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Index Tuning Data Structures

Index Data Structures

Indexes can be implemented with different data structures.

We discuss:

B+-tree index
hash index
bitmap index (briefly)

Not discussed here:

dynamic hash indexes: number of buckets modified dynamically
R-tree: index for spacial data (points, lines, shapes)
quadtree: recursively partition a 2D plane into four quadrants
octree: quadtree version for three dimensional data
main memory indexes: T-tree, 2-3 tree, binary search tree
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Index Tuning Data Structures

B+-Tree
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balanced tree of key-pointer pairs

keys are sorted by value

nodes are at least half full

access records for key: traverse tree from root to leaf
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Index Tuning Data Structures

Key Length and Fanout

Key length is relevant in B+-trees: short keys are good!

fanout is maximum number of key-pointer pairs that fit in node
long keys result in small fanout
small fanout results in more levels
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Index Tuning Data Structures

Key Length and Fanout – Example

Store 40M key-pointer pairs in leaf pages (page: 4kB, pointer: 4B)

6B key: fanout 400 ⇒ 3 block reads per accesses
level nodes key-pointer pairs
1 1 400
2 400 160,000
3 160,000 64,000,000

96B key: fanout 40 ⇒ 5 block reads per accesses
level nodes key-pointer pairs
1 1 40
2 40 1,600
3 1,600 64,000
4 64,000 2,560,000
5 2,560,000 102,400,000

6B key almost twice as fast as 96B key!
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Index Tuning Data Structures

Estimate Number of Levels

Page utilization:

examples assumes 100% utilization
typical utilization is 69% (if half-full nodes are merged)

Number of levels:

fanout = b node size
key-pointer sizec

number of levels = dlogfanout×utilization(leaf key-pointer pairs)e

Previous example with utilization = 69%:

6B key: fanout = 400, levels = d3.11e = 4
96B key: fanout = 40, levels = d5.28e = 6
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Index Tuning Data Structures

Key Compression

Key compression: produce smaller keys

reduces number of levels
adds some CPU cost (ca. 30% per access)

Key compression is useful if

keys are long, for example, string keys
data is static (few updates)
CPU time is not an issue

Prefix compression: very popular

non-leaf nodes only store prefix of key
prefix is long enough to distinguish neighbors
example: Cagliari, Casoria, Catanzaro → Cag, Cas, Cat
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Index Tuning Data Structures

Hash Index

Hashed key values
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Hash function:
maps keys to integers in range [0..n] (hash values)
pseudo-randomizing: most keys are uniformly distributed over range
similar keys usually have very different hash values!
database chooses good hash function for you

Hash index:
hash function is “root node” of index tree
hash value is a bucket number
bucket either contains records for search key
or pointer to overflow chain with records

Key length:
size of hash structure independent of key length
key length slightly increases CPU time for hash function
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Index Tuning Data Structures

Overflow Chains

Hash index without overflows: single disk access

If bucket is full: overflow chain

each overflow page requires additional disk access
under-utilize hash space to avoid chains!
empirical utilization value: 50%

Hash index with many overflows: reorganize

use special reorganize function
or simply drop and add index
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Index Tuning Data Structures

Bitmap Index

Index for data warehouses

One bit vector per attribute value (e.g., two for gender)

length of each bit vector is number of records
bit i for vector “male” is set if key value in row i is “male”

Works best if

query predicates are on many attributes
the individual predicates have high selectivity (e.g., male/female)
all predicates together have low selectivity (i.e., return few tuples)

Example: “Find females who have brown hair, blue eyes, wear glasses,
are between 50 and 60, work in computer industry, and live in
Bolzano”

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 5 – WS 2013/2014 12 / 25



Index Tuning Data Structures

Which Queries Are Supported?
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B+-tree index supports

point: traverse tree once to find page
multi-point: traverse tree once to find page(s)
range: traverse tree once to find one interval endpoint and follow
pointers between index nodes
prefix: traverse tree once to find prefix and follow pointers between
index nodes
extremal: traverse tree always to left/right (MIN/MAX)
ordering: keys ordered by their value
grouping: ordered keys save sorting
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Index Tuning Data Structures

Which Queries Are Supported?

Hashed key values
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Hash index supports

point: single disk access!
multi-point: single disk access to first record
grouping: grouped records have same hash value

Hash index is useless for

range, prefix, extremal, ordering
similar key values have dissimilar hash values
thus similar keys are in different pages
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Index Tuning Data Structures

Experimental Setup

Employee(ssnum, name, hundreds ...)

1,000,000 records

ssnum is a key (point query)

hundreds has the same value for 100 employees (multipoint query)

point query: index on ssnum

multipoint and range query: index on hundreds

B+-tree and hash indexes are clustered

bitmap index is never clustered
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Index Tuning Data Structures

Experiment: Point Query

Point Queries
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Oracle 8i Enterprise Edition on Windows 2000.
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Index Tuning Data Structures

Experiment: Multi-point Query

 Multipoint Queries
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Setup: 100 records returned by each query

B+-tree: efficient since records are on consecutive pages

Hash index: key maps to single page and produces an overflow chain

Bitmap index: traverses entire bitmap to fetch a few records

Oracle 8i Enterprise Edition on Windows 2000.
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Index Tuning Data Structures

Experiment: Range Query

Range Queries
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B+-tree: efficient since records are on consecutive pages

Hash index, bitmap index: do not help

Oracle 8i Enterprise Edition on Windows 2000.
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Index Tuning Composite Indexes

Composite Indexes

Index on more than one attribute (also “concatenated index”)

Example: Person(ssnum,lastname,firstname,age,address,...)

composite index on (lastname,firstname)

phone books are organized like that!

Index can be dense or sparse.

Dense index on (A,B,C )

one pointer is stored per record
all pointers to records with the same A value are stored together
within one A value, pointers to same B value stored together
within one A and B value, pointers to same C value stored together
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Index Tuning Composite Indexes

Composite Indexes – Efficient for Prefix Queries

Example: composite index on (lastname,firstname)

SELECT * FROM Person

WHERE lastname=’Gates’ and firstname LIKE ’Ge%’

Composite index more efficient than two single-attribute indexes:

many records may satisfy firstname LIKE ’Ge%’

condition on lastname and firstname together has lower selectivity
two-index solution: results for indexes on lastname and firstname

must be intersected

Dense composite indexes can cover prefix query.
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Index Tuning Composite Indexes

Composite Indexes – Skip Scan in Oracle

Typically composite index on (lastname,firstname) not useful for

SELECT lastname FROM Person

WHERE firstname=’George’

Problem: Index covers query, but condition is not a prefix.

Solution: Index skip scan (implemented in Oracle)

composite index on (A,B)
scan each A value until you find required B values
then jump to start of next A value
partial index scan instead of full table scan!
especially useful if A can take few values (e.g., male/female)
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Index Tuning Composite Indexes

Composite Indexes – Multicolumn Uniqueness

Example: Order(supplier, part, quantity)

supplier is not unique
part is not unique
but (supplier,part) is unique

Efficient way to ensure uniqueness:

create unique, composite index on (supplier,part)

CREATE UNIQUE INDEX s_p ON Order(supplier,part)
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Index Tuning Composite Indexes

Composite Indexes – Attribute Order Matters

Put attribute with more constraints first.

Example: Geographical Queries

table: City(name,longitude,latitude,population)

SELECT name FROM city

WHERE population >= 10000 AND latitude = 22

AND longitude >= 5 AND longitude <= 15

Efficient: clustered composite index on (latitude,longitude)

pointers to all result records are packed together

Inefficient: clustered composite index on (longitude, latitude)

each latitude 5 to 15 has some pointers to longitude 22 records

General geographical queries should use a multi-dimensional index
(for example, an R-tree)
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Index Tuning Composite Indexes

Disadvantages of Composite Indexes

Large key size:

B+ tree will have many layers
key compression can help
hash index: large keys no problem, but no range and prefix queries
supported

Expensive updates:

in general, index must be updated when key attribute is updated
composite index has many key attributes
update required if any of the attributes is updated
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