
Database Tuning
Concurrency Tuning

Nikolaus Augsten

University of Salzburg
Department of Computer Science

Database Group

Unit 9 – WS 2013/2014

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 1 / 35

Concurrency Tuning Weaken Isolation Guarantees

Outline

1 Concurrency Tuning
Weaken Isolation Guarantees
Transaction Chopping

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 2 / 35

Concurrency Tuning Weaken Isolation Guarantees

Undesirable Phenomena of Concurrent Transactions

Dirty read

transaction reads data written by concurrent uncommitted transaction
problem: read may return a value that was never in the database
because the writing transaction aborted

Non-repeatable read

different reads on the same item within a single transaction give
different results (caused by other transactions)
e.g., concurrent transactions T1: x = R(A), y = R(A), z = y − x and
T2: W (A = 2 ∗ A), then z can be either zero or the initial value of A
(should be zero!)

Phantom read

repeating the same query later in the transaction gives a different set
of result tuples
other transactions can insert new tuples during a scan
e.g., “Q: get accounts with balance > 1000” gives two tuples the first
time, then a new account with balance > 1000 is inserted by an other
transaction; the second time Q gives three tuples

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 3 / 35

Concurrency Tuning Weaken Isolation Guarantees

Isolation Guarantees (SQL Standard)

Read uncommitted: dirty, non-repeatable, phantom

read locks released after read; write locks downgraded to read locks
after write, downgraded locks released according to 2-phase locking
reads may access uncommitted data
writes do not overwrite uncommitted data

Read committed: non-repeatable, phantom

read locks released after read, write locks according to 2-phase locking
reads can access only committed data
cursor stability: in addition, read is repeatable within single SELECT

Repeatable read: phantom

2-phase locking, but no range locks
phantom reads possible

Serializable:

none of the undesired phenomenas can happen
enforced by 2-phase locking with range locks

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 4 / 35

Concurrency Tuning Weaken Isolation Guarantees

Experiment: Read Commit vs. Serializable

Experimental setup:

T1: summation query: SELECT SUM(balance) FROM Accounts

T2: money transfers between accounts
row level locking

Parameter: number of concurrent threads

Measure:

percentage of correct answers (over multiple tries)
measure throughput

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 5 / 35

Concurrency Tuning Weaken Isolation Guarantees

Experiment: Read Commit vs. Serializable

SQLServer

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Concurrent update threads

R
at

io
 o

f c
or

re
ct

an

sw
er

s
read committed

serializable

Read committed allows sum of account balances after debit operation
has taken place but before corresponding credit operation is
performed – incorrect sum!

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 6 / 35

Concurrency Tuning Weaken Isolation Guarantees

Experiment: Read Commit vs. Serializable

SQLServer

0 2 4 6 8 10

Concurrent Update Threads

T
h

ro
u

g
h

p
u

t
(t

ra
n

s/
se

c)

read committed

serializable

Read committed: faster, but incorrect answers

Serializable: always correct, but lower throughput

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 7 / 35

Concurrency Tuning Weaken Isolation Guarantees

When To Weaken Isolation Guarantees?

Query does not need exact answer (e.g., statistical queries)

example: count all accounts with balance> $1000.
read committed is enough!

Transactions with human interaction

example: flight reservation system
price for serializability too high!

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 8 / 35

Concurrency Tuning Weaken Isolation Guarantees

Example: Flight Reservation System

Reservation involves three steps:

1. retrieve list of available seats
2. let customer decide
3. secure seat

Single transaction:

seats are locked while customer decides
all other customers are blocked!

Two transactions: (1) retrieve list, (2) secure seat

seat might already be taken when customer wants to secure it
more tolerable than blocking all other customers

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 9 / 35

Concurrency Tuning Weaken Isolation Guarantees

Snapshot Isolation for Long Reads – The Problem

Consider the following scenario in a bank:

read-only query Q: SELECT SUM(deposit) FROM Accounts

update transaction T : money transfer between customers A and B

2-Phase locking inefficient for long read-only queries:

read-only queries hold lock on all read items
in our example, T must wait for Q to finish (Q blocks T)
deadlocks might occur:
T .xL(A), Q.sL(B), Q.sL(A) - wait, T .xL(B) - wait

Read-committed may lead to incorrect results:

Before transactions: A = 50,B = 30
Q : sL(A),R(A) = 50, uL(A)
T : xL(A), xL(B),W (A← A + 20),W (B ← B − 20), uL(A), uL(B)
Q : sL(B),R(B) = 10, uL(B)
sum computed by Q for A + B is 60 (instead of 80)

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 10 / 35

Concurrency Tuning Weaken Isolation Guarantees

Snapshot Isolation for Long Reads

Snapshot isolation: correct read-only queries without locking

read-only query Q with snapshot isolation
remember old values of all data items that change after Q starts
Q sees the values of the data items when Q started

Example: bank scenario with snapshot isolation

Before transactions: A = 50,B = 30
Q : R(A) = 50
T : xL(A), xL(B),W (A← A + 20),W (B ← B − 20), uL(A), uL(B)
Q : R(B) = 30 (read old value)
sum computed by Q for A + B is 80 as it should be

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 11 / 35

Concurrency Tuning Weaken Isolation Guarantees

Concurrency in Oracle

“Read committed” in Oracle means:

non-repeatable and phantom reads are possible at the transaction level,
but not within a single SQL statement
update conflict: if row is already updated, wait for updating
transaction to commit, then update new row version (or ignore row if
deleted) – no rollback!
possibly inconsistent state: transaction sees updates of other
transaction only on the rows that itself updates

“Serializable” in Oracle means:

phenomena: none of the three undesired phenomena can happen
update conflict: if two transactions update the same item, the
transaction that updates it later must abort – rollback!
not serializable: snapshot isolation does not guarantee full serializability
(skew writes)

Similar in PostgreSQL.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 12 / 35

Concurrency Tuning Weaken Isolation Guarantees

Skew Writes: Snapshot Isolation Not Serializable

Example: A = 3,B = 17

T1 : A← B
T2 : B ← A

Serial execution:

order T1,T2: A = B = 17
order T2,T1: A = B = 3

Snapshot isolation:

T1 : R(B) = 17
T2 : R(A) = 3
T1 : W (A← 17)
T2 : W (B ← 3)
result: A = 17,B = 3 (different from serial execution)

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 13 / 35

Concurrency Tuning Weaken Isolation Guarantees

Snapshot Isolation

Advantages: (assuming “serializable” of Oracle)

readers do not block writers (as with locking)
writers do not block readers (as with locking)
writers block writers only if they update the same row
performance similar to read committed
no dirty, non-repeatable, or phantom reads

Disadvantages:

system must write and hold old versions of modified data
(only date modified between start and end of read-only transaction)
does not guarantee serializability for read/write transactions

Implementation example: Oracle 9i

no overhead: leverages before-image in rollback segment
expiration time of before-images configurable, “snapshot too old”
failure if this value is too small

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 14 / 35

Concurrency Tuning Weaken Isolation Guarantees

Snapshot Isolation – Summary

Considerable performance advantages since reads are never blocked
and do not block other transactions.

Not fully serializable, although no dirty, non-repeatable, or phantom
reads.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 15 / 35

Concurrency Tuning Weaken Isolation Guarantees

Experiment: Read Commit vs. Serializable

Oracle

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Concurrent update threads

R
at

io
 o

f c
or

re
ct

an

sw
er

s read committed

serializable

Summation query with concurrent transfers between bank accounts.

Oracle snapshot isolation: read-only summation query is not
disturbed by concurrent transfer queries

Summation (read-only) queries always give exact answer.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 16 / 35

Concurrency Tuning Weaken Isolation Guarantees

Experiment: Read Commit vs. Serializable

Oracle

0 2 4 6 8 10

Concurrent Update Threads

Th
ro

ug
hp

ut

(t
ra

ns
/s

ec
)

read committed

serializable

Both “read commit” and “serializable” use snapshot isolation.

“Serializable” rolls back transactions in case of write conflict.

Summation queries always give exact answer.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 17 / 35

Concurrency Tuning Transaction Chopping

Outline

1 Concurrency Tuning
Weaken Isolation Guarantees
Transaction Chopping

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 18 / 35

Concurrency Tuning Transaction Chopping

Chopping Long Transactions

Shorter transactions

request less locks (thus they are less likely to be blocked or block an
other transaction)
require other transactions to wait less for a lock
are better for logging

Transaction chopping:

split long transactions into short ones
don’t scarify correctness

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 19 / 35

Concurrency Tuning Transaction Chopping

Terminology

Transaction: sequence of disc accesses (read/write)

Piece of transaction: consecutive subsequence of database access.

example transaction T : R(A),R(B),W (A)
R(A) and R(A),R(B) are pieces of T
R(A),W (A) is not a piece of T (not consecutive)

Chopping: partitioning transaction it into pieces.

example transaction T : R(A),R(B),W (A)
T1 : R(A),R(B) and T2 : W (A) is a chopping of T

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 20 / 35

Concurrency Tuning Transaction Chopping

Split Long Transactions – Example 1

Bank with accounts and branches:

each account is assigned to exactly one branch
branch balance is sum of accounts in that branch
customers can take out cash during day

Transactions over night:

update transaction: reflect daily withdrawals in database
balance checks: customers ask for account balance (read-only)

Update transaction Tblob

updates all account balances to reflect daily withdrawals
updates the respective branch balances

Problem: balance checks are blocked by Tblob and take too long

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 21 / 35

Concurrency Tuning Transaction Chopping

Split Long Transactions – Example 1

Solution: split update transactions Tblob into many small transactions

Variant 1: each account update is one transaction which

updates one account
updates the respective branch balance

Variant 2: each account update consists of two transactions

T1 : update account
T2 : update branch balance

Note: isolation does not imply consistency

both variants maintain serializability (isolation)
variant 2: consistency (sum of accounts equal branch balance)
compromised if only one of T1 or T2 commits.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 22 / 35

Concurrency Tuning Transaction Chopping

Split Long Transactions – Example 2

Bank scenario as in Example 1.

Transactions:

update transaction: each transaction updates one account and the
respective branch balance (variant 1 in Example 1)
balance checks: customers ask for account balance (read-only)
consistency (T ′): compute account sum for each branch and compare
to branch balance

Splitting: T ′ can be split into transactions for each individual branch

Serializability maintained:

consistency checks on different branches share no data item
updates leave database in consistent state for T ′

Note: update transaction can not be further split (variant 2)!

Lessons learned:

sometimes transactions can be split without sacrificing serializability
adding new transaction to setting may invalidate all previous chopping

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 23 / 35

Concurrency Tuning Transaction Chopping

Formal Chopping Approach

Assumptions: when can the chopping be applied?

Execution rules: how must chopped transactions be executed?

Chopping graph: which chopping is correct?

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 24 / 35

Concurrency Tuning Transaction Chopping

Assumptions for Transaction Chopping

1. Transactions: All transactions that run in an interval are known.

2. Rollbacks: It is known where in the transaction rollbacks are called.

3. Failure: In case of failure it is possible to determine which transactions
completed and which did not.

4. Variables: The transaction code that modifies a program variable x
must be reentrant, i.e., if the transaction aborts due to a concurrency
conflict and then executes properly, x is left in a consistent state.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 25 / 35

Concurrency Tuning Transaction Chopping

Execution Rules

1. Execution order: The execution of pieces obeys the order given by the
transaction.

2. Lock conflict: If a piece is aborted due to a lock conflict, then it will be
resubmitted until it commits.

3. Rollback: If a piece is aborted due to a rollback, then no other piece for
that transaction will be executed.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 26 / 35

Concurrency Tuning Transaction Chopping

The Transaction Chopping Problem

Given: Set A = {T1,T2, . . . ,Tn} of (possibly) concurrent
transactions.

Goal: Find a chopping B of the transactions in A such that any
serializable execution of the transactions in B (following the execution
rules) is equivalent so some serial execution of the transaction in A.
Such a chopping is said to be correct.

Note: The “serializable” execution of B may be concurrent, following
a protocol for serializability.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 27 / 35

Concurrency Tuning Transaction Chopping

Chopping Graph

We represent a specific chopping of transactions as a graph.

Chopping graph: undirected graph with two types of edges.

nodes: each piece in the chopping is a node
C-edges: edge between any two conflicting pieces
S-edges: edge between any two sibling pieces

Conflicting pieces: two pieces p and p′ conflict iff

p and p′ are pieces of different original transactions
both p and p′ access a data item x and at least one modifies it

Sibling pieces: two pieces p and p′ are siblings iff

p and p′ are neighboring pieces of the same original transactions

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 28 / 35

Concurrency Tuning Transaction Chopping

Chopping Graph – Example

Notation: chopping of possibly concurrent transactions.

original transactions are denoted as T1,T2, . . .
chopping Ti results in pieces Ti1,Ti2, . . .

Example transactions: (T1 : R(x),R(y),W (y) is split into T11,T12)

T11 : R(x)
T12 : R(y),W (y)
T2 : R(x),W (x)
T3 : R(y),W (y)

Conflict edge between nodes

T11 and T2 (conflict on x)
T12 and T3 (conflict on y)

Sibling edge between nodes

T11 and T22 (same original transaction T1)

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 29 / 35

Concurrency Tuning Transaction Chopping

Rollback Safe

Motivation: Transaction T is chopped into T1 and T2.

T1 executes and commits
T2 contains a rollback statement and rolls back
T1 is already committed and will not roll back
in original transaction T rollback would also undo effect of piece T1!

A chopping of transaction T is rollback save if

T has no rollback statements or
all rollback statements are in the first piece of the chopping

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 30 / 35

Concurrency Tuning Transaction Chopping

Correct Chopping

Theorem (Correct Chopping)

A chopping is correct if it is rollback save and its chopping graph contains
no SC-cycles.

Chopping of previous example is correct (no SC-cycles, no rollbacks)

If a chopping is not correct, then any further chopping of any of the
transactions will not render it correct.

If two pieces of transaction T are in an SC-cycle as a result of
chopping T , then they will be in a cycle even if no other transactions
(different from T) are chopped.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 31 / 35

Concurrency Tuning Transaction Chopping

Private Chopping

Private chopping: Given transactions T1,T2, . . . ,Tn.
Ti1,Ti2, . . . ,Tik is a private chopping of Ti if

there is no SC-cycle in the graph with the nodes
{T1, . . . ,Ti1, . . . ,Tik , . . . ,Tn}
Ti is rollback save

Private chopping rule: The chopping that consists of
private(T1), private(T2), . . . , private(Tn) is correct.

Implication:

each transaction Ti can be chopped in isolation, resulting in private(Ti)
overall chopping is union of private choppings

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 32 / 35

Concurrency Tuning Transaction Chopping

Chopping Algorithm

1. Draw an S-edge between the R/W operations of a single transaction.

2. For each data item x produce a write list, i.e., a list of transactions that
write this data item.

3. For each R(x) or W (x) in all transactions:

(a) look up the conflicting transactions in the write list of x
(b) draw a C-edge to the respective conflicting operations

4. Remove all S-edges that are involved in an SC-cycle.

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 33 / 35

Concurrency Tuning Transaction Chopping

Chopping Algorithm – Example

Transactions: (Rx = R(x),Wx = W (x))

T1 : Rx ,Wx ,Ry ,Wy
T2 : Rx ,Wx
T3 : Ry ,Rz ,Wy

Write lists: x :T1,T2; y :T1,T3; z : ∅
C-edges:

T1: Rx − T2.Wx , Wx − T2.Wx , Ry − T3.Wy , Wy − T3.Wy
T2: Rx − T1.Wx (Wx − T1.Wx : see T1)
T3: Ry − T1.Wy (Wy − T1.Wy : see T1)

Remove S-edges: T1: Rx −Wx , Ry −Wy ; T2: Rx −Wx ;

T3: Ry − Rz ,Rz −Wy

Final chopping:

T11 : Rx ,Wx ; T12 : Ry ,Wy
T2 : Rx ,Wx
T3 : Ry ,Rz ,Wy

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 34 / 35

Concurrency Tuning Transaction Chopping

Reordering Transactions

Commutative operations:

changing the order does not change the semantics of the program
example: R(y),R(z),W (y ← y + z) and R(z),R(y),W (y ← y + z)
do the same thing

Transaction chopping:

changing the order of commutative operations may lead to better
chopping
responsibility of the programmer to verify that operations are
commutative!

Example: consider T3 : Ry ,Rz ,Wy of the previous example

assume T3 computes y + z and stores the sum in y
then Ry and Rz are commutative and can be swapped
T ′
3 : Rz ,Ry ,Wy can be chopped: T ′

31 : Rz , T ′
32 : Ry ,Wy

Nikolaus Augsten (DIS) DBT – Concurrency Tuning Unit 9 – WS 2013/2014 35 / 35

