
Database Tuning
Index Tuning

Nikolaus Augsten

University of Salzburg
Department of Computer Science

Database Group

Unit 6 – WS 2014/2015

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 1 / 32



Outline

1 Index Tuning
Indexes and Joins
Index Tuning Examples

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 2 / 32



Index Tuning Indexes and Joins

Outline

1 Index Tuning
Indexes and Joins
Index Tuning Examples

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 3 / 32



Index Tuning Indexes and Joins

Join Strategies – Running Example

Relations: R and S

disk block size: 4kB
R: nr = 5000 records, br = 100 disk blocks, 0.4MB
S : ns = 10000 records, bs = 400 disk blocks, 1.6MB

Running Example: R on S

R is called the outer relation
S is called the inner relation

Example from Silberschatz, Korth, Sudarashan. Database System Concepts. McGraw-Hill.

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 4 / 32



Index Tuning Indexes and Joins

Join Strategies – Naive Nested Loop

Naive nested loop join

take each record of R (outer relation) and search through all records of
S (inner relation) for matches
for each record of R, S is scanned

Example: Naive nested loop join

worst case: buffer can hold only one block of each relation
R is scanned once, S is scanned nr times
in total nrbs + br = 2, 000, 100 blocks must be read (= 8GB)!
note: worst case different if S is outer relation
best case: both relations fit into main memory
bs + br = 500 block reads

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 5 / 32



Index Tuning Indexes and Joins

Join Strategies – Block Nested Loop

Block nested loop join

compare all rows of each block of R to all records in S
for each block of R, S is scanned

Example: (continued)

worst case: buffer can hold only one block of each relation
R is scanned once, S is scanned br times
in total brbs + br = 40, 100 blocks must be read (= 160MB)
best case: bs + br = 500 block reads

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 6 / 32



Index Tuning Indexes and Joins

Join Strategies – Indexed Nested Loop

Indexed nested loop join

take each row of R and look up matches in S using index
runtime is O(|R| × log |S |) (vs. O(|R| × |S |) of naive nested loop)
efficient if index covers join (no data access in S)
efficient if R has less records than S has pages: not all pages of S must
be read (e.g., foreign key join from small to large table)

Example: (continued)

B+-tree index on S has 4 layers, thus max. c = 5 disk accesses per
record of S
in total br + nrc = 25, 100 blocks must be read (= 100MB)

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 7 / 32



Index Tuning Indexes and Joins

Join Strategies – Merge Join

Merge join (two clustered indexes)

scan R and S in sorted order and merge
each block of R and S is read once

No index on R and/or S

if no index: sort and store relation with b(2dlogM−1(b/M)e+ 1) + b
block transfers (M: free memory blocks)
if non-clustered index present: index scan possible

Example: (continued)

best case: clustered indexes on R and S (M = 2 enough)
br + bs = 500 blocks must be read (2MB)
worst case: no indexes, only M = 3 memory blocks
sort and store R (1400 blocks) and S (7200 blocks) first:
join with 9100 (36MB) block transfers in total
case M = 25 memory blocks: 2500 block transfers (10MB)

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 8 / 32



Index Tuning Indexes and Joins

Join Strategies – Hash Join

Hash join (equality, no index):

hash both tables into buckets using the same hash function
join pairs of corresponding buckets in main memory
R is called probe input, S is called build input

Joining buckets in main memory:

build hash index on one bucket from S (with new hash function)
probe hash index with all tuples in corresponding bucket of R
build bucket must fit main memory, probe bucket needs not

Example: (continued)

assume that each probe bucket fits in main memory
R and S are scanned to compute buckets, buckets are written to disk,
then buckets are read pairwise
in total 3(br + bs) = 1500 blocks are read/written (6MB)
default in SQLServer and DB2 UDB when no index present

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 9 / 32



Index Tuning Indexes and Joins

Distinct Values and Join Selectivity

Join selectivity:

number of retrieved pairs divided by cardinality of cross product
(|R on S |/|R × S |)
selectivity is low if join result is small

Distinct values refer to join attributes of one table

Performance decreases with number of distinct join values

few distinct values in both tables usually means many matching records
many matching records: join result is large, join slow
hash join: large buckets (build bucket does not fit main memory)
index join: matching records on multiple disk pages
merge join: matching records do not fit in memory at the same time

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 10 / 32



Index Tuning Indexes and Joins

Foreign Keys

Foreign key: attribute R.A stores key of other table, S .B

Foreign key constraints: R.A must be subset of S .B

insert in R checks whether foreign key exists in S
deletion in S checks whether there is a record with that key in R

Index makes checking foreign key constraints efficient:

index on R.A speeds up deletion from S
index on S .B speeds up insertion into R
some systems may create index on R.A and/or S .B by default

Foreign key join:

each record of one table matches at most one record of the other table
most frequent join in practice
both hash and index nested loop join work well

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 11 / 32



Index Tuning Indexes and Joins

Indexes on Small Tables

Read query on small records:

tables may fit on a single track on disk
read query requires only one seek
index not useful: seeks at least one index page and one table page

Table with large records (∼page size):

each record occupies a whole page
for example, 200 records occupy 200 pages
index useful for point queries (read 3 pages vs. 200)

Many inserts and deletions:

index must be reorganized (locking!)
lock conflicts near root since index is small

Update of single records:

without index table must be scanned
scanned records are locked
scan (an thus lock contention) can be avoided with index

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 12 / 32



Index Tuning Indexes and Joins

Update Queries on a Small Tables

0

2

4

6
8

10

12

14

16

18

no index index

T
h

ro
u

g
h

p
u

t 
(u

p
d

at
es

/s
ec

)

Index avoids tables scan and thus lock contention.

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 13 / 32



Index Tuning Indexes and Joins

Experiment – Join with Few Matching Records

non-clustered index is ignored, hash join used instead

SQL Server 7 on Windows 2000

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 14 / 32



Index Tuning Indexes and Joins

Experiment – Join with Many Matching Records

all joins slow since output size is large

hash join (no index) slow because buckets are very large

SQL Server 7 on Windows 2000

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 15 / 32



Index Tuning Index Tuning Examples

Outline

1 Index Tuning
Indexes and Joins
Index Tuning Examples

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 16 / 32



Index Tuning Index Tuning Examples

Index Tuning Examples

The examples use the following tables:

Employee(ssnum,name,dept,manager,salary)

Student(ssnum,name,course,grade,stipend,evaluation)

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 17 / 32



Index Tuning Index Tuning Examples

Exercise 1 – Query for Student by Name

Student was created with non-clustering index on name.

Query:

SELECT *

FROM Student

WHERE name=’Bayer’

Problem: Query does not use index on name.

Solution: Try updating the catalog statistics.

Oracle, Postgres: ANALYZE

SQL Server: sp createstats
DB2: RUNSTATS

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 18 / 32



Index Tuning Index Tuning Examples

Exercise 2 – Query for Salary I

Non-clustering index on salary.

Catalog statistics are up-to-date.

Query:

SELECT *

FROM Emplyee

WHERE salary/12 = 4000

Problem: Query is too slow.

Solution: Index not used because of the arithmetic expression.
Two Options:

Rewrite query:

SELECT *

FROM Emplyee

WHERE salary = 48000

Use function based index.

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 19 / 32



Index Tuning Index Tuning Examples

Exercise 3 – Query for Salary II

Non-clustering index on salary.

Catalog statistics are up-to-date.

Query:

SELECT *

FROM Emplyee

WHERE salary = 48000

Problem: Query still does not use index. What could be the reason?

Solution: The index is non-clustering. Many employees have a salary
of 48000, thus the index may not help. It may still help for other, less
frequent, salaries!

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 20 / 32



Index Tuning Index Tuning Examples

Exercise 4 – Clustering Index and Overflows

Clustering index on Student.ssnum

Page size: 2kB

Record size in Student table: 1KB (evaluation is a long text)

Problem: Overflow when new evaluations are added.

Solution: Clustering index does not help much due to large record
size. A non-clustering index avoids overflows.

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 21 / 32



Index Tuning Index Tuning Examples

Exercise 5 – Non-clustering Index I

Employee table:

30 employee records per page
each employee belongs to one of 50 departments (dept)
the departments are of similar size

Query:

SELECT ssnum

FROM Emplyee

WHERE dept = ’IT’

Problem: Does a non-clustering index on Employee.dept help?

Solution: Only if the index covers the query.

30/50=60% of the pages will have a record with dept = ’IT’

table scan is faster than accessing 3/5 of the pages in random order

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 22 / 32



Index Tuning Index Tuning Examples

Exercise 6 – Non-clustering Index II

Employee table:

30 employee records per page
each employee belongs to one of 5000 departments (dept)
the departments are of similar size

Query:

SELECT ssnum

FROM Emplyee

WHERE dept = ’IT’

Problem: Does a non-clustering index on Employee.dept help?

Solution: Only if the index covers the query.

only 30/5000=0.6% of the pages will have a record with dept=’IT’

table scan is slower

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 23 / 32



Index Tuning Index Tuning Examples

Exercise 7 – Statistical Analysis

Auditors run a statistical analysis on a copy of Emplyee.

Queries:

count employees with a certain salary (frequent)
find employees with maximum or minimum salary within a particular
department (frequent)
find an employee by its social security number (rare)

Problem: Which indexes to create?

Solution:

non-clustering index on salary (covers the query)
clustering composite index on (dept, salary) using a B+-tree
(all employees with the maximum salary are on consecutive pages)
non-clustering hash index on ssnum

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 24 / 32



Index Tuning Index Tuning Examples

Exercise 8 – Algebraic Expressions

Student stipends are monthly, employee salaries are yearly.

Query: Which employee is paid as much as which student?

There are two options to write the query:

SELECT * SELECT *

FROM Employee, Student FROM Employee, Student

WHERE salary = 12*stipend WHERE salary/12 = stipend

Index on a table with an algebraic expression not used.

Problem: Which query is better?

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 25 / 32



Index Tuning Index Tuning Examples

Exercise 8 – Solution

If index on only one table, it should be used.

Index on both tables, clustering on larger table: use it.

non-clustering index on both tables:

use index on larger table
if the number of tuples in the small table is larger than the number of
blocks in the large table, the system might decide not to use the index

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 26 / 32



Index Tuning Index Tuning Examples

Exercise 9 – Purchasing Department

Purchasing department maintains table
Onorder(supplier,part,quantity,price).

The table is heavily used during the opening hours, but not over night.

Queries:

Q1: add a record, all fields specified (very frequent)
Q2: delete a record, supplier and part specified (very frequent)
Q3: find total quantity of a given part on order (frequent)
Q4: find the total value on order to a given supplier (rare)

Problem: Which indexes should be used?

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 27 / 32



Index Tuning Index Tuning Examples

Exercise 9 – Solution

Queries:

Q1: add a record, all fields specified (very frequent)
Q2: delete a record, supplier and part specified (very frequent)
Q3: find total quantity of a given part on order (frequent)
Q4: find the total value on order to a given supplier (rare)

Solution: Clustering composite B+-tree index on (part,supplier).

eliminate overflows over night
attribute order important to support query Q3
hash index will not work for query Q3 (prefix match query)

Discussion: Non-clustering index on supplier to answer query Q4?

index must be maintained and will hurt the performance of much more
frequent queries Q1 and Q2
index does not help much if there are only few different suppliers

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 28 / 32



Index Tuning Index Tuning Examples

Exercise 10 – Point Query Too Slow

Employee has a clustering B+-tree index on ssnum.

Queries:

retrieve employee by social security number (ssnum)
update employee with a specific social security number

Problem: Throughput is still not enough.

Solution: Use hash index instead of B+-tree (faster for point queries).

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 29 / 32



Index Tuning Index Tuning Examples

Exercise 11 – Historical Immigrants Database

Digitalized database of US immigrants between 1800 and 1900:

17M records
each record has approx. 200 fields
e.g., last name, first name, city of origin, ship taken, etc.

Queries retrieve immigrants:

by last name and at least one other attribute
second attribute is often first name (most frequent) or year

Problem: Efficiently serve 2M descendants of the immigrants. . .

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 30 / 32



Index Tuning Index Tuning Examples

Exercise 11 – Solution

Clustering B+-tree index on (lastname,firstname):

no overflow since database does not have updates
use high fill factor to increase space utilization
key compression should be used (long key, no update)
index useful also for prefix queries on lastname

Composite non-clustering index on (lastname,year):

no maintenance cost (no updates)
attributes probably selective enough

Non-clustering indexes on all frequent attribute combinations?

no maintenance, thus only limitation is space overhead
useful only if selective enough

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 31 / 32



Index Tuning Index Tuning Examples

Exercise 12 – Flight Reservation System

An airline manages 1000 flights and uses the tables:

Flight(flightID, seatID, passanger-name)

Totals(flightID, number-of-passangers)

Query: Each reservation

adds a record to Flight

increments Totals.number-of-passangers

Queries are separate transactions.

Problem: Lock contention on Totals.

Solution:

Totals is a small table (1000 small records) and fits on few pages.
Without index, update scans table and scanned records are locked.
Clustering index on flightID avoids table scan and thus lock
contention (row locking assumed).

Nikolaus Augsten (DIS) DBT – Index Tuning Unit 6 – WS 2014/2015 32 / 32


