Datenbanken

Übungsblatt 3 – WiSe 2013/14

- 1. Bezugnehmend auf das Schema der NAWI Datenbank in Abbildung 1, drücken Sie folgende Anfragen mithilfe der erweiterten relationalen Algebra aus:
 - a) Jahresbruttogehalt aller Angestellten (in der Relation Angestellte sind Monatslöhne gespeichert).
 - b) Name, Nummer und Personalkosten aller Projekte, die einem Fachbereich in Salzburg zugeordnet sind. Annahmen: Personalkosten bestehen nur aus Löhnen; ein Angestellter arbeitet für höchstens ein Projekt.
 - c) Niedrigster und höchster Lohn pro Fachbereich.
 - d) Angestellter mit dem niedrigsten Pro-Kopf-Einkommen, wobei das Pro-Kopf-Einkommen aus dem Lohn geteilt durch die Anzahl der Personen, die davon leben müssen (Angestellter und jeweilige Abhängige) errechnet wird.

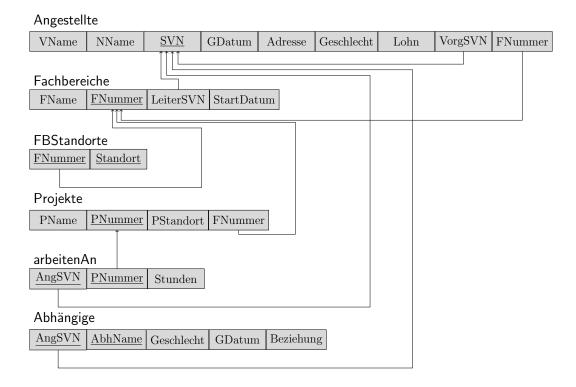


Abbildung 1: Schema der NAWI Datenbank.

2. (*Prüfungsbeispiel 2013-07-02*) Eine Datenbank speichert Daten zu einem Getränkehändler. Hier ein Auszug.

Getränk

ID	Marke	Produkt	Тур
1	Sinalco	Cola	Zero
2	Cardinal	Bier	Lemon taste

Behälter

$\overline{\mathrm{ID}}$	Volumen	Name
7	0.5	Flasche
11	0.33	Dose

Kunde

StrNr	Land	Name
123	СН	Coop
123	IT	Esselunga
253	AT	Billa

Verkauf

GID	BID	StrNr	Land	AnzBehälter
1	7	123	СН	2000
2	7	123	СН	3500
2	11	123	IT	500
1	11	253	АТ	400

- a) Schreiben Sie eine Anfrage in (erweiterter) relationaler Algebra, welche alle Länder mit der Anzahl der verkauften Biere ausgibt. Die Lösung soll auch Länder einschließen, in denen kein Bier verkauft wird.
- b) Schreiben Sie eine Anfrage in (erweiterter) relationaler Algebra, welche alle Produkte ausgibt, die in Ländern verkauft werden, in denen kein Bier verkauft wird.
- 3. (*Prüfungsbeispiel 2013-09-23*) Eine Flugdatenbank mit folgendem relationalen Schema speichert Informationen zu Flugzeugen, Flugzeugmodellen, Piloten und Flügen.
 - Flugzeug[FzNum, Name, Ort, ModellName]
 Seriennummer (FzNum), Name des Flugzeuges (Name), Heimflughafen (Ort) und Name des Flugzeugmodells (ModellName)
 - Modell[MName, Herst, Sitze, SpWeite, Geschw]
 Modellname (MName), Hersteller des Modells (Herst), Anzahl der Sitze (Sitze), Spannweite (SpWeite) und Höchstgeschwindigkeit (Geschw).
 - Pilot[SVN, VName, NName, Adresse, Gehalt]
 Sozialversicherungsnummer (SVN), Vorname (VName), Nachname (NName), Adresse (Adresse) und Gehalt (Gehalt)
 - Flug[FgID, PilotSVN, FlugzeugNum, OrtAb, OrtAn, ZeitAb, ZeitAn] Flugnummer (FgID), SVN des Piloten (PilotSVN), Seriennummer des Flugzeuges (FlugzeugNum), Abflugort (OrtAb), Zielort (OrtAn), Abflugzeit (ZeitAb), Ankunftszeit (ZeitAn)

Die Schlüssel sind unterstrichen und es gelten folgende Fremdschlüsselbeziehungen:

- $ModellName \rightarrow MName$
- $PilotSVN \rightarrow \underline{SVN}$
- $FlugzeugNum \rightarrow FzNum$
- a) Schreiben Sie eine Anfrage in (erweiterter) Relationaler Algebra, welche die Sozialversicherungsnummern der Piloten mit dem niedrigsten Gehalt ausgibt.
- b) Schreiben Sie eine Anfrage in (erweiterter) Relationaler Algebra, welche Vor- und Nachnamen aller Piloten ausgibt, die schon mindestens zweimal ein Flugzeug mit mehr als 200 Sitzen geflogen sind.