
Database Tuning
Index Tuning

Nikolaus Augsten

University of Salzburg
Department of Computer Science

Database Group

Unit 5 – WS 2013/2014

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 1 / 25



Outline

1 Index Tuning
Data Structures
Composite Indexes

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 2 / 25



Index Tuning Data Structures

Outline

1 Index Tuning
Data Structures
Composite Indexes

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 3 / 25



Index Tuning Data Structures

Index Data Structures

Indexes can be implemented with different data structures.

We discuss:

B+-tree index
hash index
bitmap index (briefly)

Not discussed here:

dynamic hash indexes: number of buckets modified dynamically
R-tree: index for spacial data (points, lines, shapes)
quadtree: recursively partition a 2D plane into four quadrants
octree: quadtree version for three dimensional data
main memory indexes: T-tree, 2-3 tree, binary search tree

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 4 / 25



Index Tuning Data Structures

B+-Tree

96

75 83 107

96 98 103 107 110 12083 92 9575 80 8133 48 69

balanced tree of key-pointer pairs

keys are sorted by value

nodes are at least half full

access records for key: traverse tree from root to leaf

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 5 / 25



Index Tuning Data Structures

Key Length and Fanout

Key length is relevant in B+-trees: short keys are good!

fanout is maximum number of key-pointer pairs that fit in node
long keys result in small fanout
small fanout results in more levels

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 6 / 25



Index Tuning Data Structures

Key Length and Fanout – Example

Store 40M key-pointer pairs in leaf pages (page: 4kB, pointer: 4B)

6B key: fanout 400 ⇒ 3 block reads per accesses
level nodes key-pointer pairs
1 1 400
2 400 160,000
3 160,000 64,000,000

96B key: fanout 40 ⇒ 5 block reads per accesses
level nodes key-pointer pairs
1 1 40
2 40 1,600
3 1,600 64,000
4 64,000 2,560,000
5 2,560,000 102,400,000

6B key almost twice as fast as 96B key!

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 7 / 25



Index Tuning Data Structures

Estimate Number of Levels

Page utilization:

examples assumes 100% utilization
typical utilization is 69% (if half-full nodes are merged)

Number of levels:

fanout = b node size
key-pointer sizec

number of levels = dlogfanout×utilization(leaf key-pointer pairs)e

Previous example with utilization = 69%:

6B key: fanout = 400, levels = d3.11e = 4
96B key: fanout = 40, levels = d5.28e = 6

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 8 / 25



Index Tuning Data Structures

Key Compression

Key compression: produce smaller keys

reduces number of levels
adds some CPU cost (ca. 30% per access)

Key compression is useful if

keys are long, for example, string keys
data is static (few updates)
CPU time is not an issue

Prefix compression: very popular

non-leaf nodes only store prefix of key
prefix is long enough to distinguish neighbors
example: Cagliari, Casoria, Catanzaro → Cag, Cas, Cat

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 9 / 25



Index Tuning Data Structures

Hash Index

Hashed key values

0
1

n

R1 R5

R3 R6 R9 R14 R17 R21 R25
Hash

function

key

2341

Hash function:
maps keys to integers in range [0..n] (hash values)
pseudo-randomizing: most keys are uniformly distributed over range
similar keys usually have very different hash values!
database chooses good hash function for you

Hash index:
hash function is “root node” of index tree
hash value is a bucket number
bucket either contains records for search key
or pointer to overflow chain with records

Key length:
size of hash structure independent of key length
key length slightly increases CPU time for hash function

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 10 / 25



Index Tuning Data Structures

Overflow Chains

Hash index without overflows: single disk access

If bucket is full: overflow chain

each overflow page requires additional disk access
under-utilize hash space to avoid chains!
empirical utilization value: 50%

Hash index with many overflows: reorganize

use special reorganize function
or simply drop and add index

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 11 / 25



Index Tuning Data Structures

Bitmap Index

Index for data warehouses

One bit vector per attribute value (e.g., two for gender)

length of each bit vector is number of records
bit i for vector “male” is set if key value in row i is “male”

Works best if

query predicates are on many attributes
the individual predicates have high selectivity (e.g., male/female)
all predicates together have low selectivity (i.e., return few tuples)

Example: “Find females who have brown hair, blue eyes, wear glasses,
are between 50 and 60, work in computer industry, and live in
Bolzano”

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 12 / 25



Index Tuning Data Structures

Which Queries Are Supported?

96

75 83 107

96 98 103 107 110 12083 92 9575 80 8133 48 69

B+-tree index supports

point: traverse tree once to find page
multi-point: traverse tree once to find page(s)
range: traverse tree once to find one interval endpoint and follow
pointers between index nodes
prefix: traverse tree once to find prefix and follow pointers between
index nodes
extremal: traverse tree always to left/right (MIN/MAX)
ordering: keys ordered by their value
grouping: ordered keys save sorting

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 13 / 25



Index Tuning Data Structures

Which Queries Are Supported?

Hashed key values

0
1

n

R1 R5

R3 R6 R9 R14 R17 R21 R25
Hash

function

key

2341

Hash index supports

point: single disk access!
multi-point: single disk access to first record
grouping: grouped records have same hash value

Hash index is useless for

range, prefix, extremal, ordering
similar key values have dissimilar hash values
thus similar keys are in different pages

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 14 / 25



Index Tuning Data Structures

Experimental Setup

Employee(ssnum, name, hundreds ...)

1,000,000 records

ssnum is a key (point query)

hundreds has the same value for 100 employees (multipoint query)

point query: index on ssnum

multipoint and range query: index on hundreds

B+-tree and hash indexes are clustered

bitmap index is never clustered

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 15 / 25



Index Tuning Data Structures

Experiment: Point Query

Point Queries

0

10

20

30

40

50

60

B-Tree hash index

T
h

ro
u

g
h

p
u

t(
q

u
e
ri

e
s
/s

e
c
)

Oracle 8i Enterprise Edition on Windows 2000.

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 16 / 25



Index Tuning Data Structures

Experiment: Multi-point Query

 Multipoint Queries

0

5

10

15

20

25

B-Tree Hash index Bitmap index

T
h

ro
u

g
h

p
u

t 
(q

u
e

ri
e

s
/s

e
c

)

Setup: 100 records returned by each query

B+-tree: efficient since records are on consecutive pages

Hash index: key maps to single page and produces an overflow chain

Bitmap index: traverses entire bitmap to fetch a few records

Oracle 8i Enterprise Edition on Windows 2000.

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 17 / 25



Index Tuning Data Structures

Experiment: Range Query

Range Queries

0

0.1

0.2

0.3

0.4

0.5

B-Tree Hash index Bitmap index

T
h

ro
u

g
h

p
u

t 
(q

u
e
ri

e
s
/s

e
c
)

B+-tree: efficient since records are on consecutive pages

Hash index, bitmap index: do not help

Oracle 8i Enterprise Edition on Windows 2000.

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 18 / 25



Index Tuning Composite Indexes

Outline

1 Index Tuning
Data Structures
Composite Indexes

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 19 / 25



Index Tuning Composite Indexes

Composite Indexes

Index on more than one attribute (also “concatenated index”)

Example: Person(ssnum,lastname,firstname,age,address,...)

composite index on (lastname,firstname)

phone books are organized like that!

Index can be dense or sparse.

Dense index on (A,B,C )

one pointer is stored per record
all pointers to records with the same A value are stored together
within one A value, pointers to same B value stored together
within one A and B value, pointers to same C value stored together

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 20 / 25



Index Tuning Composite Indexes

Composite Indexes – Efficient for Prefix Queries

Example: composite index on (lastname,firstname)

SELECT * FROM Person

WHERE lastname=’Gates’ and firstname LIKE ’Ge%’

Composite index more efficient than two single-attribute indexes:

many records may satisfy firstname LIKE ’Ge%’

condition on lastname and firstname together has lower selectivity
two-index solution: results for indexes on lastname and firstname

must be intersected

Dense composite indexes can cover prefix query.

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 21 / 25



Index Tuning Composite Indexes

Composite Indexes – Skip Scan in Oracle

Typically composite index on (lastname,firstname) not useful for

SELECT lastname FROM Person

WHERE firstname=’George’

Problem: Index covers query, but condition is not a prefix.

Solution: Index skip scan (implemented in Oracle)

composite index on (A,B)
scan each A value until you find required B values
then jump to start of next A value
partial index scan instead of full table scan!
especially useful if A can take few values (e.g., male/female)

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 22 / 25



Index Tuning Composite Indexes

Composite Indexes – Multicolumn Uniqueness

Example: Order(supplier, part, quantity)

supplier is not unique
part is not unique
but (supplier,part) is unique

Efficient way to ensure uniqueness:

create unique, composite index on (supplier,part)

CREATE UNIQUE INDEX s_p ON Order(supplier,part)

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 23 / 25



Index Tuning Composite Indexes

Composite Indexes – Attribute Order Matters

Put attribute with more constraints first.

Example: Geographical Queries

table: City(name,longitude,latitude,population)

SELECT name FROM city

WHERE population >= 10000 AND latitude = 22

AND longitude >= 5 AND longitude <= 15

Efficient: clustered composite index on (latitude,longitude)

pointers to all result records are packed together

Inefficient: clustered composite index on (longitude, latitude)

each latitude 5 to 15 has some pointers to longitude 22 records

General geographical queries should use a multi-dimensional index
(for example, an R-tree)

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 24 / 25



Index Tuning Composite Indexes

Disadvantages of Composite Indexes

Large key size:

B+ tree will have many layers
key compression can help
hash index: large keys no problem, but no range and prefix queries
supported

Expensive updates:

in general, index must be updated when key attribute is updated
composite index has many key attributes
update required if any of the attributes is updated

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 25 / 25


