
Database Tuning
Recovery Tuning

Nikolaus Augsten

University of Salzburg
Department of Computer Science

Database Group

Unit 10 – WS 2013/2014

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 1 / 30

Recovery Tuning Logging and Recovery

Outline

1 Recovery Tuning
Logging and Recovery
Tuning the Recovery Subsystem

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 2 / 30

Recovery Tuning Logging and Recovery

Atomicity and Durability in Case of Failure

ACTIVE
(running, waiting)

ABORTED

COMMITTED
COMMIT

ROLLBACK

Ø
BEGIN
TRANS

States of a Transaction

Durability: After a transactions commits, changes to the database
persist even in the case of system failure.

Atomicity: after failure, reconstruct database such that

changes of all committed transactions are reflected
effects of non-committed and aborted transactions are eliminated

Recovery subsystem: Guarantee atomicity & durability in failure case.

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 3 / 30

Recovery Tuning Logging and Recovery

Failure Types

Software:

99% are Heisenbugs (non-reproducible, due to timing or overload)
Heisenbugs do not appear if system is restarted
example: error due to isolation level that was chosen too low

Hardware: failure in physical device

CPU, RAM, disk, network
fail-stop: device stops when failure occurs, e.g., CPU

Maintenance: problem during system repair or maintenance

examples: recover from failure, backup

Operations: regular operations

regular system administration and configuration
user operations

Environment: factors outside the computer system

examples: fire in the machine room (Credit Lyonnais, 1996), 9/11

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 4 / 30

Recovery Tuning Logging and Recovery

Failure Probability

Software
Hardware
Maintenance
Operations
Environment
Unknown

From J.Gray and A.Reuters
Transaction Processing: Concepts
and Techniques

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 5 / 30

Recovery Tuning Logging and Recovery

Which Failures Can Database Systems Tolerate?

Some software failures:

crashing client
crashing operating system
some server errors

Hardware failure:

CPU fail-stop and erasure of main memory
single disk fail-stop (if enough redundant disks are available)

Environment: Power outage

Backups still important:

recovery system does not substitute backups
backups required for failures not covered by recovery system
example: accidental deletions, natural disaster

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 6 / 30

Recovery Tuning Logging and Recovery

Durability

Durability in databases:

goal: make changes permanent before sending commit to client
implementation: store transaction data on stable storage

Stable storage: immune to failure (only approximated in practice)

durable media, e.g., disks, tapes, battery-backed RAM
replication on several units (redundant disks to survive disk failure)

Problems:

non-durable buffers in some system layer
partial disk writes

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 7 / 30

Recovery Tuning Logging and Recovery

How To Deal with Non-Durable Buffers?

Non-durable buffer in some system layer:

database tells system to write a disk page
but disk page remains in some non-durable buffer

Operating system buffer:

write operations are buffered
fsync flushes all pages of a given file – OK

Disk controller cache:

common in RAID controllers
battery-backed cache – OK
other caches may lead to inconsistencies in case of failure

Disk cache: switch off for log disk (critical!)

hdparm -I /dev/sda shows meta data of disk /dev/sda

hdparm -W 0 /dev/sda switches disk buffer off

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 8 / 30

Recovery Tuning Logging and Recovery

How To Deal with Partial Disk Writes?

Partial disk writes:

database writes disk page which consists of several sectors
e.g., 8kB page consists of 16 sectors (512B each)
power failure during write: page may be only partially written
leads to inconsistent database state

Disk controller: battery backed cache

data in cache is written at restart after power outage
consistent state is restored

Operating system: file system

file system that prevents partial writes, e.g., Raiser 4

Database: e.g., full page writes in PostgreSQL

before-image of page is stored before updating it
recovery: partially written page is restored and update is repeated

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 9 / 30

Recovery Tuning Logging and Recovery

Guaranteeing Atomicity

1. Before images: state at transaction start

used to undo the effects of a uncommitted transaction
before image must remain on stable storage until commit

2. After images: state at transaction end

used to install effects of transaction after commit
after image must be written to stable storage before commit

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 10 / 30

Recovery Tuning Logging and Recovery

Concepts

Data files: tables, indexes

Log file: stores before and after images

Database buffer: contains pages that transactions modify

Dirty page: buffer page with uncommitted changes

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 11 / 30

Recovery Tuning Logging and Recovery

Write-Ahead Logging

WAL commit:

write after images to log file before transaction commits
data files can be updated later (after commit)

WAL abort:

variant 1: explicitly store before image in log
variant 2: use data file as a before image
only in variant 1 it is safe to write dirty pages to the data file
dirty pages are typically written when the database buffer is full

Example: WAL for a transaction T that modifies pages Pi and Pj

pages Pi and Pj are loaded to the database buffer
transaction T modifies the pages Pi and Pj

database generates log records lri and lrj for the modifications
database writes log records to stable storage before committing
modified pages are written to data file after transaction T commits

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 12 / 30

Recovery Tuning Logging and Recovery

Write-Ahead Logging

LOG DATADATADATA

STABLE STORAGE

UNSTABLE STORAGE

WRITE
log records before commit

WRITE
modified pages after commit

RECOVERY

 Pi Pj

DATABASE BUFFER

LOG BUFFER

lri lrj

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 13 / 30

Recovery Tuning Logging and Recovery

Logging Variants

Logging granularity: what does a log record store?

page-level logging
byte-level logging (log partial pages)
record-level logging

Logical logging: log operation and argument that caused update

e.g., operation: insert into employee,
argument: (103-4403-33,Brown)

saves disk space
implemented in DB2

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 14 / 30

Recovery Tuning Logging and Recovery

Logging Guarantee

Guarantee by logging algorithms:

current database state = current state of data files + log

Current database state:

reflects all committed transactions

Current state of data file:

reflects only committed transactions physically in data file
some transactions may be committed and stored in the log,
but not yet written to the database

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 15 / 30

Recovery Tuning Logging and Recovery

Checkpoint and Dump

Checkpoint: force data files to reflect current database state

write all committed changes to data file
committed changes may be in database buffer or log

When do checkpoints happen?

at regular intervals (tuning parameter)
log is full (Oracle)
explicit SQL command

Dump: transaction-consistent database state

entire database including changes of all committed transactions
recovery guarantee:

current database state = database dump + log (after dump)

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 16 / 30

Recovery Tuning Logging and Recovery

Recovering after Main Memory and Disk Failure

Main memory failure: database buffer is lost

log needs to be considered only starting after last checkpoint
all committed changes before checkpoint are already in data file

Data disk failure: (disk with log is still OK)

database dump required
log after database dump needs to be considered
checkpoints irrelevant

Log disk failure: disaster!

committed transactions after last checkpoint get lost
database may be inconsistent - last consistent state is last dump
to prevent disaster, replicate disk with log
make sure to avoid risk of non-durable buffers and partial writes

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 17 / 30

Recovery Tuning Tuning the Recovery Subsystem

Outline

1 Recovery Tuning
Logging and Recovery
Tuning the Recovery Subsystem

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 18 / 30

Recovery Tuning Tuning the Recovery Subsystem

Tuning Activities

LOG DATADATADATA

STABLE STORAGE

UNSTABLE STORAGE

WRITE
log records before commit

WRITE
modified pages after commit

RECOVERY

 Pi Pj

DATABASE BUFFER

LOG BUFFER

lri lrj

1. Log on separate disk

2. Log buffer tuning: group commit

3. Log buffer tuning: trading in durability

4. Tuning data writes (checkpoints)

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 19 / 30

Recovery Tuning Tuning the Recovery Subsystem

1. Log on Separate Disk

Update transaction must write to the log, i.e., to the disk

If log and data files share disk, disk seeks are required.

Separate disk for log:

sequential writes instead of seeks (10 to 100 times faster)
log independent from data files in case of disk failure
disk setting can be tailored to log (e.g., switch off buffer)

PostgreSQL: How to move log to an other disk?

log directory: pg xlog (location: show data directory;)
move log directory to log disk and create symbolic link

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 20 / 30

Recovery Tuning Tuning the Recovery Subsystem

Experiment – Separate Disk for Log

300k inserts or update statements.

Each statement is a separate transaction and forces a write.

Same disk: data files and log are on the same disk.

Different disks: log has its own disk.

Oracle 9i on Linux server with internal hard drives (no RAID controller)

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 21 / 30

Recovery Tuning Tuning the Recovery Subsystem

2. Group Commit

Log buffer is flushed to disk before each commit.

Group commit:

commit a group of transactions together
only one disk write (flush) for all transactions

Advantage: higher throughput

Disadvantages: some transactions must wait before committing

locks are held longer (until commit)
lower response time for waiting transactions

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 22 / 30

Recovery Tuning Tuning the Recovery Subsystem

Group Commit – Experiment

0

50

100

150

200

250

300

350

1 25

Size of Group Commit

T
h

ro
u

g
h

p
u

t
(t

u
p

le
s/

se
c)

Increasing the group commit size increases the throughput.

DB2 UDB V7.1 on Windows 2000

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 23 / 30

Recovery Tuning Tuning the Recovery Subsystem

WAL Buffer and Group Commit in PostgreSQL

WAL buffer: Write ahead log buffer

RAM buffer, z.B. 768kB (wal buffers)
all log records are written to this buffer
WAL page is flushed at commit or every 200ms (wal writer delay)
data is written to a file called WAL segment (16MB each)

commit delay: (default: 0)

time delay between a commit and flushing WAL buffer
during waiting period, hopefully other transactions commit
if other transaction commits, do group commit
if no other transaction commits, waiting time is lost

commit sibling: (default: 5)

minimum number of concurrent open transactions for group commit
if less transactions are open, commit delay is disabled

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 24 / 30

Recovery Tuning Tuning the Recovery Subsystem

3. WAL Tuning: Trading in Durability (PostgreSQL)

synchronous commit: (default: on)

call fsync to force operating system to flush disk buffer
commit only after fsync returns
switch off if you do not want to wait for fsync
parameter can be set for each transaction individually

Switching off synchronous commit increases performance.

Worst case: database consistency not in danger

system crash may cause loss of most recently committed transactions
lost transactions seem uncommitted to database and are cleanly
aborted at startup, resulting in consistent database state
client thinks that transaction committed, but it was aborted
maximum delay between commit and flush (risk period):
3 × wal writer delay (= 3 × 200ms by default)

fsync: (default: on)

switching off fsync might result in unrecoverable data corruption
synchronous commit: similar performance, less risk

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 25 / 30

Recovery Tuning Tuning the Recovery Subsystem

4. Tuning Data Writes

At commit time

database buffer (in RAM) has committed information
log (on disk) has committed information
data file may not have committed information

Why is data not immediately written to data file?

each page write requires a seek
resulting random I/O bad for performance

Convenient writes:

wait and write larger chunks at once
write when cheap, e.g., disk heads are on the right cylinder

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 26 / 30

Recovery Tuning Tuning the Recovery Subsystem

Database Writes – Tuning Options

Fill ratio of the database buffer (RAM):

Oracle: DB BLOCK MAX DIRTY TARGET specifies maximum number of dirty
pages in database buffer
SQL Server: pages in free lists falls below threshold (3% by default)

Checkpoint frequency:

checkpoint forces all committed writes that are only in database buffer
or log to the data file
less frequent checkpoints allow more convenient writes
less frequent checkpoints increase recovery time

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 27 / 30

Recovery Tuning Tuning the Recovery Subsystem

Checkpoint Tuning in PostgreSQL

Checkpoints have a cost:

disk activity to transfer dirty pages to data file
if full page writes is on (avoid partial disk writes), after checkpoint
a before image must be stored in log for each new page that is modified

Checkpoint is triggered if one of the following is reached:

checkpoint timeout (5min): max interval between checkpoints
checkpoint segments (3): max number of log file segments (16MB)

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 28 / 30

Recovery Tuning Tuning the Recovery Subsystem

Checkpoint Tuning in PostgreSQL

Spreading checkpoint traffic:

checkpoint traffic is distributed to reduce I/O load
checkpoint completion target (0.5): fraction of time before next
checkpoint will happen
checkpoint should finish within this time period

Monitoring checkpoints:

checkpoint warning (30s): write warning to log if checkpoints
happen more frequently
frequent appearance indicates that checkpoint segments should be
increased

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 29 / 30

Recovery Tuning Tuning the Recovery Subsystem

Checkpoint Tuning – Experiment

0

0.2

0.4

0.6

0.8

1

1.2

0 checkpoint 4 checkpoints

Th
ro

ug
hp

ut
 R

at
io

Long transaction with many updates.

Checkpoints triggered while transaction still active (log file to small).

Negative impact on performance: size of log files should be increased.

Oracle 8i EE on Windows 2000

Nikolaus Augsten (DIS) DBT – Recovery Tuning Unit 10 – WS 2013/2014 30 / 30

