction
over standard MapReduce; higher bars mean shorter runtimes.
Both load balancing algorithms clearly outperform the stan-
dard load balancing of MapReduce. TopCluster is as good as
Closer in the settings in which Closer is almost optimal, and
better in the other setting.

For data with moderate skew (z = 0.3), the job execution
time primarily depends on the number of clusters that a reducer
must process. If the data distribution is similar on all mappers,
both load balancing techniques obtain good results. For data
sets that exhibit a trend over time, TopCluster outperforms
Closer.

3
6
9

12
15
18
21

z0.3 z0.8 z0.3 z0.8 Mill.

Time Reduction (%)

Zipf Trend

Closer
TopCluster restrictive,
ε = 1%

Fig. 10: Execution Time Reduction

For the data set with z = 0.8, the job execution is dominated
by the time required to process the “heaviest” clusters. A
good load balancing algorithm should assign less partitions to
reducers with heavy clusters. We show the highest achievable
reduction of execution time as red lines in Figure 10. This
limit is given by the processing time required for the largest
cluster in the data set. For z = 0.8, also the Closer approach is
able to obtain near-optimal load balancing. The reason is that,
for these configurations, it is sufficient to recognize partitions
with expensive clusters, and a good cost approximations for
the smaller clusters is less relevant.

For the heavily skewed Millennium data set distinguishing
“more expensive” from “less expensive” partitions is not
sufficient. Rather, the actual cost differences become important
since partitions with very large clusters must be assigned to
a dedicated reducer. Assuming uniform distribution within
a partition that contains a very large cluster leads us to
underestimating the partition cost. TopCluster, on the other
hand, captures the largest clusters explicitly. This has not only
a significant impact on the estimated partition cost, as shown
in the preceding section. It also allows for a much better load
balancing, as indicated by the execution time reduction for the
Millennium data set in Figure 10.

VII. RELATED WORK

Statistical information has been used as a basis for
query optimisation in relational database systems for several
decades [11]. Histograms [12] have been established as a
compact yet reasonably accurate source of information for
optimisers, and are still an active area of research [13]. They
are used for selectivity estimations and join ordering decisions
in both centralised and distributed database systems. The latter
additionally need to decide upon operator placement [14], and
consider load balancing issues [15]. Typically, histograms are
built on attributes of the base relations. In order to reduce
the impact of error propagation, however, approaches like
extracting histograms from re-occurring intermediate [16] and
integration of feedback from previously executed queries [17],
[18] have been subject of research within the database com-
munity as well. Still, histograms are considered to be built
and updated off-line, so the effort for histogram creation is
not of primary interest in literature. In contrast, in MapReduce
systems, histograms need to be created ad-hoc for two reasons.
First, MapReduce systems lack a data loading phase, so the
data sets to process are potentially unknown to the framework

before the actual processing starts. Second, the processing
routines are supplied by the user as a black box. Even if the
data sets were known beforehand, estimating parameters of
(intermediate) results automatically is not possible.

If the map-reduce join follows the scheme of relational data
processing, experienced users can apply the same techniques
for avoiding skew as used by database systems [4], [5],
[6]. Hadoop, e. g., supports the use of Eager Aggreation [6]
by providing a corresponding interface. For more complex
application scenarios, however, these techniques are no longer
applicable (e. g., Eager Aggregation is only possible for alge-
braic aggregation functions), or they do not provide substantial
benefit (e. g., if the aggregation is a simple string concate-
nation, which only reduces the tuple count, but not the data
volume to transmit). We focus on a load balancing approach
for the generic processing scenario of MapReduce. Our ap-
proach provides well-balanced distributed execution both when
database load balancing techniques are not applicable, and
when non-expert users do not consider data skew within their
MapReduce applications.

Existing distributed top-k solutions ([19], [20], [21], [22])
are not applicable in our scenario for two reasons. First,
their goal is to reconstruct a global ranking, while we are
not interested in the global order of the items. Instead, we
must estimate the actual value for the items, i. e., the overall
cardinality of the clusters, since the cost estimation is based
on these values. Second, they require multiple, coordinated
communication rounds. However, both scalability, and fault
tolerance of MapReduce systems heavily rely on the possi-
bility to run the mapper instances of a single MapReduce job
independently of each other. TopCluster is designed to support
MapReduce’s mapper processing scheme by not requiring
multiple communication rounds between all mappers.

The impact of skewed data distributions on MapReduce
style systems has only very recently gained attention of the
research community. In previous work [2], we defined a
cost model for partition-based load balancing in MapReduce
considering both skewed data distributions, and complex re-
ducer side algorithms. The monitoring approach presented
there assumes uniform cluster cardinality within each partition,
which limits the effectiveness of the load balancing algorithm,
especially for heavily skewed data distributions. In this paper,
we proposed a more detailed distributed monitoring technique
which can seamlessly be integrated in the cost framework.

An alternative approach to load balancing in MapReduce,
LEEN, was proposed by Ibrahim et al. [3]. Besides skewed
data distributions, they also consider data locality in the
mapper outputs in order to reduce the communication over-
head of MapReduce’s shuffle phase. In contrast to our work,
they monitor and process each cluster individually, which
we consider infeasible for large scale data processing. Next,
LEEN balances the data volume on the reducers, which does
not directly correlate with workload balancing. Our approach
balances the workload and thus gains low response times
of MapReduce jobs. Finally, the heuristics they propose for
assigning k clusters to r reducers has complexity O(kr), i. e.,

it depends both on the data set (number of clusters), and the
processing environment (number of reducers). The complexity
of the algorithm proposed in [2], which we use in this paper,
is independent of both these parameters.

Data skew has been—and still is—subject to intensive
research in the database community, especially in the field
of distributed database systems. Both distributed database
systems and MapReduce employ hash partitioning techniques
to distribute data to the processing nodes. Interesting situa-
tions in databases arise when processing distributed joins and
grouping/aggregation. For join handling, the involved data sets
are partitioned according to their join attribute values. The
Gamma project [4] showed that processing all tuples sharing
the same join attribute value on the same host is not required
in order to obtain the correct result. Grouping and aggregation
go hand in hand in relational database systems. Every group
is reduced to a single, flat tuple. Aggregation functions are
used to reduce a bag of values of a non-grouping attribute
within each group to a single value. In such a scenario, early
aggregation [6] can be employed to reduce the data volume
per group/cluster which needs to be transferred. MapReduce
systems, in contrast, guarantee that all items belonging to
the same cluster are processed on the same node. Grouping
and aggregation are separate processing steps. The grouping
operation, i. e., the transition from map to reduce, ensures that
all items sharing the same distribution key end up on the
same reducer, where they can be accessed using an iterator
interface and processed arbitrarily. Therefore, both splitting
clusters and early aggregation are not possible here without
further knowledge of the application.

A probabilistic candidate pruning approach with fixed error
bounds for top-k aggregation is introduced in [23]. We can
integrate this approach into our framework as an additional
selection strategy (see Section III-C). By calculating the proba-
bilistic bounds only at the end of the aggregation phase, we can
also overcome the problem of high calculation costs, which
lead to multiple variants of the algorithm.

VIII. CONCLUSION

In this paper, we motivated the need for a load balanc-
ing component in MapReduce, which considers both skewed
data distributions and complex reducer side algorithms. We
presented TopCluster, a distributed monitoring system for
capturing data skew in MapReduce systems. Inspired by
distributed top-k algorithms, TopCluster is tailored to suit the
characteristics of MapReduce frameworks, especially in its
communication behaviour. As confirmed by our experimental
results, TopCluster provides a good basis for partition cost es-
timation, which in turn is required for effective load balancing.

In future work, we plan to extend our load balancing
component in order to support the processing of multiple
data sets within one MapReduce job, e. g., for improved join
processing.

ACKNOWLEDGMENTS

This work was funded by the German Federal Ministry
of Education and Research (BMBF, contract 05A08VHA) in
the context of the GAVO-III project and by the Autonomous
Province of Bolzano - South Tyrol, Italy, Promotion of Edu-
cational Policies, University and Research Department.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” CACM, vol. 51, no. 1, 2008.

[2] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, “Handling Data Skew
in MapReduce,” in Closer, 2011.

[3] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “LEEN:
Locality/Fairness-Aware Key Partitioning for MapReduce in the Cloud,”
in CloudCom, 2010.

[4] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri, “Practical
Skew Handling in Parallel Joins,” in VLDB, 1992.

[5] J. W. Stamos and H. C. Young, “A Symmetric Fragment and Replicate
Algorithm for Distributed Joins,” IEEE TPDS, vol. 4, no. 12, 1993.

[6] W. P. Yan and P.-Å. Larson, “Eager Aggregation and Lazy Aggregation,”
in VLDB, 1995.

[7] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” CACM, vol. 13, no. 7, 1970.

[8] K.-Y. Whang, B. T. V. Zanden, and H. M. Taylor, “A Linear-Time
Probabilistic Counting Algorithm for Database Applications,” TODS,
vol. 15, no. 2, 1990.

[9] A. Metwally, D. Agrawal, and A. E. Abbadi, “An Integrated Efficient
Solution for Computing Frequent and Top-k Elements in Data Streams,”
TODS, vol. 31, no. 3, 2006.

[10] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida,
L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock,
S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F. Pearce,
“Simulating the Joint Evolution of Quasars, Galaxies and their Large-
Scale Distribution,” Nature, vol. 435, 2005.

[11] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price, “Access Path Selection in a Relational Database Management
System,” in SIGMOD, 1979.

[12] Y. E. Ioannidis, “The History of Histograms (abridged),” in VLDB, 2003.
[13] C.-C. Kanne and G. Moerkotte, “Histograms Reloaded: The Merits of

Bucket Diversity,” in SIGMOD, 2010.
[14] V. Poosala and Y. E. Ioannidis, “Estimation of Query-Result Distribution

and its Application in Parallel-Join Load Balancing,” in VLDB, 1996.
[15] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie,

Jr., “Query Processing in a System for Distributed Databases (SDD-1),”
TODS, vol. 6, no. 4, 1981.

[16] N. Bruno and S. Chaudhuri, “Exploiting Statistics on Query Expressions
for Optimization,” in SIGMOD, 2002.

[17] M. Stillger, G. Lohman, V. Markl, and M. Kandil, “LEO – DB2’s
LEarning Optimizer,” in VLDB, 2001.

[18] A. C. König and G. Weikum, “Combining Histograms and Parametric
Curve Fitting for Feedback-Driven Query Result-Size Estimation,” in
VLDB, 1999.

[19] P. Cao and Z. Wang, “Efficient Top-K Query Calculation in Distributed
Networks,” in PODC, 2004.

[20] H. Yu, H.-G. Li, P. Wu, D. Agrawal, and A. E. Abbadi, “Efficient
Processing of Distributed Top-k Queries,” in DEXA, 2005.

[21] S. Michel, P. Triantafillou, and G. Weikum, “KLEE: A Framework for
Distributed Top-k Query Algorithms,” in VLDB, 2005.

[22] T. Legler, W. Lehner, J. Schaffner, and J. Krüger, “Robust Distributed
Top-N Frequent Pattern Mining Using the SAP BW Accelerator,”
PVLDB, vol. 2, no. 2, 2009.

[23] M. Theobald, G. Weikum, and R. Schenkel, “Top-k Query Evaluation
with Probabilistic Guarantees,” in VLDB, 2004.

