
Database Tuning
Concurrency Tuning

Nikolaus Augsten

University of Salzburg
Department of Computer Science

Database Group

Unit 8 – WS 2013/2014

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 1 / 24

Concurrency Tuning Lock Tuning

Outline

1 Concurrency Tuning
Lock Tuning

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 2 / 24

Concurrency Tuning Lock Tuning

Concurrency Tuning Goals

Performance goals:

reduce blocking (one transaction waits for another to release its locks)
avoid deadlocks and rollbacks

Correctness goals:

serializability: each transaction appears to execute in isolation
note: correctness of serial execution must be ensured by the
programmer!

Trade-off between performance and correctness!

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 3 / 24

Concurrency Tuning Lock Tuning

Ideal Transaction

Acquires few locks.

Favors shared locks over exclusive locks.

only exclusive locks create conflicts

Acquires locks with fine granularity.

granularities: table, page, row
reduces the scope of each conflict

Holds locks for a short time.

reduce waiting time

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 4 / 24

Concurrency Tuning Lock Tuning

Lock Tuning

1. Eliminate unnecessary locks

2. Control granularity of locking

3. Circumvent hot spots

4. Isolation guarantees and snapshot isolation

5. Split long transactions

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 5 / 24

Concurrency Tuning Lock Tuning

1. Eliminate Unnecessary Locks

Lock overhead:

memory: store lock control blocks
CPU: process lock requests

Locks not necessary if

only one transaction runs at a time, e.g., while loading the database
all transactions are read-only, e.g., decision support queries on archival
data

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 6 / 24

Concurrency Tuning Lock Tuning

2. Control Granularity of Locking

Locks can be defined at different granularities:

row-level locking (also: record-level locking)
page-level locking
table-level locking

Fine-grained locking (row-level):

good for short online-transactions
each transaction accesses only a few records

Coarse-grained locking (table-level):

avoid blocking long transactions
avoid deadlocks
reduced locking overhead

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 7 / 24

Concurrency Tuning Lock Tuning

Lock Escalation

Lock escalation: (SQL Server and DB2 UDB)

automatically upgrades row-level locks into table locks if number of
row-level locks reaches predefined threshold
lock escalation can lead to deadlock

Oracle does not implement lock escalation.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 8 / 24

Concurrency Tuning Lock Tuning

Granularity Tuning Parameters

1. Explicit control of the granularity:

within transaction: statement within transaction explicitly requests a
table-level lock, shared or exclusive (Oracle, DB2)
across transactions: lock granularity is defined for each table; all
transactions accessing this table use the same granularity (SQL Server)

2. Escalation point setting:

lock is escalated if number of row-level locks exceeds threshold
(escalation point)
escalation point can be set by database administrator
rule of thumb: high enough to prevent escalation for short online
transactions

3. Lock table size:

maximum overall number of locks can be limited
if the lock table is full, system will be forced to escalate

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 9 / 24

Concurrency Tuning Lock Tuning

Overhead of Table vs. Row Locking

Experimental setting:

accounts(number,branchnum,balance)

clustered index on account number
100,000 rows
SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
lock escalation switched off

Queries: (no concurrent transactions!)

100,000 updates (1 query)
example: update accounts set balance=balance*1.05

100,000 inserts (100,000 queries)
example: insert into accounts values(713,15,2296.12)

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 10 / 24

Concurrency Tuning Lock Tuning

Overhead of Table vs. Row Locking

0

0.2

0.4

0.6

0.8

1

update insert

Th
ro

ug
hp

ut
 ra

tio

(ro
w

lo
ck

in
g/

ta
bl

e l
oc

kin
g)

db2

sqlserver

oracle

Row locking (100k rows must be locked) should be more expensive
than table locking (1 table must be locked).

SQL Server, Oracle: recovery overhead (logging changes) hides
difference in locking overhead

DB2: low overhead due to logical logging of updates, difference in
locking overhead visible

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 11 / 24

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Experimental setting:

table with bank accounts
clustered index on account number
long transaction (summation of account balances)
multiple short transactions (debit/credit transfers)
parameter: number of concurrent transactions
SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
lock escalation switched off

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 12 / 24

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Serializability with row locking forces key range locks.

Key range locks are performed in clustered index.

SQL Server: Clustered index is sparse, thus whole pages are locked.

Row-level locking only slightly increases concurrency.

Table-locking prevents rollback for summation query.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 13 / 24

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Row locking slightly better than table locking.

DB2 automatically selects locking granularity if not forced manually.

index scan in this experiment leads to row-level locking
table scan would lead to table-level locking

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 14 / 24

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Oracle uses snapshot isolation: summation query not in conflict with
short transactions.

Table locking: short transactions must wait.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 15 / 24

Concurrency Tuning Lock Tuning

3. Circumvent Hot Spots

Hot spot: items that are

accessed by many transactions
updated at least by some transactions

Circumventing hot spots:

access hot spot as late as possible in transaction
(reduces waiting time for other transactions since locks are kept to the
end of a transactions)
use partitioning, e.g., multiple free lists
use special database facilities, e.g., latch on counter

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 16 / 24

Concurrency Tuning Lock Tuning

Partitioning Example: Distributed Insertions

Insert contention: last table page is bottleneck

appending data to heap file (e.g., log files)
insert records with sequential keys into table with B+-tree

Solutions:

use clustered hash index
if only B+ tree available: use hashed insertion time as key
use row locking instead of page locking
if reads are always scans: define many insertion points
(composite index on random integer (1..k) and key attribute)

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 17 / 24

Concurrency Tuning Lock Tuning

Experiment: Multiple Insertion Points and Page Locking

Sequential: clustered B+-tree index and key in insert order

Non-sequential: clustered B+-tree, key independent of insert order

Hashing: composite index on random integer (1..k) and key attribute

Page locking and sequential keys: insert contention!

SQL Server 7 on Windows 2000

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 18 / 24

Concurrency Tuning Lock Tuning

Experiment: Multiple Insertion Points and Row Locking

No insert contention with row locking.

SQL Server 7 on Windows 2000

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 19 / 24

Concurrency Tuning Lock Tuning

Partitioning Example: DDL Statements and Catalog

Catalog: information about tables, e.g., names, column widths

Data definition language (DDL) statements must access catalog

Catalog can become hot spot

Partition in time: avoid DDL statements during heavy system activity

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 20 / 24

Concurrency Tuning Lock Tuning

Partitioning Example: Free Lists

Lock contention on free list:

free list: list of unused database buffer pages
a thread that needs a free page locks the free list
during the lock no other thread can get a free page

Solution: Logical partitioning

create several free lists
each free list contains pointers to a portion of free pages
a thread that needs a free page randomly selects a list
with n free list the load per list is reduced by factor 1/n

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 21 / 24

Concurrency Tuning Lock Tuning

System Facilities: Latch on Counter

Example: concurrent inserts with unique identifier

identifier is created by a counter
2-phase locking: lock on counter is held until transaction ends
counter becomes hot spot

Databases allow to hold a latch on the counter.

latch: exclusive lock that is held only during access
eliminates bottleneck but may introduce gaps in counter values

Counter gaps with latches:

transaction T1 increments counter to i
transaction T2 increments counter to i + 1
if T1 aborts now, then no data item has identifier i

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 22 / 24

Concurrency Tuning Lock Tuning

Experiment: Latch vs. Lock on Counter

SQLServer

0 10 20 30 40 50

Number of concurrent insertion threads

T
h

ro
u

g
h

p
u

t
(s

ta
te

m
e
n

ts
/s

e
c
)

system

ad-hoc

System (=latch): use system facility for generating counter values
(“identity” in SQL Server)

Ad hoc (=lock): increment a counter value in an ancillary table

SQL Server 7 on Windows 2000

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 23 / 24

Concurrency Tuning Lock Tuning

Experiment: Latch vs. Lock on Counter

Oracle

0 10 20 30 40 50

Number of concurrent insertion threads

T
h

ro
u

g
h

p
u

t
(s

ta
te

m
en

ts
/s

ec
)

system

ad-hoc

System (=latch): use system facility for generating counter values
(“sequence” in Oracle)

Ad hoc (=lock): increment a counter value in an ancillary table

Oracle 8i EE on Windows 2000

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 24 / 24

