Database Tuning
Index Tuning

Nikolaus Augsten

University of Salzburg
Department of Computer Science
Database Group

Unit 5 — WS 2013/2014

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 1/25



Outline

© Index Tuning
@ Data Structures
@ Composite Indexes

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 2/25



Index Tuning Data Structures

Outline

© Index Tuning
@ Data Structures

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 3/25



Index Tuning Data Structures

Index Data Structures

@ Indexes can be implemented with different data structures.

@ \We discuss:

e BT-tree index
e hash index
o bitmap index (briefly)

@ Not discussed here:

e dynamic hash indexes: number of buckets modified dynamically
o R-tree: index for spacial data (points, lines, shapes)

e quadtree: recursively partition a 2D plane into four quadrants
e octree: quadtree version for three dimensional data

e main memory indexes: T-tree, 2-3 tree, binary search tree

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014




Index Tuning Data Structures

96

A 4

75 83 107

balanced tree of key-pointer pairs
keys are sorted by value
nodes are at least half full

access records for key: traverse tree from root to leaf

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 5/ 25



Index Tuning Data Structures

Key Length and Fanout

@ Key length is relevant in B -trees: short keys are good!

e fanout is maximum number of key-pointer pairs that fit in node
e long keys result in small fanout
e small fanout results in more levels

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 6 /25



Index Tuning Data Structures

Key Length and Fanout — Example

@ Store 40M key-pointer pairs in leaf pages (page: 4kB, pointer: 4B)
e 6B key: fanout 400 = 3 block reads per accesses

level nodes | key-pointer pairs
1 1 400
2 400 160,000
3 160,000 64,000,000
e 96B key: fanout 40 =- 5 block reads per accesses
level nodes | key-pointer pairs
1 1 40
2 40 1,600
3 1,600 64,000
4 64,000 2,560,000
5 2,560,000 102,400,000

e 6B key almost twice as fast as 968 key!

7 /25

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014




Index Tuning Data Structures

Estimate Number of Levels

@ Page utilization:

o examples assumes 100% utilization
o typical utilization is 69% (if half-full nodes are merged)

@ Number of levels:

node size J
key-pointer size

fanout = |

number of levels = [l0g¢anout x utilization (1€2f key-pointer pairs) |

@ Previous example with utilization = 69%:

o 6B key: fanout = 400, levels = [3.11] =4
o 96B key: fanout = 40, levels = [5.28| =6

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014

8 /25




Index Tuning Data Structures

Key Compression

@ Key compression: produce smaller keys

o reduces number of levels
o adds some CPU cost (ca. 30% per access)

@ Key compression is useful if

o keys are long, for example, string keys
o data is static (few updates)
e CPU time is not an issue

@ Prefix compression: very popular

e non-leaf nodes only store prefix of key
e prefix is long enough to distinguish neighbors
e example: Cagliari, Casoria, Catanzaro — Cag, Cas, Cat

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 9/25




Index Tuning Data Structures

Hash Index

Hashed key| values

ke
y Hash _/ 0 R1 R5
2341 function 1 R3 R6 R9—R14 R17 R21TR25

@ Hash function:
e maps keys to integers in range [0..n] (hash values)
e pseudo-randomizing: most keys are uniformly distributed over range
e similar keys usually have very different hash values!
e database chooses good hash function for you
@ Hash index:
e hash function is “root node” of index tree
e hash value is a bucket number
e bucket either contains records for search key
or pointer to overflow chain with records
@ Key length:
e size of hash structure independent of key length
e key length slightly increases CPU time for hash function

Nikolaus Augsten (DIS) DBT — Index Tuning Unit 5 — WS 2013/2014




Index Tuning Data Structures

Overflow Chains

@ Hash index without overflows: single disk access

@ If bucket is full: overflow chain

e each overflow page requires additional disk access
e under-utilize hash space to avoid chains!
o empirical utilization value: 50%

@ Hash index with many overflows: reorganize

e use special reorganize function
e or simply drop and add index

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 11 /25



Index Tuning Data Structures

Bitmap Index

@ Index for data warehouses

@ One bit vector per attribute value (e.g., two for gender)

e length of each bit vector is number of records
e bit / for vector “male” is set if key value in row i/ is “male”

@ Works best if

e query predicates are on many attributes
o the individual predicates have high selectivity (e.g., male/female)
o all predicates together have low selectivity (i.e., return few tuples)

@ Example: “Find females who have brown hair, blue eyes, wear glasses,
are between 50 and 60, work in computer industry, and live in
Bolzano”

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 12 /25



Index Tuning Data Structures

Which Queries Are Supported?

96

107

A 4

7583

@ BT-tree index supports

point: traverse tree once to find page

o multi-point: traverse tree once to find page(s)
e range: traverse tree once to find one interval endpoint and follow

pointers between index nodes

prefix: traverse tree once to find prefix and follow pointers between
index nodes

extremal: traverse tree always to left/right (MIN/MAX)

e ordering: keys ordered by their value
e grouping: ordered keys save sorting

Nikolaus Augsten (DIS) DBT — Index Tuning Unit 5 — WS 2013/2014 13 /25




Index Tuning

Data Structures

Which Queries Are Supported?

key
2341

Hash
function

Hashed key,

values

0

R1R5

1

R3 R6 R9

R14 R17 R21 > R25

@ Hash index supports

@ Hash index is useless for

e point: single disk access!
e multi-point: single disk access to first record
e grouping: grouped records have same hash value

e range, prefix, extremal, ordering
e similar key values have dissimilar hash values
e thus similar keys are in different pages

Nikolaus Augsten (DIS)

DBT — Index Tuning

Unit 5 — WS 2013/2014

14 / 25




Index Tuning Data Structures

Experimental Setup

Employee(ssnum, name, hundreds ...)

1,000,000 records

ssnum is a key (point query)

hundreds has the same value for 100 employees (multipoint query)
point query: index on ssnum

multipoint and range query: index on hundreds

BT -tree and hash indexes are clustered

bitmap index is never clustered

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 15 /25




Index Tuning Data Structures

Experiment: Point Query

N O & OO O
o O O

Throughput(queries/sec)
=

© © © ©
|

Point Queries

.

B-Tree

hash index

Oracle 8i Enterprise Edition on Windows 2000.

Nikolaus Augsten (DIS)

DBT — Index Tuning

Unit 5 — WS 2013/2014

16 / 25




Index Tuning Data Structures

Experiment: Multi-point Query

Multipoint Queries

25

15 -

10 -

Throughput (queries/sec)

B-Tree Hash index Bitmap index

Setup: 100 records returned by each query
BT -tree: efficient since records are on consecutive pages

Hash index: key maps to single page and produces an overflow chain

Bitmap index: traverses entire bitmap to fetch a few records

Oracle 8i Enterprise Edition on Windows 2000.

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 17 / 25



Index Tuning Data Structures

Experiment: Range Query

Range Queries
© 0.5
Q
L
_8 04
| 5
S 03
g
5 0.2
Q
S
g 0.1 | .
o
£
= 0

B-Tree Hash index Bitmap index

@ BT-tree: efficient since records are on consecutive pages

@ Hash index, bitmap index: do not help

Oracle 8i Enterprise Edition on Windows 2000.

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 18 / 25



Index Tuning Composite Indexes

Outline

© Index Tuning

@ Composite Indexes

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 19 / 25



Index Tuning Composite Indexes

Composite Indexes

@ Index on more than one attribute (also “concatenated index")

Q Example: Person(ssnum,lastname,firstname,age,address,...)

e composite index on (lastname,firstname)
e phone books are organized like that!

@ Index can be dense or sparse.
@ Dense index on (A, B, C)

one pointer is stored per record
all pointers to records with the same A value are stored together
within one A value, pointers to same B value stored together

)
)
()
e within one A and B value, pointers to same C value stored together

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 20 / 25




Index Tuning Composite Indexes

Composite Indexes — Efficient for Prefix Queries

@ Example: composite index on (lastname,firstname)

SELECT * FROM Person
WHERE lastname=’Gates’ and firstname LIKE °’Gel’

@ Composite index more efficient than two single-attribute indexes:

e many records may satisfy firstname LIKE °’Ge’’
e condition on lastname and firstname together has lower selectivity

e two-index solution: results for indexes on lastname and firstname
must be intersected

@ Dense composite indexes can cover prefix query.

Unit 5 — WS 2013/2014 21 / 25

DBT — Index Tuning

Nikolaus Augsten (DIS)



Index Tuning Composite Indexes

Composite Indexes — Skip Scan in Oracle

@ Typically composite index on (lastname,firstname) not useful for

SELECT lastname FROM Person
WHERE firstname=’George’

@ Problem: Index covers query, but condition is not a prefix.

@ Solution: Index skip scan (implemented in Oracle)

composite index on (A, B)

scan each A value until you find required B values

then jump to start of next A value

partial index scan instead of full table scan!

especially useful if A can take few values (e.g., male/female)

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014




Index Tuning Composite Indexes

Composite Indexes — Multicolumn Uniqueness

@ Example: Order (supplier, part, quantity)

e supplier is not unique
e part Is not unique
e but (supplier,part) is unique

e Efficient way to ensure uniqueness:

e create unique, composite index on (supplier,part)
o CREATE UNIQUE INDEX s_p ON Order(supplier,part)

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014




Index Tuning Composite Indexes

Composite Indexes — Attribute Order Matters

@ Put attribute with more constraints first.
@ Example: Geographical Queries
o table: City(name,longitude,latitude,population)

SELECT name FROM city
WHERE population >= 10000 AND latitude = 22
AND longitude >= 5 AND longitude <= 15

@ Efficient: clustered composite index on (latitude,longitude)
e pointers to all result records are packed together

@ Inefficient: clustered composite index on (longitude, latitude)
e each latitude 5 to 15 has some pointers to longitude 22 records

@ General geographical queries should use a multi-dimensional index
(for example, an R-tree)

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 24 / 25




Index Tuning Composite Indexes

Disadvantages of Composite Indexes

@ Large key size:

o BT tree will have many layers

e key compression can help

e hash index: large keys no problem, but no range and prefix queries
supported

@ Expensive updates:

e in general, index must be updated when key attribute is updated
e composite index has many key attributes
e update required if any of the attributes is updated

Nikolaus Augsten (DIS) DBT - Index Tuning Unit 5 — WS 2013/2014 25 /25




