	Outline
Database Tuning Index Tuning	
Nikolaus Augsten University of Salzburg Department of Computer Science Database Group Unit 4 – WS 2014/2015	 Index Tuning Index Types
Adapted from "Database Tuning" by Dennis Shasha and Philippe Bonnet. Nikolaus Augsten (DIS) DBT – Index Tuning Unit 4 – WS 2014/2015 1 / 22	Nikolaus Augsten (DIS) DBT – Index Tuning Unit 4 – WS 2014/2015 2 / 22
Index Tuning Index Types	Index Tuning Index Types What is an Index?
 Index Tuning Index Types 	 An index is a data structure that supports efficient access to data: Condition on o
Nikolaus Augsten (DIS) DBT – Index Tuning Unit 4 – WS 2014/2015 3 / 22	Nikolaus Augsten (DIS) DBT – Index Tuning Unit 4 – WS 2014/2015 4 / 22

Key of an Index

Index Tuning Index Types

• Search key or simply "key" of an index:

- single attribute or sequence of attributes
- values on key attributes used to access records in table

• Sequential Key:

Nikolaus Augsten (DIS)

Sparse vs. Dense

- value is monotonic with insertion order
- examples: time stamp, counter
- Non-sequential Key:
 - value unrelated to insertion order
 - examples: social security number, last name
- Note: index key different from key in relational theory
 - relational theory: key attributes have unique values

DBT - Index Tuning

Index Tuning Index Types

• index key: not necessarily unique

Index Characteristics

- Indexes can often be viewed as trees $(B^+$ -tree, hash)
 - some nodes are in main memory (e.g., root)
 - nodes deeper down in tree are less likely to be in main memory

Index Tuning Index Type

- Number of levels: number of nodes in root-leaf path
 - a node is typically a disk block
 - one block read required per level
 - reading a block costs several milliseconds (involves disk seek)
- Fanout: number of children a node can have
 - large fanout means few levels
- Overflow strategy: insert into a full node *n*
 - B^+ -tree: split *n* into *n* and *n'*, both at same distance from root

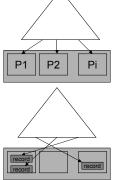
Index Tuning Index Types

• overflow chaining: n stores pointer to new node n'

Nikolaus Augsten (DIS)

DBT – Index Tuning

Unit 4 – WS 2014/2015 6 / 22


Sparse vs. Dense

• Number of pointers:

ptrs in dense index = records per page \times ptrs in sparse index

- Pro sparse: less pointers
 - typically record size is smaller than page size
 - less pointers result in less levels (and disk accesses)
 - uses less space
- Pro dense: index may "cover" query

- Sparse index: pointers to disk pages
 - at most one pointer per disk page
 - usually much less pointers than records
- Dense index: pointers to individual records
 - one key per record
 - usually more keys than sparse index
 - optimization: store repeating keys only once, followed by pointers

Unit 4 - WS 2014/2015

Index Tuning Index Type

Covering Index

• Covering index:

Clustering vs. Non-Clustering • Clustering index on attribute X (also *primary index*) • records are grouped by attribute X on disk • B^+ -tree: records sorted by attribute X • only one clustering index per table Records • dense or sparse • Non-clustering index on attribute X (also secondary index) • no constraint on table organization • more than one index per table Records • always dense

DBT - Index Tuning

Index Tuning Index Types

Index Tuning Index Types

Unit 4 - WS 2014/2015 10 / 22

Equality Join with Clustering Index

• Example query:

Nikolaus Augsten (DIS)

SELECT Employee.ssnum, Student.course FROM Employee, Student

- Index on Emplyee.firstname: use index nested loop join
 - for each student look up employees with same first name
 - all matching employees are on consecutive pages
- - works also for hash indexes with same hash function

• answers read-only guery within index structure fast: data records are not accessed

• Example 1: dense index on lastname

SELECT COUNT(lastname) WHERE lastname='Smith'

- Example 2: dense index on A, B, C (in that order)
 - covered query: • covered query, but not prefix: SELECT B, C SELECT A, C FROM R FROM R WHERE A = 5WHERE B = 5
 - non-covered query: D requires data access
 - SELECT B, D FROM R
 - WHERE A = 5

Nikolaus Augsten (DIS)

DBT - Index Tuning

Clustering Indexes

- Can be sparse:
 - fewer pointers than non-clustering index (always dense!)

Index Tuning Index Types

- Good for multi-point queries:
 - equality access on non-unique attribute
 - all result records are on consecutive pages
 - example: look up last name in phone book
- Good for range, prefix, ordering queries:
 - works if clustering index is implemented as B^+ -tree
 - prefix example: look up all last names starting with 'St' in phone book
 - result records are on consecutive pages
- Good for equality join:
 - fast also for join on non-key attributes
 - index on one table: indexed nested-loop
 - index on both tables: merge-join
- Overflow pages reduce efficiency:
 - if disk page is full, overflowing records go to overflow pages
 - overflow pages require additional disk accesses

Unit 4 - WS 2014/2015

- WHERE Employee.firstname = Student.firstname
- Index on both firstname attributes: use merge join
 - read both tables in sorted order and merge $(B^+$ -tree)
 - each page read exactly once

Index Tuning Index Types

Clustering Index and Overflow Pages

Unit 4 - WS 2014/2015

13 / 22

• Why overflow pages?

- clustering index stores records on consecutive disk pages
- insertion between two consecutive pages not possible
- if disk page is full, overflowing records go to overflow pages
- Additional disk access for overflow page: reduced speed
- Overflow pages can result from:
 - inserts
 - updates that change key value
 - updates that increase record size (e.g., replace NULL by string)
- Reorganize index:
 - invoke special tool
 - or simply drop and re-create index

Nikolaus Augsten (DIS)

DBT – Index Tuning

Index Tuning Index Types

Non-Clustering Index

- Always useful for point queries.
- Particularly good if index covers query.
- Critical tables: covering index on all relevant attribute combinations
- Multi-point query (not covered): only good if query not too selective
 - *nR*: number of records returned by query
 - *nP*: number of disk pages in table
 - the nR records are uniformly distributed over all pages
 - thus query will read min(nR, nP) disk pages
- Index may slow down highly selective multi-point query:
 - $\bullet\,$ scan is by factor 2–10 faster than accessing all pages with index
 - thus nR should be significantly smaller than nP

Overflow Strategies

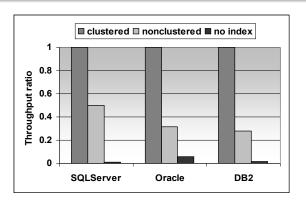
- Tune free space in disk pages:
 - Oracle, DB2: pctfree (0 is full), SQLServer: fillfactor (100 is full)
 - free space in page is used for new or growing records
 - little free space: space efficient, reads are faster
 - much free space: reduced risk of overflows
- Overflow strategies:
 - split: split full page into two half-full pages and link new page e.g., $A \rightarrow B \rightarrow C$, splitting *B* results in $A \rightarrow B' \rightarrow B'' \rightarrow C$ (SQLServer)

Index Tuning Index Type

- chaining: full page has pointer to overflow page (Oracle)
- append: overflowing records of all pages are appended at the end of the table (DB2)

Nikolaus Augsten (DIS)

DBT – Index Tuning


Non-Clustering Index and Multi-point Queries – Example

- Example 1:
 - records size: 50B
 - page size: 4*kB*
 - attribute A takes 20 different values (evenly distributed among records)
 - does non-clustering index on A help?
- Evaluation:
 - nR = n/20 (*n* is the total number of records)
 - nP = n/80 (80 records per page)
 - n/20 > n/80 thus index does not help
- Example 2: as above, but record size is 2kB
- Evaluation:
 - nR = n/20 (*n* is the total number of records)
 - nP = n/2 (2 records per page)
 - $n/20 \ll n/2$ thus index might be useful

Unit 4 - WS 2014/2015

Index Tuning Index Types

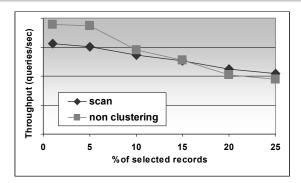
Clustering vs. Non-Clustering Index

- multi-point query with selectivity 100/1M records (0.01%)
- clustering index much faster than non-clustering index
- full table scan (no index) orders of magnitude slower than index

DB2 UDB V7.1, Oracle 8.1, SQL Server 7 on Windows 2000 n (DIS) DBT - Index Tuning Unit 4 - W3

Index Tuning Index Types

Unit 4 - WS 2014/2015

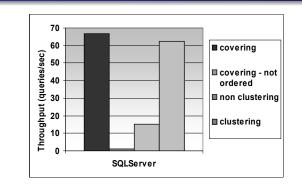

Unit 4 - WS 2014/2015

17 / 22

19 / 22

Nikolaus Augsten (DIS

Non-Clustering vs. Table Scan

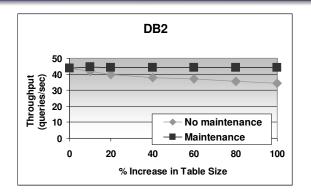


- query: range query
- non clustering: non-clustering non-covering index
- scan: no index, i.e., table scan required
- index is faster if less than 15% of the records are selected

DB2 UDB V7.1 Windows 2000

Nikolaus Augsten (DIS)

Covering vs. Non-Covering Index



- prefix match query on sequence of attributes
- covering: index covers query, query condition on prefix
- covering, not ordered: index covers query, but condition not prefix
- non-clustering: non-covering index, query condition on prefix
- clustering: sparse index, query condition on prefix

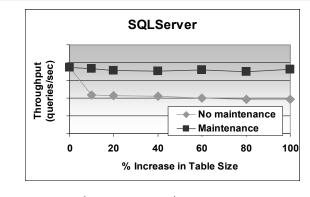
SQL Server 7 on Windows 2000 DBT – Index Tuning

Index Tuning Index Types

Nikolaus Augsten (DIS)

- query: batch of 100 multi-point queries, pctfree=0 (data pages full)
- performance degrades with insertion
- overflow records simply appended
- query traverses index and then scans all overflow records
- reorganization helps

Nikolaus Augsten (DIS)


DB2 UDB V7.1 on Windows 2000

DBT - Index Tuning

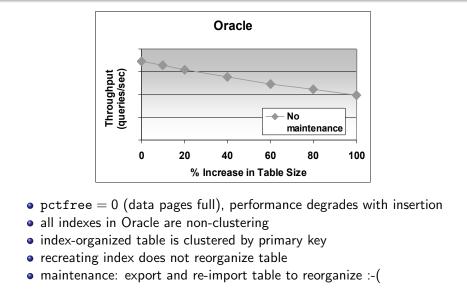
Unit 4 - WS 2014/2015

Index Tuning Index Types

- fillfactor=100 (data pages full)
- performance degrades with insertion
- overflow chain maintained for overflowing page
- extra disk access
- reorganization helps

SQL Server 7 on Windows 2000

Nikolaus Augsten (DIS)


DBT – Index Tuning

Unit 4 - WS 2014/2015

21 / 22

Index Maintenance - Oracle

Nikolaus Augsten (DIS)

Oracle 8i EE on Windows 2000

DBT – Index Tuning Unit 4 – WS 2014/2015