
Database Tuning
Concurrency Tuning

Nikolaus Augsten

University of Salzburg
Department of Computer Science

Database Group

Unit 7 – WS 2013/2014

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 1 / 16



Concurrency Tuning Introduction to Transactions

Outline

1 Concurrency Tuning
Introduction to Transactions

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 2 / 16



Concurrency Tuning Introduction to Transactions

What is a Transaction?1

A transaction is a unit of program execution that accesses and
possibly updates various data items.

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

Two main issues:

1. concurrent execution of multiple transactions
2. failures of various kind (e.g., hardware failure, system crash)

1 Slides of section “Introduction to Transactions” are adapted from the slides “Database System
Concepts”, 6th Ed., Silberschatz, Korth, and Sudarshan

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 3 / 16



Concurrency Tuning Introduction to Transactions

ACID Properties

Database system must guarantee ACID for transactions:

Atomicity: either all operations of the transaction are executed or none
Consistency: execution of a transaction in isolation preserves the
consistency of the database
Isolation: although multiple transactions may execute concurrently,
each transaction must be unaware of the other concurrent transactions.
Durability: After a transaction completes successfully, changes to the
database persist even in case of system failure.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 4 / 16



Concurrency Tuning Introduction to Transactions

Atomicity

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

What if failure (hardware or software) after step 3?

money is lost
database is inconsistent

Atomicity:

either all operations or none
updates of partially executed transactions not reflected in database

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 5 / 16



Concurrency Tuning Introduction to Transactions

Consistency

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

Consistency in example: sum A + B must be unchanged

Consistency in general:

explicit integrity constraints (e.g., foreign key)
implicit integrity constraints (e.g., sum of all account balances of a
bank branch must be equal to branch balance)

Transaction:

must see consistent database
during transaction inconsistent state allowed
after completion database must be consistent again

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 6 / 16



Concurrency Tuning Introduction to Transactions

Isolation – Motivating Example

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

Imagine second transaction T2:

T2 : R(A),R(B), print(A + B)
T2 is executed between steps 3 and 4
T2 sees an inconsistent database and gives wrong result

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 7 / 16



Concurrency Tuning Introduction to Transactions

Isolation

Trivial isolation: run transactions serially

Isolation for concurrent transactions: For every pair of transactions Ti

and Tj , it appears to Ti as if either Tj finished execution before Ti

started or Tj started execution after Ti finished.

Schedule:

specifies the chronological order of a sequence of instructions from
various transactions
equivalent schedules result in identical databases if they start with
identical databases

Serializable schedule:

equivalent to some serial schedule
serializable schedule of T1 and T2 is either equivalent to T1,T2 or
T2,T1

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 8 / 16



Concurrency Tuning Introduction to Transactions

Durability

When a transaction is done it commits.

Example: transaction commits too early

transaction writes A, then commits
A is written to the disk buffer
then system crashes
value of A is lost

Durability: After a transaction has committed, the changes to the
database persist even in case of system failure.

Commit only after all changes are permanent:

either written to log file or directly to database
database must recover in case of a crash

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 9 / 16



Concurrency Tuning Introduction to Transactions

Locks

A lock is a mechanism to control concurrency on a data item.

Two types of locks on a data item A:

exclusive – xL(A): data item A can be both read and written
shared – sL(A): data item A can only be read.

Lock request are made to concurrency control manager.

Transaction is blocked until lock is granted.

Unlock A – uL(A): release the lock on a data item A

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 10 / 16



Concurrency Tuning Introduction to Transactions

Lock Compatibility

Lock compatibility matrix:

T1 ↓ T2 → shared exclusive

shared true false

exclusive false false

T1 holds shared lock on A:

shared lock is granted to T2

exclusive lock is not granted to T2

T2 holds exclusive lock on A:

shared lock is not granted to T2

exclusive lock is not granted to T2

Shared locks can be shared by any number of transactions.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 11 / 16



Concurrency Tuning Introduction to Transactions

Locking Protocol

Example transaction T2 with locking:

1. sL(A), R(A), uL(A)
2. sL(B), R(B), uL(B)
3. print(A + B)

T2 uses locking, but is not serializable

A and/or B could be updated between steps 1 and 2
printed sum may be wrong

Locking protocol:

set of rules followed by all transactions while requesting/releasing locks
locking protocol restricts the set of possible schedules

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 12 / 16



Concurrency Tuning Introduction to Transactions

Pitfalls of Locking Protocols – Deadlock

Example: two concurrent money transfers

T1: R(A),A← A + 10,R(B),B ← B − 10,W (A),W (B)
T2: R(B),B ← B + 50,R(A),A← A− 50,W (A),W (B)
possible concurrent scenario with locks:
T1.xL(A),T1.R(A),T2.xL(B),T2.R(B),T2.xL(A),T1.xL(B), . . .
T1 and T2 block each other – no progress possible

Deadlock: situation when transactions block each other

Handling deadlocks:

one of the transactions must be rolled back (i.e., undone)
rolled back transaction releases locks

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 13 / 16



Concurrency Tuning Introduction to Transactions

Pitfalls of Locking Protocols – Starvation

Starvation: transaction continues to wait for lock

Examples:

the same transaction is repeatedly rolled back due to deadlocks
a transaction continues to wait for an exclusive lock on an item while a
sequence of other transactions are granted shared locks

Well-designed concurrency manager avoids starvation.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 14 / 16



Concurrency Tuning Introduction to Transactions

Two-Phase Locking

Protocol that guarantees serializability.

Phase 1: growing phase

transaction may obtain locks
transaction may not release locks

Phase 2: shrinking phase

transaction may release locks
transaction may not obtain locks

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 15 / 16



Concurrency Tuning Introduction to Transactions

Two-Phase Locking – Example

Example: two concurrent money transfers

T1: R(A),A← A + 10,R(B),B ← B − 10,W (A),W (B)
T2: R(A),A← A− 50,R(B),B ← B + 50,W (A),W (B)

Possible two-phase locking schedule:

1. T1 : xL(A), xL(B),R(A),R(B),W (A← A + 10), uL(A)
2. T2 : xL(A),R(A), xL(B) (wait)
3. T1 : W (B ← B − 10), uL(B)
4. T2 : R(B),W (A← A− 50),W (B ← B + 50), uL(A), uL(B)

Equivalent serial schedule: T1,T2

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 7 – WS 2013/2014 16 / 16


