Concurrency Tuning Lock Tuning

Outline

Database Tuning

Concurrency Tuning

Nikolaus Augsten © Concurrency Tuning

@ Lock Tunin

University of Salzburg g

Department of Computer Science
Database Group

Unit 8 — WS 2013/2014

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Nikolaus Augsten (DIS) DBT - Concurrency Tuning Unit 8 — WS 2013/2014 1/24 Nikolaus Augsten (DIS) DBT — Concurrency Tuning

Concurrency Tuning Lock Tuning Concurrency Tuning Lock Tuning

Unit 8 — WS 2013/2014 2/24

Concurrency Tuning Goals Ideal Transaction

@ Performance goals:

Acquires few locks.
o reduce blocking (one transaction waits for another to release its locks)

- @ Favors shared locks over exclusive locks.
o avoid deadlocks and rollbacks

e only exclusive locks create conflicts
o Correctness goals:

e , o Acquires locks with fine granularity.
o serializability: each transaction appears to execute in isolation

e note: correctness of serial execution must be ensured by the
programmer!

e granularities: table, page, row
o reduces the scope of each conflict

@ Holds locks for a short time.

e reduce waiting time
Trade-off between performance and correctness!

Nikolaus Augsten (DIS) DBT - Concurrency Tuning Unit 8 — WS 2013/2014 3/24 Nikolaus Augsten (DIS) DBT — Concurrency Tuning

Unit 8 — WS 2013/2014 4 /24



Concurrency Tuning Lock Tuning

Lock Tuning

Eliminate unnecessary locks
Control granularity of locking
Circumvent hot spots

Isolation guarantees and snapshot isolation

o~ W=

Split long transactions

Nikolaus Augsten (DIS) DBT - Concurrency Tuning

Concurrency Tuning Lock Tuning

2. Control Granularity of Locking

Unit 8 — WS 2013/2014

5 /24

Concurrency Tuning Lock Tuning

1. Eliminate Unnecessary Locks

@ Lock overhead:
e memory: store lock control blocks
e CPU: process lock requests
@ Locks not necessary if
e only one transaction runs at a time, e.g., while loading the database
e all transactions are read-only, e.g., decision support queries on archival
data

Nikolaus Augsten (DIS) DBT - Concurrency Tuning Unit 8 — WS 2013/2014 [

Concurrency Tuning Lock Tuning

Lock Escalation

@ Locks can be defined at different granularities:
o row-level locking (also: record-level locking)
o page-level locking
o table-level locking
e Fine-grained locking (row-level):
e good for short online-transactions
o each transaction accesses only a few records
o Coarse-grained locking (table-level):

e avoid blocking long transactions
o avoid deadlocks
o reduced locking overhead

DBT - Concurrency Tuning

Nikolaus Augsten (DIS)

Unit 8 — WS 2013/2014

7/24

@ Lock escalation: (SQL Server and DB2 UDB)
e automatically upgrades row-level locks into table locks if number of
row-level locks reaches predefined threshold
e lock escalation can lead to deadlock

@ Oracle does not implement lock escalation.

Nikolaus Augsten (DIS) DBT — Concurrency Tuning Unit 8 — WS 2013/2014 8 /24




Concurrency Tuning Lock Tuning

Granularity Tuning Parameters

1. Explicit control of the granularity:
e within transaction: statement within transaction explicitly requests a
table-level lock, shared or exclusive (Oracle, DB2)
e across transactions: lock granularity is defined for each table; all
transactions accessing this table use the same granularity (SQL Server)

2. Escalation point setting:
o lock is escalated if number of row-level locks exceeds threshold
(escalation point)
o escalation point can be set by database administrator
o rule of thumb: high enough to prevent escalation for short online
transactions
3. Lock table size:
e maximum overall number of locks can be limited
o if the lock table is full, system will be forced to escalate

DBT - Concurrency Tuning Unit 8 — WS 2013/2014 9 /24

Nikolaus Augsten (DIS)

Concurrency Tuning Lock Tuning

Overhead of Table vs. Row Locking

Concurrency Tuning Lock Tuning

Overhead of Table vs. Row Locking

@ Experimental setting:
e accounts(number,branchnum,balance)
clustered index on account number

e 100,000 rows
e SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
(]

lock escalation switched off

@ Queries: (no concurrent transactions!)
e 100,000 updates (1 query)
example: update accounts set balance=balancex*1.05

e 100,000 inserts (100,000 queries)
example: insert into accounts values(713,15,2296.12)

Nikolaus Augsten (DIS) DBT — Concurrency Tuning Unit 8 — WS 2013/2014

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

1 —
0.8
0.6 O db2
= O sqlserver
2= 04 oracle
S o
23 021
=
S.£
= %‘ 0 T
% update insert

@ Row locking (100k rows must be locked) should be more expensive
than table locking (1 table must be locked).

@ SQL Server, Oracle: recovery overhead (logging changes) hides
difference in locking overhead

@ DB2: low overhead due to logical logging of updates, difference in
locking overhead visible

Unit 8 — WS 2013/2014 11 /24

Nikolaus Augsten (DIS) DBT - Concurrency Tuning

@ Experimental setting:

e table with bank accounts
clustered index on account number
long transaction (summation of account balances)
multiple short transactions (debit/credit transfers)
parameter: number of concurrent transactions
SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
lock escalation switched off

DBT - Concurrency Tuning Unit 8 — WS 2013/2014

Nikolaus Augsten (DIS)




Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

SQL Server

Throughput
(statements/sec)

Throughput
(statements/sec)
[

—{ Row locking | |
—&— Table locking

T T T

0 2 4 6 8 10

Number of concurrent update threads

o Serializability with row locking forces key range locks.

o Key range locks are performed in clustered index.

@ SQL Server: Clustered index is sparse, thus whole pages are locked.
@ Row-level locking only slightly increases concurrency.

@ Table-locking prevents rollback for summation query.

Nikolaus Augsten (DIS) DBT - Concurrency Tuning Unit 8 — WS 2013/2014 13 /24

Concurrency Tuning Lock Tuning

DB2

Number of concurrent update threads

@ Row locking slightly better than table locking.
o DB2 automatically selects locking granularity if not forced manually.

e index scan in this experiment leads to row-level locking
o table scan would lead to table-level locking

Nikolaus Augsten (DIS) DBT — Concurrency Tuning Unit 8 — WS 2013/2014 14 / 24

Concurrency Tuning Lock Tuning

3. Circumvent Hot Spots

Experiment: Fine-Grained Locking

Oracle

,—/ —{ Row locking
% —@—Table locking
T

Throughput
(statements/sec)

T T T

0 2 4 6 8 10

Number of concurrent update threads

@ Oracle uses snapshot isolation: summation query not in conflict with
short transactions.

@ Table locking: short transactions must wait.

@ Hot spot: items that are

e accessed by many transactions
e updated at least by some transactions
o Circumventing hot spots:

e access hot spot as late as possible in transaction
(reduces waiting time for other transactions since locks are kept to the
end of a transactions)

e use partitioning, e.g., multiple free lists

e use special database facilities, e.g., latch on counter

Nikolaus Augsten (DIS) DBT — Concurrency Tuning Unit 8 — WS 2013/2014 16 / 24

Unit 8 — WS 2013/2014 15/ 24

Nikolaus Augsten (DIS) DBT - Concurrency Tuning




Concurrency Tuning Lock Tuning

Partitioning Example: Distributed Insertions

@ Insert contention: last table page is bottleneck

o appending data to heap file (e.g., log files)

e insert records with sequential keys into table with BT -tree
@ Solutions:

e use clustered hash index

140

Concurrency Tuning

Experiment: Multiple Insertion Points and Page Locking

Lock Tuning

120 — 3
. 100 //8/___-_,,,‘0———0*—0
é 2 80 V —— Sequential
505
a 60 —O— Nonsequential
= 2
E= 4 —t— Hashing key
20 L = = ™ —u
0 T T T T T
10 20 30 40 50 60

if only BT tree available: use hashed insertion time as key
use row locking instead of page locking
if reads are always scans: define many insertion points

(composite index on random integer (1..k) and key attribute)

Nikolaus Augsten (DIS) DBT - Concurrency Tuning Unit 8 — WS 2013/2014

Concurrency Tuning Lock Tuning

Experiment: Multiple Insertion Points and Row Locking

Row locking

800
5. 600
L
£2 400 = -
2 % Sequential
=
B~ —O— Nonsequential

200 5 ]

—2— Hashing key
0 T T T T T
0 10 20 30 40 50 60

Number of concurrent insertion threads
@ No insert contention with row locking.

SQL Server 7 on Windows 2000

DBT - Concurrency Tuning Unit 8 — WS 2013/2014

Nikolaus Augsten (DIS)

17 / 24

19 / 24

Number of concutrent insertion threads

@ Sequential: clustered BT-tree index and key in insert order
@ Non-sequential: clustered B*-tree, key independent of insert order
@ Hashing: composite index on random integer (1..k) and key attribute

@ Page locking and sequential keys: insert contention!

SQL Server 7 on Windows 2000

Nikolaus Augsten (DIS) DBT - Concurrency Tuning Unit 8 — WS 2013/2014 18 / 24

Concurrency Tuning Lock Tuning

Partitioning Example: DDL Statements and Catalog

Catalog: information about tables, e.g., names, column widths

Data definition language (DDL) statements must access catalog
Catalog can become hot spot

Partition in time: avoid DDL statements during heavy system activity

Nikolaus Augsten (DIS) DBT - Concurrency Tuning Unit 8 — WS 2013/2014 20 / 24




Concurrency Tuning Lock Tuning

Concurrency Tuning Lock Tuning

System Facilities: Latch on Counter

Partitioning Example: Free Lists

@ Lock contention on free list:
o free list: list of unused database buffer pages
e a thread that needs a free page locks the free list
o during the lock no other thread can get a free page
@ Solution: Logical partitioning
o create several free lists
e each free list contains pointers to a portion of free pages

o a thread that needs a free page randomly selects a list
o with n free list the load per list is reduced by factor 1/n

Nikolaus Augsten (DIS) DBT - Concurrency Tuning Unit 8 — WS 2013/2014 21 /24

Concurrency Tuning Lock Tuning

Experiment: Latch vs. Lock on Counter

@ Example: concurrent inserts with unique identifier
o identifier is created by a counter
o 2-phase locking: lock on counter is held until transaction ends
e counter becomes hot spot
@ Databases allow to hold a latch on the counter.
e latch: exclusive lock that is held only during access
o eliminates bottleneck but may introduce gaps in counter values
o Counter gaps with latches:
e transaction T7 increments counter to i

e transaction T, increments counter to j + 1
o if Ty aborts now, then no data item has identifier /

Nikolaus Augsten (DIS) DBT — Concurrency Tuning Unit 8 — WS 2013/2014

Concurrency Tuning Lock Tuning

Experiment: Latch vs. Lock on Counter

SQLServer
0
PR
:
S¢ @ —&— system| |
25 —®- ad-hoc | |
-8
9L
t.=-‘ l—= L |
0 10 20 30 40 50
Number of concurrent insertion threads

e System (=latch): use system facility for generating counter values
(“identity” in SQL Server)

@ Ad hoc (=lock): increment a counter value in an ancillary table

SQL Server 7 on Windows 2000

DBT - Concurrency Tuning Unit 8 — WS 2013/2014 23 /24

Nikolaus Augsten (DIS)

Oracle
‘
-7 | +
39
58 —o—system
=7}
o E —m—ad-hoc
<2
F®
L
Bg n = = I
0 10 20 30 40 50
Number of concurrent insertion threads

@ System (=latch): use system facility for generating counter values
(“sequence” in Oracle)

@ Ad hoc (=lock): increment a counter value in an ancillary table

Oracle 8i EE on Windows 2000

DBT - Concurrency Tuning Unit 8 — WS 2013/2014 24 / 24

Nikolaus Augsten (DIS)




