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Concurrency Tuning Goals

Performance goals:

reduce blocking (one transaction waits for another to release its locks)
avoid deadlocks and rollbacks

Correctness goals:

serializability: each transaction appears to execute in isolation
note: correctness of serial execution must be ensured by the
programmer!

Trade-off between performance and correctness!
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Ideal Transaction

Acquires few locks.

Favors shared locks over exclusive locks.

only exclusive locks create conflicts

Acquires locks with fine granularity.

granularities: table, page, row
reduces the scope of each conflict

Holds locks for a short time.

reduce waiting time
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Lock Tuning

1. Eliminate unnecessary locks

2. Control granularity of locking

3. Circumvent hot spots

4. Isolation guarantees and snapshot isolation

5. Split long transactions
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1. Eliminate Unnecessary Locks

Lock overhead:

memory: store lock control blocks
CPU: process lock requests

Locks not necessary if

only one transaction runs at a time, e.g., while loading the database
all transactions are read-only, e.g., decision support queries on archival
data
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2. Control Granularity of Locking

Locks can be defined at different granularities:

row-level locking (also: record-level locking)
page-level locking
table-level locking

Fine-grained locking (row-level):

good for short online-transactions
each transaction accesses only a few records

Coarse-grained locking (table-level):

avoid blocking long transactions
avoid deadlocks
reduced locking overhead
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Lock Escalation

Lock escalation: (SQL Server and DB2 UDB)

automatically upgrades row-level locks into table locks if number of
row-level locks reaches predefined threshold
lock escalation can lead to deadlock

Oracle does not implement lock escalation.
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Granularity Tuning Parameters

1. Explicit control of the granularity:

within transaction: statement within transaction explicitly requests a
table-level lock, shared or exclusive (Oracle, DB2)
across transactions: lock granularity is defined for each table; all
transactions accessing this table use the same granularity (SQL Server)

2. Escalation point setting:

lock is escalated if number of row-level locks exceeds threshold
(escalation point)
escalation point can be set by database administrator
rule of thumb: high enough to prevent escalation for short online
transactions

3. Lock table size:

maximum overall number of locks can be limited
if the lock table is full, system will be forced to escalate
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Overhead of Table vs. Row Locking

Experimental setting:

accounts(number,branchnum,balance)

clustered index on account number
100,000 rows
SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
lock escalation switched off

Queries: (no concurrent transactions!)

100,000 updates (1 query)
example: update accounts set balance=balance*1.05

100,000 inserts (100,000 queries)
example: insert into accounts values(713,15,2296.12)
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Overhead of Table vs. Row Locking
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Row locking (100k rows must be locked) should be more expensive
than table locking (1 table must be locked).

SQL Server, Oracle: recovery overhead (logging changes) hides
difference in locking overhead

DB2: low overhead due to logical logging of updates, difference in
locking overhead visible

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 11 / 24

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Experimental setting:

table with bank accounts
clustered index on account number
long transaction (summation of account balances)
multiple short transactions (debit/credit transfers)
parameter: number of concurrent transactions
SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
lock escalation switched off

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 8 – WS 2013/2014 12 / 24



Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Serializability with row locking forces key range locks.

Key range locks are performed in clustered index.

SQL Server: Clustered index is sparse, thus whole pages are locked.

Row-level locking only slightly increases concurrency.

Table-locking prevents rollback for summation query.
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Experiment: Fine-Grained Locking

Row locking slightly better than table locking.

DB2 automatically selects locking granularity if not forced manually.

index scan in this experiment leads to row-level locking
table scan would lead to table-level locking
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Experiment: Fine-Grained Locking

Oracle uses snapshot isolation: summation query not in conflict with
short transactions.

Table locking: short transactions must wait.
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3. Circumvent Hot Spots

Hot spot: items that are

accessed by many transactions
updated at least by some transactions

Circumventing hot spots:

access hot spot as late as possible in transaction
(reduces waiting time for other transactions since locks are kept to the
end of a transactions)
use partitioning, e.g., multiple free lists
use special database facilities, e.g., latch on counter
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Partitioning Example: Distributed Insertions

Insert contention: last table page is bottleneck

appending data to heap file (e.g., log files)
insert records with sequential keys into table with B+-tree

Solutions:

use clustered hash index
if only B+ tree available: use hashed insertion time as key
use row locking instead of page locking
if reads are always scans: define many insertion points
(composite index on random integer (1..k) and key attribute)
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Experiment: Multiple Insertion Points and Page Locking

Sequential: clustered B+-tree index and key in insert order

Non-sequential: clustered B+-tree, key independent of insert order

Hashing: composite index on random integer (1..k) and key attribute

Page locking and sequential keys: insert contention!

SQL Server 7 on Windows 2000
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Experiment: Multiple Insertion Points and Row Locking

No insert contention with row locking.

SQL Server 7 on Windows 2000
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Partitioning Example: DDL Statements and Catalog

Catalog: information about tables, e.g., names, column widths

Data definition language (DDL) statements must access catalog

Catalog can become hot spot

Partition in time: avoid DDL statements during heavy system activity
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Partitioning Example: Free Lists

Lock contention on free list:

free list: list of unused database buffer pages
a thread that needs a free page locks the free list
during the lock no other thread can get a free page

Solution: Logical partitioning

create several free lists
each free list contains pointers to a portion of free pages
a thread that needs a free page randomly selects a list
with n free list the load per list is reduced by factor 1/n
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System Facilities: Latch on Counter

Example: concurrent inserts with unique identifier

identifier is created by a counter
2-phase locking: lock on counter is held until transaction ends
counter becomes hot spot

Databases allow to hold a latch on the counter.

latch: exclusive lock that is held only during access
eliminates bottleneck but may introduce gaps in counter values

Counter gaps with latches:

transaction T1 increments counter to i
transaction T2 increments counter to i + 1
if T1 aborts now, then no data item has identifier i
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Experiment: Latch vs. Lock on Counter

SQLServer
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System (=latch): use system facility for generating counter values
(“identity” in SQL Server)

Ad hoc (=lock): increment a counter value in an ancillary table

SQL Server 7 on Windows 2000
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Experiment: Latch vs. Lock on Counter

Oracle
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System (=latch): use system facility for generating counter values
(“sequence” in Oracle)

Ad hoc (=lock): increment a counter value in an ancillary table

Oracle 8i EE on Windows 2000
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