
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 19: Distributed Databases

©Silberschatz, Korth and Sudarshan 19.2 Database System Concepts - 6th Edition

Chapter 19: Distributed Databases

 Heterogeneous and Homogeneous Databases
 Distributed Data Storage
 Distributed Transactions
 Commit Protocols
 Concurrency Control in Distributed Databases
 Availability
 Distributed Query Processing
 Heterogeneous Distributed Databases
 Directory Systems

©Silberschatz, Korth and Sudarshan 19.3 Database System Concepts - 6th Edition

Distributed Database System

 A distributed database system consists of loosely coupled sites that share
no physical component

 Database systems that run on each site are independent of each other
 Transactions may access data at one or more sites

©Silberschatz, Korth and Sudarshan 19.4 Database System Concepts - 6th Edition

Homogeneous Distributed Databases

 In a homogeneous distributed database
 All sites have identical software
 Are aware of each other and agree to cooperate in processing user

requests.
 Each site surrenders part of its autonomy in terms of right to change

schemas or software
 Appears to user as a single system

 In a heterogeneous distributed database
 Different sites may use different schemas and software

 Difference in schema is a major problem for query processing
 Difference in software is a major problem for transaction

processing
 Sites may not be aware of each other and may provide only

limited facilities for cooperation in transaction processing

©Silberschatz, Korth and Sudarshan 19.5 Database System Concepts - 6th Edition

Distributed Data Storage

 Assume relational data model
 Replication

 System maintains multiple copies of data, stored in different sites,
for faster retrieval and fault tolerance.

 Fragmentation
 Relation is partitioned into several fragments stored in distinct sites

 Replication and fragmentation can be combined
 Relation is partitioned into several fragments: system maintains

several identical replicas of each such fragment.

©Silberschatz, Korth and Sudarshan 19.6 Database System Concepts - 6th Edition

Data Replication

 A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites.

 Full replication of a relation is the case where the relation is stored at all
sites.

 Fully redundant databases are those in which every site contains a
copy of the entire database.

©Silberschatz, Korth and Sudarshan 19.7 Database System Concepts - 6th Edition

Data Replication (Cont.)

 Advantages of Replication
 Availability: failure of site containing relation r does not result in

unavailability of r is replicas exist.
 Parallelism: queries on r may be processed by several nodes in parallel.
 Reduced data transfer: relation r is available locally at each site

containing a replica of r.
 Disadvantages of Replication

 Increased cost of updates: each replica of relation r must be updated.
 Increased complexity of concurrency control: concurrent updates to

distinct replicas may lead to inconsistent data unless special
concurrency control mechanisms are implemented.

 One solution: choose one copy as primary copy and apply
concurrency control operations on primary copy

©Silberschatz, Korth and Sudarshan 19.8 Database System Concepts - 6th Edition

Data Fragmentation

 Division of relation r into fragments r1, r2, …, rn which contain
sufficient information to reconstruct relation r.

 Horizontal fragmentation: each tuple of r is assigned to one
or more fragments

 Vertical fragmentation: the schema for relation r is split into
several smaller schemas
 All schemas must contain a common candidate key (or

superkey) to ensure lossless join property.
 A special attribute, the tuple-id attribute may be added to

each schema to serve as a candidate key.

©Silberschatz, Korth and Sudarshan 19.9 Database System Concepts - 6th Edition

Horizontal Fragmentation of account Relation

branch_name account_number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1 = σbranch_name=“Hillside” (account)

branch_name account_number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000
1123
750

account2 = σbranch_name=“Valleyview” (account)

©Silberschatz, Korth and Sudarshan 19.10 Database System Concepts - 6th Edition

Vertical Fragmentation of employee_info Relation

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info)

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = Πaccount_number, balance, tuple_id (employee_info)

©Silberschatz, Korth and Sudarshan 19.11 Database System Concepts - 6th Edition

Advantages of Fragmentation

 Horizontal:
 allows parallel processing on fragments of a relation
 allows a relation to be split so that tuples are located where

they are most frequently accessed
 Vertical:

 allows tuples to be split so that each part of the tuple is
stored where it is most frequently accessed

 tuple-id attribute allows efficient joining of vertical fragments
 allows parallel processing on a relation

 Vertical and horizontal fragmentation can be mixed.
 Fragments may be successively fragmented to an arbitrary

depth.

©Silberschatz, Korth and Sudarshan 19.12 Database System Concepts - 6th Edition

Data Transparency

 Data transparency: Degree to which system user may remain unaware
of the details of how and where the data items are stored in a distributed
system

 Consider transparency issues in relation to:
 Fragmentation transparency
 Replication transparency
 Location transparency

©Silberschatz, Korth and Sudarshan 19.13 Database System Concepts - 6th Edition

Naming of Data Items - Criteria

1. Every data item must have a system-wide unique name.
2. It should be possible to find the location of data items efficiently.
3. It should be possible to change the location of data items

transparently.
4. Each site should be able to create new data items autonomously.

©Silberschatz, Korth and Sudarshan 19.14 Database System Concepts - 6th Edition

Centralized Scheme - Name Server

 Structure:
 name server assigns all names
 each site maintains a record of local data items
 sites ask name server to locate non-local data items

 Advantages:
 satisfies naming criteria 1-3

 Disadvantages:
 does not satisfy naming criterion 4
 name server is a potential performance bottleneck
 name server is a single point of failure

©Silberschatz, Korth and Sudarshan 19.15 Database System Concepts - 6th Edition

Use of Aliases

 Alternative to centralized scheme: each site prefixes its own site
identifier to any name that it generates i.e., site 17.account.
 Fulfills having a unique identifier, and avoids problems associated

with central control.
 However, fails to achieve network transparency.

 Solution: Create a set of aliases for data items; Store the mapping of
aliases to the real names at each site.

 The user can be unaware of the physical location of a data item, and
is unaffected if the data item is moved from one site to another.

©Silberschatz, Korth and Sudarshan 19.16 Database System Concepts - 6th Edition

Distributed Transactions
and 2 Phase Commit

©Silberschatz, Korth and Sudarshan 19.17 Database System Concepts - 6th Edition

Distributed Transactions

 Transaction may access data at several sites.
 Each site has a local transaction manager responsible for:

 Maintaining a log for recovery purposes
 Participating in coordinating the concurrent execution of the

transactions executing at that site.
 Each site has a transaction coordinator, which is responsible for:

 Starting the execution of transactions that originate at the site.
 Distributing subtransactions at appropriate sites for execution.
 Coordinating the termination of each transaction that originates at

the site, which may result in the transaction being committed at all
sites or aborted at all sites.

©Silberschatz, Korth and Sudarshan 19.18 Database System Concepts - 6th Edition

Transaction System Architecture

©Silberschatz, Korth and Sudarshan 19.19 Database System Concepts - 6th Edition

System Failure Modes

 Failures unique to distributed systems:
 Failure of a site.
 Loss of massages

 Handled by network transmission control protocols such as
TCP-IP

 Failure of a communication link
 Handled by network protocols, by routing messages via

alternative links
 Network partition

 A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them
– Note: a subsystem may consist of a single node

 Network partitioning and site failures are generally indistinguishable.

©Silberschatz, Korth and Sudarshan 19.20 Database System Concepts - 6th Edition

Commit Protocols

 Commit protocols are used to ensure atomicity across sites
 a transaction which executes at multiple sites must either be

committed at all the sites, or aborted at all the sites.
 not acceptable to have a transaction committed at one site and

aborted at another
 The two-phase commit (2PC) protocol is widely used
 The three-phase commit (3PC) protocol is more complicated and

more expensive, but avoids some drawbacks of two-phase commit
protocol. This protocol is not used in practice.

©Silberschatz, Korth and Sudarshan 19.21 Database System Concepts - 6th Edition

Two Phase Commit Protocol (2PC)

 Assumes fail-stop model – failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.

 Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.

 The protocol involves all the local sites at which the transaction
executed

 Let T be a transaction initiated at site Si, and let the transaction
coordinator at Si be Ci

©Silberschatz, Korth and Sudarshan 19.22 Database System Concepts - 6th Edition

Phase 1: Obtaining a Decision

 Coordinator asks all participants to prepare to commit transaction Ti.
 Ci adds the records <prepare T> to the log and forces log to

stable storage
 sends prepare T messages to all sites at which T executed

 Upon receiving message, transaction manager at site determines if it
can commit the transaction
 if not, add a record <no T> to the log and send abort T message

to Ci
 if the transaction can be committed, then:
 add the record <ready T> to the log
 force all records for T to stable storage
 send ready T message to Ci

©Silberschatz, Korth and Sudarshan 19.23 Database System Concepts - 6th Edition

Phase 2: Recording the Decision

 T can be committed of Ci received a ready T message from all the
participating sites: otherwise T must be aborted.

 Coordinator adds a decision record, <commit T> or <abort T>, to the
log and forces record onto stable storage. Once the record stable
storage it is irrevocable (even if failures occur)

 Coordinator sends a message to each participant informing it of the
decision (commit or abort)

 Participants take appropriate action locally.

©Silberschatz, Korth and Sudarshan 19.24 Database System Concepts - 6th Edition

Handling of Failures - Site Failure

When site Si recovers, it examines its log to determine the fate of
transactions active at the time of the failure.
 Log contain <commit T> record: txn had completed, nothing to be done
 Log contains <abort T> record: txn had completed, nothing to be done
 Log contains <ready T> record: site must consult Ci to determine the

fate of T.
 If T committed, redo (T); write <commit T> record
 If T aborted, undo (T)

 The log contains no log records concerning T:
 Implies that Sk failed before responding to the prepare T message

from Ci
 since the failure of Sk precludes the sending of such a response,

coordinator C1 must abort T
 Sk must execute undo (T)

©Silberschatz, Korth and Sudarshan 19.25 Database System Concepts - 6th Edition

Handling of Failures- Coordinator Failure

 If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T’s fate:

1. If an active site contains a <commit T> record in its log, then T must be
committed.

2. If an active site contains an <abort T> record in its log, then T must be
aborted.

3. If some active participating site does not contain a <ready T> record in its
log, then the failed coordinator Ci cannot have decided to commit T.
 Can therefore abort T; however, such a site must reject any

subsequent <prepare T> message from Ci
4. If none of the above cases holds, then all active sites must have a <ready

T> record in their logs, but no additional control records (such as <abort
T> of <commit T>).
 In this case active sites must wait for Ci to recover, to find decision.

 Blocking problem: active sites may have to wait for failed coordinator to
recover.

©Silberschatz, Korth and Sudarshan 19.26 Database System Concepts - 6th Edition

Handling of Failures - Network Partition
 If the coordinator and all its participants remain in one partition, the

failure has no effect on the commit protocol.
 If the coordinator and its participants belong to several partitions:

 Sites that are not in the partition containing the coordinator think
the coordinator has failed, and execute the protocol to deal with
failure of the coordinator.
 No harm results, but sites may still have to wait for decision

from coordinator.
 The coordinator and the sites are in the same partition as the

coordinator think that the sites in the other partition have failed, and
follow the usual commit protocol.

 Again, no harm results

©Silberschatz, Korth and Sudarshan 19.27 Database System Concepts - 6th Edition

Recovery and Concurrency Control

 In-doubt transactions have a <ready T>, but neither a
<commit T>, nor an <abort T> log record.

 The recovering site must determine the commit-abort status of such
transactions by contacting other sites; this can slow and potentially
block recovery.

 Recovery algorithms can note lock information in the log.
 Instead of <ready T>, write out <ready T, L> L = list of locks held

by T when the log is written (read locks can be omitted).
 For every in-doubt transaction T, all the locks noted in the

<ready T, L> log record are reacquired.
 After lock reacquisition, transaction processing can resume; the

commit or rollback of in-doubt transactions is performed concurrently
with the execution of new transactions.

©Silberschatz, Korth and Sudarshan 19.28 Database System Concepts - 6th Edition

Three Phase Commit (3PC)

 Assumptions:
 No network partitioning
 At any point, at least one site must be up.
 At most K sites (participants as well as coordinator) can fail

 Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.
 Every site is ready to commit if instructed to do so

 Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC
 In phase 2 coordinator makes a decision as in 2PC (called the pre-commit

decision) and records it in multiple (at least K) sites
 In phase 3, coordinator sends commit/abort message to all participating

sites,
 Under 3PC, knowledge of pre-commit decision can be used to commit despite

coordinator failure
 Avoids blocking problem as long as < K sites fail

 Drawbacks:
 higher overheads
 assumptions may not be satisfied in practice

©Silberschatz, Korth and Sudarshan 19.29 Database System Concepts - 6th Edition

Alternative Models of Transaction
Processing

 Notion of a single transaction spanning multiple sites is inappropriate
for many applications
 E.g. transaction crossing an organizational boundary
 No organization would like to permit an externally initiated

transaction to block local transactions for an indeterminate period
 Alternative models carry out transactions by sending messages

 Code to handle messages must be carefully designed to ensure
atomicity and durability properties for updates
 Isolation cannot be guaranteed, in that intermediate stages are

visible, but code must ensure no inconsistent states result due
to concurrency

 Persistent messaging systems are systems that provide
transactional properties to messages
Messages are guaranteed to be delivered exactly once
Will discuss implementation techniques later

©Silberschatz, Korth and Sudarshan 19.30 Database System Concepts - 6th Edition

Alternative Models (Cont.)
 Motivating example: funds transfer between two banks

 Two phase commit would have the potential to block updates on the
accounts involved in funds transfer

 Alternative solution:
 Debit money from source account and send a message to other

site
 Site receives message and credits destination account

 Messaging has long been used for distributed transactions (even
before computers were invented!)

 Atomicity issue
 once transaction sending a message is committed, message must

guaranteed to be delivered
 Guarantee as long as destination site is up and reachable, code to

handle undeliverable messages must also be available
– e.g. credit money back to source account.

 If sending transaction aborts, message must not be sent

©Silberschatz, Korth and Sudarshan 19.31 Database System Concepts - 6th Edition

Error Conditions with Persistent
Messaging

 Code to handle messages has to take care of variety of failure situations
(even assuming guaranteed message delivery)
 E.g. if destination account does not exist, failure message must be

sent back to source site
 When failure message is received from destination site, or

destination site itself does not exist, money must be deposited back
in source account
 Problem if source account has been closed

– get humans to take care of problem
 User code executing transaction processing using 2PC does not have to

deal with such failures
 There are many situations where extra effort of error handling is worth

the benefit of absence of blocking
 E.g. pretty much all transactions across organizations

©Silberschatz, Korth and Sudarshan 19.32 Database System Concepts - 6th Edition

Persistent Messaging and Workflows
 Workflows provide a general model of transactional processing

involving multiple sites and possibly human processing of certain
steps
 E.g. when a bank receives a loan application, it may need to

 Contact external credit-checking agencies
 Get approvals of one or more managers

 and then respond to the loan application
 We study workflows in Chapter 25
 Persistent messaging forms the underlying infrastructure for

workflows in a distributed environment

©Silberschatz, Korth and Sudarshan 19.33 Database System Concepts - 6th Edition

Implementation of Persistent Messaging

 Sending site protocol.
 When a transaction wishes to send a persistent message, it writes a

record containing the message in a special relation
messages_to_send; the message is given a unique message
identifier.

 A message delivery process monitors the relation, and when a new
message is found, it sends the message to its destination.

 The message delivery process deletes a message from the relation
only after it receives an acknowledgment from the destination site.
 If it receives no acknowledgement from the destination site, after

some time it sends the message again. It repeats this until an
acknowledgment is received.

 If after some period of time, that the message is undeliverable,
exception handling code provided by the application is invoked
to deal with the failure.

 Writing the message to a relation and processing it only after the
transaction commits ensures that the message will be delivered if and
only if the transaction commits.

©Silberschatz, Korth and Sudarshan 19.34 Database System Concepts - 6th Edition

Implementation of Persistent Messaging
(Cont.)

 Receiving site protocol.
 When a site receives a persistent message, it runs a transaction that

adds the message to a received_messages relation
 provided message identifier is not already present in the relation

 After the transaction commits, or if the message was already present
in the relation, the receiving site sends an acknowledgment back to
the sending site.
 Note that sending the acknowledgment before the transaction

commits is not safe, since a system failure may then result in loss
of the message.

 In many messaging systems, it is possible for messages to get
delayed arbitrarily, although such delays are very unlikely.
 Each message is given a timestamp, and if the timestamp of a

received message is older than some cutoff, the message is
discarded.

 All messages recorded in the received messages relation that are
older than the cutoff can be deleted.

©Silberschatz, Korth and Sudarshan 19.35 Database System Concepts - 6th Edition

Concurrency Control

©Silberschatz, Korth and Sudarshan 19.36 Database System Concepts - 6th Edition

Concurrency Control

 Modify concurrency control schemes for use in distributed environment.
 We assume that each site participates in the execution of a commit

protocol to ensure global transaction automicity.
 We assume all replicas of any item are updated

 Will see how to relax this in case of site failures later

©Silberschatz, Korth and Sudarshan 19.37 Database System Concepts - 6th Edition

Single-Lock-Manager Approach

 System maintains a single lock manager that resides in a single
chosen site, say Si

 When a transaction needs to lock a data item, it sends a lock request
to Si and lock manager determines whether the lock can be granted
immediately
 If yes, lock manager sends a message to the site which initiated

the request
 If no, request is delayed until it can be granted, at which time a

message is sent to the initiating site

©Silberschatz, Korth and Sudarshan 19.38 Database System Concepts - 6th Edition

Single-Lock-Manager Approach (Cont.)

 The transaction can read the data item from any one of the sites at
which a replica of the data item resides.

 Writes must be performed on all replicas of a data item
 Advantages of scheme:

 Simple implementation
 Simple deadlock handling

 Disadvantages of scheme are:
 Bottleneck: lock manager site becomes a bottleneck
 Vulnerability: system is vulnerable to lock manager site failure.

©Silberschatz, Korth and Sudarshan 19.39 Database System Concepts - 6th Edition

Distributed Lock Manager

 In this approach, functionality of locking is implemented by lock
managers at each site
 Lock managers control access to local data items

 But special protocols may be used for replicas
 Advantage: work is distributed and can be made robust to failures
 Disadvantage: deadlock detection is more complicated

 Lock managers cooperate for deadlock detection
More on this later

 Several variants of this approach
 Primary copy
 Majority protocol
 Biased protocol
 Quorum consensus

©Silberschatz, Korth and Sudarshan 19.40 Database System Concepts - 6th Edition

Primary Copy

 Choose one replica of data item to be the primary copy.
 Site containing the replica is called the primary site for that data

item
 Different data items can have different primary sites

 When a transaction needs to lock a data item Q, it requests a lock at
the primary site of Q.
 Implicitly gets lock on all replicas of the data item

 Benefit
 Concurrency control for replicated data handled similarly to

unreplicated data - simple implementation.
 Drawback

 If the primary site of Q fails, Q is inaccessible even though other
sites containing a replica may be accessible.

©Silberschatz, Korth and Sudarshan 19.41 Database System Concepts - 6th Edition

Majority Protocol

 Local lock manager at each site administers lock and unlock requests
for data items stored at that site.

 When a transaction wishes to lock an unreplicated data item Q
residing at site Si, a message is sent to Si ‘s lock manager.
 If Q is locked in an incompatible mode, then the request is delayed

until it can be granted.
 When the lock request can be granted, the lock manager sends a

message back to the initiator indicating that the lock request has
been granted.

©Silberschatz, Korth and Sudarshan 19.42 Database System Concepts - 6th Edition

Majority Protocol (Cont.)

 In case of replicated data
 If Q is replicated at n sites, then a lock request message must be

sent to more than half of the n sites in which Q is stored.
 The transaction does not operate on Q until it has obtained a lock

on a majority of the replicas of Q.
 When writing the data item, transaction performs writes on all

replicas.
 Benefit

 Can be used even when some sites are unavailable
 details on how handle writes in the presence of site failure later

 Drawback
 Requires 2(n/2 + 1) messages for handling lock requests, and (n/2

+ 1) messages for handling unlock requests.
 Potential for deadlock even with single item - e.g., each of 3

transactions may have locks on 1/3rd of the replicas of a data.

©Silberschatz, Korth and Sudarshan 19.43 Database System Concepts - 6th Edition

Biased Protocol

 Local lock manager at each site as in majority protocol, however,
requests for shared locks are handled differently than requests for
exclusive locks.

 Shared locks. When a transaction needs to lock data item Q, it simply
requests a lock on Q from the lock manager at one site containing a
replica of Q.

 Exclusive locks. When transaction needs to lock data item Q, it
requests a lock on Q from the lock manager at all sites containing a
replica of Q.

 Advantage - imposes less overhead on read operations.
 Disadvantage - additional overhead on writes

©Silberschatz, Korth and Sudarshan 19.44 Database System Concepts - 6th Edition

Quorum Consensus Protocol

 A generalization of both majority and biased protocols
 Each site is assigned a weight.

 Let S be the total of all site weights
 Choose two values read quorum Qr and write quorum Qw

 Such that Qr + Qw > S and 2 * Qw > S
 Quorums can be chosen (and S computed) separately for each

item
 Each read must lock enough replicas that the sum of the site weights

is >= Qr
 Each write must lock enough replicas that the sum of the site weights

is >= Qw
 For now we assume all replicas are written

 Extensions to allow some sites to be unavailable described later

©Silberschatz, Korth and Sudarshan 19.45 Database System Concepts - 6th Edition

Timestamping

 Timestamp based concurrency-control protocols can be used in
distributed systems

 Each transaction must be given a unique timestamp
 Main problem: how to generate a timestamp in a distributed fashion

 Each site generates a unique local timestamp using either a logical
counter or the local clock.

 Global unique timestamp is obtained by concatenating the unique
local timestamp with the unique identifier.

©Silberschatz, Korth and Sudarshan 19.46 Database System Concepts - 6th Edition

Timestamping (Cont.)

 A site with a slow clock will assign smaller timestamps
 Still logically correct: serializability not affected
 But: “disadvantages” transactions

 To fix this problem
 Define within each site Si a logical clock (LCi), which generates

the unique local timestamp
 Require that Si advance its logical clock whenever a request is

received from a transaction Ti with timestamp < x,y> and x is
greater that the current value of LCi.

 In this case, site Si advances its logical clock to the value x + 1.

©Silberschatz, Korth and Sudarshan 19.47 Database System Concepts - 6th Edition

Replication with Weak Consistency

 Many commercial databases support replication of data with weak
degrees of consistency (I.e., without a guarantee of serializabiliy)

 E.g.: master-slave replication: updates are performed at a single
“master” site, and propagated to “slave” sites.
 Propagation is not part of the update transaction: its is decoupled

May be immediately after transaction commits
May be periodic

 Data may only be read at slave sites, not updated
 No need to obtain locks at any remote site

 Particularly useful for distributing information
 E.g. from central office to branch-office

 Also useful for running read-only queries offline from the main
database

©Silberschatz, Korth and Sudarshan 19.48 Database System Concepts - 6th Edition

Replication with Weak Consistency (Cont.)

 Replicas should see a transaction-consistent snapshot of the
database
 That is, a state of the database reflecting all effects of all

transactions up to some point in the serialization order, and no
effects of any later transactions.

 E.g. Oracle provides a create snapshot statement to create a
snapshot of a relation or a set of relations at a remote site
 snapshot refresh either by recomputation or by incremental update
 Automatic refresh (continuous or periodic) or manual refresh

©Silberschatz, Korth and Sudarshan 19.49 Database System Concepts - 6th Edition

Multimaster and Lazy Replication

 With multimaster replication (also called update-anywhere replication)
updates are permitted at any replica, and are automatically
propagated to all replicas
 Basic model in distributed databases, where transactions are

unaware of the details of replication, and database system
propagates updates as part of the same transaction
 Coupled with 2 phase commit

 Many systems support lazy propagation where updates are
transmitted after transaction commits
 Allows updates to occur even if some sites are disconnected from

the network, but at the cost of consistency

©Silberschatz, Korth and Sudarshan 19.50 Database System Concepts - 6th Edition

Deadlock Handling

Consider the following two transactions and history, with item X and
transaction T1 at site 1, and item Y and transaction T2 at site 2:

T1: write (X)
 write (Y)

T2: write (Y)
 write (X)

X-lock on X
write (X) X-lock on Y

write (Y)
wait for X-lock on X

Wait for X-lock on Y

Result: deadlock which cannot be detected locally at either site

©Silberschatz, Korth and Sudarshan 19.51 Database System Concepts - 6th Edition

Centralized Approach

 A global wait-for graph is constructed and maintained in a single site;
the deadlock-detection coordinator
 Real graph: Real, but unknown, state of the system.
 Constructed graph:Approximation generated by the controller

during the execution of its algorithm .
 the global wait-for graph can be constructed when:

 a new edge is inserted in or removed from one of the local wait-
for graphs.

 a number of changes have occurred in a local wait-for graph.
 the coordinator needs to invoke cycle-detection.

 If the coordinator finds a cycle, it selects a victim and notifies all sites.
The sites roll back the victim transaction.

©Silberschatz, Korth and Sudarshan 19.52 Database System Concepts - 6th Edition

Local and Global Wait-For Graphs

Local

Global

©Silberschatz, Korth and Sudarshan 19.53 Database System Concepts - 6th Edition

Example Wait-For Graph for False Cycles

Initial state:

©Silberschatz, Korth and Sudarshan 19.54 Database System Concepts - 6th Edition

False Cycles (Cont.)

 Suppose that starting from the state shown in figure,
 1. T2 releases resources at S1

 resulting in a message remove T1 → T2 message from the
Transaction Manager at site S1 to the coordinator)

 2. And then T2 requests a resource held by T3 at site S2
 resulting in a message insert T2 → T3 from S2 to the coordinator

 Suppose further that the insert message reaches before the delete
message
 this can happen due to network delays

 The coordinator would then find a false cycle
 T1 → T2 → T3 → T1

 The false cycle above never existed in reality.
 False cycles cannot occur if two-phase locking is used.

©Silberschatz, Korth and Sudarshan 19.55 Database System Concepts - 6th Edition

Unnecessary Rollbacks

 Unnecessary rollbacks may result when deadlock has indeed
occurred and a victim has been picked, and meanwhile one of the
transactions was aborted for reasons unrelated to the deadlock.

 Unnecessary rollbacks can result from false cycles in the global wait-
for graph; however, likelihood of false cycles is low.

©Silberschatz, Korth and Sudarshan 19.56 Database System Concepts - 6th Edition

Availability

©Silberschatz, Korth and Sudarshan 19.57 Database System Concepts - 6th Edition

Availability

 High availability: time for which system is not fully usable should be
extremely low (e.g. 99.99% availability)

 Robustness: ability of system to function spite of failures of
components

 Failures are more likely in large distributed systems
 To be robust, a distributed system must

 Detect failures
 Reconfigure the system so computation may continue
 Recovery/reintegration when a site or link is repaired

 Failure detection: distinguishing link failure from site failure is hard
 (partial) solution: have multiple links, multiple link failure is likely a

site failure

©Silberschatz, Korth and Sudarshan 19.58 Database System Concepts - 6th Edition

Reconfiguration

 Reconfiguration:
 Abort all transactions that were active at a failed site

Making them wait could interfere with other transactions since
they may hold locks on other sites

 However, in case only some replicas of a data item failed, it
may be possible to continue transactions that had accessed
data at a failed site (more on this later)

 If replicated data items were at failed site, update system catalog
to remove them from the list of replicas.
 This should be reversed when failed site recovers, but

additional care needs to be taken to bring values up to date
 If a failed site was a central server for some subsystem, an

election must be held to determine the new server
 E.g. name server, concurrency coordinator, global deadlock

detector

©Silberschatz, Korth and Sudarshan 19.59 Database System Concepts - 6th Edition

Reconfiguration (Cont.)

 Since network partition may not be distinguishable from site failure,
the following situations must be avoided
 Two ore more central servers elected in distinct partitions
 More than one partition updates a replicated data item

 Updates must be able to continue even if some sites are down
 Solution: majority based approach

 Alternative of “read one write all available” is tantalizing but
causes problems

©Silberschatz, Korth and Sudarshan 19.60 Database System Concepts - 6th Edition

Majority-Based Approach

 The majority protocol for distributed concurrency control can be
modified to work even if some sites are unavailable
 Each replica of each item has a version number which is updated

when the replica is updated, as outlined below
 A lock request is sent to at least ½ the sites at which item replicas

are stored and operation continues only when a lock is obtained
on a majority of the sites

 Read operations look at all replicas locked, and read the value
from the replica with largest version number
May write this value and version number back to replicas with

lower version numbers (no need to obtain locks on all replicas
for this task)

©Silberschatz, Korth and Sudarshan 19.61 Database System Concepts - 6th Edition

Majority-Based Approach

 Majority protocol (Cont.)
 Write operations

 find highest version number like reads, and set new version
number to old highest version + 1

Writes are then performed on all locked replicas and version
number on these replicas is set to new version number

 Failures (network and site) cause no problems as long as
 Sites at commit contain a majority of replicas of any updated data

items
 During reads a majority of replicas are available to find version

numbers
 Subject to above, 2 phase commit can be used to update replicas

 Note: reads are guaranteed to see latest version of data item
 Reintegration is trivial: nothing needs to be done

 Quorum consensus algorithm can be similarly extended

©Silberschatz, Korth and Sudarshan 19.62 Database System Concepts - 6th Edition

Read One Write All (Available)

 Biased protocol is a special case of quorum consensus
 Allows reads to read any one replica but updates require all

replicas to be available at commit time (called read one write all)
 Read one write all available (ignoring failed sites) is attractive, but

incorrect
 If failed link may come back up, without a disconnected site ever

being aware that it was disconnected
 The site then has old values, and a read from that site would

return an incorrect value
 If site was aware of failure reintegration could have been

performed, but no way to guarantee this
 With network partitioning, sites in each partition may update same

item concurrently
 believing sites in other partitions have all failed

©Silberschatz, Korth and Sudarshan 19.63 Database System Concepts - 6th Edition

Site Reintegration

 When failed site recovers, it must catch up with all updates that it
missed while it was down
 Problem: updates may be happening to items whose replica is

stored at the site while the site is recovering
 Solution 1: halt all updates on system while reintegrating a site

 Unacceptable disruption
 Solution 2: lock all replicas of all data items at the site, update to

latest version, then release locks
 Other solutions with better concurrency also available

©Silberschatz, Korth and Sudarshan 19.64 Database System Concepts - 6th Edition

Comparison with Remote Backup

 Remote backup (hot spare) systems (Section 17.10) are also
designed to provide high availability

 Remote backup systems are simpler and have lower overhead
 All actions performed at a single site, and only log records shipped
 No need for distributed concurrency control, or 2 phase commit

 Using distributed databases with replicas of data items can provide
higher availability by having multiple (> 2) replicas and using the
majority protocol
 Also avoid failure detection and switchover time associated with

remote backup systems

©Silberschatz, Korth and Sudarshan 19.65 Database System Concepts - 6th Edition

Coordinator Selection

 Backup coordinators
 site which maintains enough information locally to assume the role

of coordinator if the actual coordinator fails
 executes the same algorithms and maintains the same internal

state information as the actual coordinator fails executes state
information as the actual coordinator

 allows fast recovery from coordinator failure but involves overhead
during normal processing.

 Election algorithms
 used to elect a new coordinator in case of failures
 Example: Bully Algorithm - applicable to systems where every site

can send a message to every other site.

©Silberschatz, Korth and Sudarshan 19.66 Database System Concepts - 6th Edition

Bully Algorithm

 If site Si sends a request that is not answered by the coordinator within
a time interval T, assume that the coordinator has failed Si tries to
elect itself as the new coordinator.

 Si sends an election message to every site with a higher identification
number, Si then waits for any of these processes to answer within T.

 If no response within T, assume that all sites with number greater than
i have failed, Si elects itself the new coordinator.

 If answer is received Si begins time interval T’, waiting to receive a
message that a site with a higher identification number has been
elected.

©Silberschatz, Korth and Sudarshan 19.67 Database System Concepts - 6th Edition

Bully Algorithm (Cont.)

 If no message is sent within T’, assume the site with a higher number
has failed; Si restarts the algorithm.

 After a failed site recovers, it immediately begins execution of the
same algorithm.

 If there are no active sites with higher numbers, the recovered site
forces all processes with lower numbers to let it become the
coordinator site, even if there is a currently active coordinator with a
lower number.

©Silberschatz, Korth and Sudarshan 19.68 Database System Concepts - 6th Edition

Trading Consistency for Availability

©Silberschatz, Korth and Sudarshan 19.69 Database System Concepts - 6th Edition

What is Consistency?

 Consistency in Databases (ACID):
 Database has a set of integrity constraints
 A consistent database state is one where all integrity constraints

are satisfied
 Each transaction run individually on a consistent database state

must leave the database in a consistent state
 Consistency in distributed systems with replication

 Strong consistency: a schedule with read and write operations on
a replicated object should give results and final state equivalent to
some schedule on a single copy of the object, with order of
operations from a single site preserved

 Weak consistency (several forms)

©Silberschatz, Korth and Sudarshan 19.70 Database System Concepts - 6th Edition

Availability

 Traditionally, availability of centralized server
 For distributed systems, availability of system to process requests

 For large system, at almost any point in time there’s a good
chance that
 a node is down or even
 Network partitioning

 Distributed consensus algorithms will block during partitions to ensure
consistency
 Many applications require continued operation even during a

network partition
 Even at cost of consistency

©Silberschatz, Korth and Sudarshan 19.71 Database System Concepts - 6th Edition

Brewer’s CAP Theorem

 Three properties of a system
 Consistency (all copies have same value)
 Availability (system can run even if parts have failed)

 Via replication
 Partitions (network can break into two or more parts, each

with active systems that can’t talk to other parts)
 Brewer’s CAP “Theorem”: You can have at most two of these

three properties for any system
 Very large systems will partition at some point
Choose one of consistency or availablity
 Traditional database choose consistency
 Most Web applications choose availability

 Except for specific parts such as order processing

©Silberschatz, Korth and Sudarshan 19.72 Database System Concepts - 6th Edition

Replication with Weak Consistency

Many systems support replication of data with weak degrees of
consistency (I.e., without a guarantee of serializabiliy)
 i.e. QR + QW <= S or 2*QW < S
 Usually only when not enough sites are available to

ensure quorum
But sometimes to allow fast local reads

 Tradeoff of consistency versus availability or latency
 Key issues:
 Reads may get old versions
Writes may occur in parallel, leading to inconsistent

versions
Question: how to detect, and how to resolve

– Version vector scheme, Section 25.5.4

©Silberschatz, Korth and Sudarshan 19.73 Database System Concepts - 6th Edition

Eventual Consistency

 When no updates occur for a long period of time, eventually
all updates will propagate through the system and all the
nodes will be consistent

 For a given accepted update and a given node, eventually
either the update reaches the node or the node is removed
from service

 Known as BASE (Basically Available, Soft state, Eventual
consistency), as opposed to ACID
 Soft state: copies of a data item may be inconsistent
 Eventually Consistent – copies becomes consistent

at some later time if there are no more updates to that
data item

©Silberschatz, Korth and Sudarshan 19.74 Database System Concepts - 6th Edition

Availability vs Latency

CAP theorem only matters when there is a partition
 Even if partitions are rare, applications may trade off

consistency for latency
E.g. PNUTS allows inconsistent reads to reduce latency

– Critical for many applications
But update protocol (via master) ensures consistency over

availability
 Thus there are two questions :
 If there is partitioning, how does system tradeoff availability for

consistency
else how does system trade off latency for consistency

©Silberschatz, Korth and Sudarshan 19.75 Database System Concepts - 6th Edition

Distributed Query Processing

©Silberschatz, Korth and Sudarshan 19.76 Database System Concepts - 6th Edition

Distributed Query Processing

 For centralized systems, the primary criterion for measuring the cost
of a particular strategy is the number of disk accesses.

 In a distributed system, other issues must be taken into account:
 The cost of a data transmission over the network.
 The potential gain in performance from having several sites

process parts of the query in parallel.

©Silberschatz, Korth and Sudarshan 19.77 Database System Concepts - 6th Edition

Query Transformation

 Translating algebraic queries on fragments.

 It must be possible to construct relation r from its fragments

 Replace relation r by the expression to construct relation r from its
fragments

 Consider the horizontal fragmentation of the account relation into

account1 = σ branch_name = “Hillside” (account)

account2 = σ branch_name = “Valleyview” (account)

 The query σ branch_name = “Hillside” (account) becomes

σ branch_name = “Hillside” (account1 ∪ account2)

 which is optimized into

σ branch_name = “Hillside” (account1) ∪ σ branch_name = “Hillside” (account2)

©Silberschatz, Korth and Sudarshan 19.78 Database System Concepts - 6th Edition

Example Query (Cont.)

 Since account1 has only tuples pertaining to the Hillside branch,
we can eliminate the selection operation.

 Apply the definition of account2 to obtain
 σ branch_name = “Hillside” (σ branch_name = “Valleyview” (account)

 This expression is the empty set regardless of the contents of the

account relation.
 Final strategy is for the Hillside site to return account1 as the result

of the query.

©Silberschatz, Korth and Sudarshan 19.79 Database System Concepts - 6th Edition

Simple Join Processing

 Consider the following relational algebra expression in which the three
relations are neither replicated nor fragmented

 account depositor branch
 account is stored at site S1
 depositor at S2
 branch at S3
 For a query issued at site SI, the system needs to produce the result at

site SI

©Silberschatz, Korth and Sudarshan 19.80 Database System Concepts - 6th Edition

Possible Query Processing Strategies

 Ship copies of all three relations to site SI and choose a strategy for
processing the entire locally at site SI.

 Ship a copy of the account relation to site S2 and compute temp1 =
account depositor at S2. Ship temp1 from S2 to S3, and compute
temp2 = temp1 branch at S3. Ship the result temp2 to SI.

 Devise similar strategies, exchanging the roles S1, S2, S3
 Must consider following factors:

 amount of data being shipped
 cost of transmitting a data block between sites
 relative processing speed at each site

©Silberschatz, Korth and Sudarshan 19.81 Database System Concepts - 6th Edition

Semijoin Strategy

 Let r1 be a relation with schema R1 stores at site S1

 Let r2 be a relation with schema R2 stores at site S2

 Evaluate the expression r1 r2 and obtain the result at S1.
1. Compute temp1 ← ∏R1 ∩ R2 (r1) at S1.
 2. Ship temp1 from S1 to S2.
 3. Compute temp2 ← r2 temp1 at S2

 4. Ship temp2 from S2 to S1.
 5. Compute r1 temp2 at S1. This is the same as r1 r2.

©Silberschatz, Korth and Sudarshan 19.82 Database System Concepts - 6th Edition

Formal Definition
 The semijoin of r1 with r2, is denoted by:
 r1 r2
 it is defined by:
 ∏R1 (r1 r2)
 Thus, r1 r2 selects those tuples of r1 that contributed to r1 r2.
 In step 3 above, temp2=r2 r1.
 For joins of several relations, the above strategy can be extended to a

series of semijoin steps.

©Silberschatz, Korth and Sudarshan 19.83 Database System Concepts - 6th Edition

Join Strategies that Exploit Parallelism

 Consider r1 r2 r3 r4 where relation ri is stored at site Si. The result

must be presented at site S1.

 r1 is shipped to S2 and r1 r2 is computed at S2: simultaneously r3 is
shipped to S4 and r3 r4 is computed at S4

 S2 ships tuples of (r1 r2) to S1 as they produced;
S4 ships tuples of (r3 r4) to S1

 Once tuples of (r1 r2) and (r3 r4) arrive at S1 (r1 r2) (r3 r4) is
computed in parallel with the computation of (r1 r2) at S2 and the
computation of (r3 r4) at S4.

©Silberschatz, Korth and Sudarshan 19.84 Database System Concepts - 6th Edition

Heterogeneous Distributed Databases

 Many database applications require data from a variety of preexisting
databases located in a heterogeneous collection of hardware and
software platforms

 Data models may differ (hierarchical, relational , etc.)
 Transaction commit protocols may be incompatible
 Concurrency control may be based on different techniques (locking,

timestamping, etc.)
 System-level details almost certainly are totally incompatible.
 A multidatabase system is a software layer on top of existing

database systems, which is designed to manipulate information in
heterogeneous databases
 Creates an illusion of logical database integration without any

physical database integration

©Silberschatz, Korth and Sudarshan 19.85 Database System Concepts - 6th Edition

Advantages

 Preservation of investment in existing
 hardware
 system software
 Applications

 Local autonomy and administrative control
 Allows use of special-purpose DBMSs
 Step towards a unified homogeneous DBMS

 Full integration into a homogeneous DBMS faces
 Technical difficulties and cost of conversion
 Organizational/political difficulties

– Organizations do not want to give up control on their data
– Local databases wish to retain a great deal of autonomy

©Silberschatz, Korth and Sudarshan 19.86 Database System Concepts - 6th Edition

Unified View of Data

 Agreement on a common data model
 Typically the relational model

 Agreement on a common conceptual schema
 Different names for same relation/attribute
 Same relation/attribute name means different things

 Agreement on a single representation of shared data
 E.g. data types, precision,
 Character sets

 ASCII vs EBCDIC
 Sort order variations

 Agreement on units of measure
 Variations in names

 E.g. Köln vs Cologne, Mumbai vs Bombay

©Silberschatz, Korth and Sudarshan 19.87 Database System Concepts - 6th Edition

Query Processing

 Several issues in query processing in a heterogeneous database
 Schema translation

 Write a wrapper for each data source to translate data to a global
schema

 Wrappers must also translate updates on global schema to updates on
local schema

 Limited query capabilities
 Some data sources allow only restricted forms of selections

 E.g. web forms, flat file data sources
 Queries have to be broken up and processed partly at the source and

partly at a different site
 Removal of duplicate information when sites have overlapping information

 Decide which sites to execute query
 Global query optimization

©Silberschatz, Korth and Sudarshan 19.88 Database System Concepts - 6th Edition

Mediator Systems

 Mediator systems are systems that integrate multiple heterogeneous
data sources by providing an integrated global view, and providing
query facilities on global view
 Unlike full fledged multidatabase systems, mediators generally do

not bother about transaction processing
 But the terms mediator and multidatabase are sometimes used

interchangeably
 The term virtual database is also used to refer to

mediator/multidatabase systems

©Silberschatz, Korth and Sudarshan 19.89 Database System Concepts - 6th Edition

Transaction Management in Multidatabases

 Local transactions are executed by each local DBMS, outside of the
MDBS system control.

 Global transactions are executed under multidatabase control.
 Local autonomy - local DBMSs cannot communicate directly to

synchronize global transaction execution and the multidatabase has
no control over local transaction execution.
 local concurrency control scheme needed to ensure that DBMS’s

schedule is serializable
 in case of locking, DBMS must be able to guard against local

deadlocks.
 need additional mechanisms to ensure global serializability

©Silberschatz, Korth and Sudarshan 19.90 Database System Concepts - 6th Edition

Local vs. Global Serializability

 The guarantee of local serializability is not sufficient to ensure global
serializability.
 As an illustration, consider two global transactions T1 and T2 ,

each of which accesses and updates two data items, A and B,
located at sites S1 and S2 respectively.

 It is possible to have a situation where, at site S1 , T2 follows T1 ,
whereas, at S2 , T1 follows T2, resulting in a nonserializable
global schedule.

 If the local systems permit control of locking behavior and all systems
follow two-phase locking
 the multidatabase system can ensure that global transactions lock

in a two-phase manner
 the lock points of conflicting transactions would then define their

global serialization order.

©Silberschatz, Korth and Sudarshan 19.91 Database System Concepts - 6th Edition

Cloud Databases

©Silberschatz, Korth and Sudarshan 19.92 Database System Concepts - 6th Edition

Data Storage on the Cloud

 Need to store and retrieve massive amounts of data
 Traditional parallel databases not designed to scale to 1000’s of

nodes (and expensive)
 Initial needs did not include full database functionality

 Store and retrieve data items by key value is minimum
functionality
 Key-value stores

 Several implementations
 Bigtable from Google,
 HBase, an open source clone of Bigtable
 Dynamo, which is a key-value storage system from Amazon
 Cassandra, from FaceBook
 Sherpa/PNUTS from Yahoo!

©Silberschatz, Korth and Sudarshan 19.93 Database System Concepts - 6th Edition

Key Value Stores

 Key-value stores support
 put(key, value): used to store values with an associated key,
 get(key): which retrieves the stored value associated with the

specified key.
 Some systems such as Bigtable additionally provide range queries on

key values
 Multiple versions of data may be stored, by adding a timestamp to the

key

©Silberschatz, Korth and Sudarshan 19.94 Database System Concepts - 6th Edition

Data Representation
 Records in many big data applications need to have a flexible schema

 Not all records have same structure
 Some attributes may have complex substructure

 XML and JSON data representation formats widely used
 An example of a JSON object is:

{
 "ID": "22222",
 "name": {
 "firstname: "Albert",
 "lastname: "Einstein"
 },
 "deptname": "Physics",
 "children": [
 { "firstname": "Hans", "lastname": "Einstein" },
 { "firstname": "Eduard", "lastname": "Einstein" }
]
}

©Silberschatz, Korth and Sudarshan 19.95 Database System Concepts - 6th Edition

Partitioning and Retrieving Data

 Key-value stores partition data into relatively small units (hundreds of
megabytes).

 These partitions are often called tablets (a tablet is a fragment of a table)
 Partitioning of data into tablets is dynamic:

 as data are inserted, if a tablet grows too big, it is broken into smaller
parts

 if the load (get/put operations) on a tablet is excessive, the tablet may be
broken into smaller tablets, which can be distributed across two or more
sites to share the load.

 the number of tablets is much larger than the number of sites
 similar to virtual partitioning in parallel databases

 Each get/put request must be routed to the correct site
 Tablet controller tracks the partitioning function and tablet-to-site mapping

 map a get() request to one or more tablets,
 Tablet mapping function to track which site responsible for which tablet

©Silberschatz, Korth and Sudarshan 19.96 Database System Concepts - 6th Edition

PNUTS Parallel Storage System Architecture

©Silberschatz, Korth and Sudarshan 19.97 Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan 19.98 Database System Concepts - 6th Edition

Distributed Directory Systems

©Silberschatz, Korth and Sudarshan 19.99 Database System Concepts - 6th Edition

Directory Systems

 Typical kinds of directory information
 Employee information such as name, id, email, phone, office addr, ..
 Even personal information to be accessed from multiple places

 e.g. Web browser bookmarks
 White pages

 Entries organized by name or identifier
Meant for forward lookup to find more about an entry

 Yellow pages
 Entries organized by properties
 For reverse lookup to find entries matching specific requirements

 When directories are to be accessed across an organization
 Alternative 1: Web interface. Not great for programs
 Alternative 2: Specialized directory access protocols

 Coupled with specialized user interfaces

©Silberschatz, Korth and Sudarshan 19.100 Database System Concepts - 6th Edition

Directory Access Protocols

 Most commonly used directory access protocol:
 LDAP (Lightweight Directory Access Protocol)
 Simplified from earlier X.500 protocol

 Question: Why not use database protocols like ODBC/JDBC?
 Answer:

 Simplified protocols for a limited type of data access, evolved
parallel to ODBC/JDBC

 Provide a nice hierarchical naming mechanism similar to file
system directories
 Data can be partitioned amongst multiple servers for different

parts of the hierarchy, yet give a single view to user
– E.g. different servers for Bell Labs Murray Hill and Bell Labs

Bangalore
 Directories may use databases as storage mechanism

©Silberschatz, Korth and Sudarshan 19.101 Database System Concepts - 6th Edition

LDAP: Lightweight Directory Access
Protocol

 LDAP Data Model
 Data Manipulation
 Distributed Directory Trees

©Silberschatz, Korth and Sudarshan 19.102 Database System Concepts - 6th Edition

LDAP Data Model

 LDAP directories store entries
 Entries are similar to objects

 Each entry must have unique distinguished name (DN)
 DN made up of a sequence of relative distinguished names (RDNs)
 E.g. of a DN

 cn=Silberschatz, ou-Bell Labs, o=Lucent, c=USA
 Standard RDNs (can be specified as part of schema)

 cn: common name ou: organizational unit
 o: organization c: country

 Similar to paths in a file system but written in reverse direction

©Silberschatz, Korth and Sudarshan 19.103 Database System Concepts - 6th Edition

LDAP Data Model (Cont.)

 Entries can have attributes
 Attributes are multi-valued by default
 LDAP has several built-in types

 Binary, string, time types
 Tel: telephone number PostalAddress: postal address

 LDAP allows definition of object classes
 Object classes specify attribute names and types
 Can use inheritance to define object classes
 Entry can be specified to be of one or more object classes

 No need to have single most-specific type

©Silberschatz, Korth and Sudarshan 19.104 Database System Concepts - 6th Edition

LDAP Data Model (cont.)

 Entries organized into a directory information tree according to their
DNs
 Leaf level usually represent specific objects
 Internal node entries represent objects such as organizational

units, organizations or countries
 Children of a node inherit the DN of the parent, and add on RDNs

 E.g. internal node with DN c=USA
– Children nodes have DN starting with c=USA and further

RDNs such as o or ou
 DN of an entry can be generated by traversing path from root

 Leaf level can be an alias pointing to another entry
 Entries can thus have more than one DN

– E.g. person in more than one organizational unit

©Silberschatz, Korth and Sudarshan 19.105 Database System Concepts - 6th Edition

LDAP Data Manipulation

 Unlike SQL, LDAP does not define DDL or DML
 Instead, it defines a network protocol for DDL and DML

 Users use an API or vendor specific front ends
 LDAP also defines a file format

 LDAP Data Interchange Format (LDIF)
 Querying mechanism is very simple: only selection & projection

©Silberschatz, Korth and Sudarshan 19.106 Database System Concepts - 6th Edition

LDAP Queries

 LDAP query must specify
 Base: a node in the DIT from where search is to start
 A search condition

 Boolean combination of conditions on attributes of entries
– Equality, wild-cards and approximate equality supported

 A scope
 Just the base, the base and its children, or the entire subtree

from the base
 Attributes to be returned
 Limits on number of results and on resource consumption
 May also specify whether to automatically dereference aliases

 LDAP URLs are one way of specifying query
 LDAP API is another alternative

©Silberschatz, Korth and Sudarshan 19.107 Database System Concepts - 6th Edition

LDAP URLs

 First part of URL specifis server and DN of base
 ldap:://aura.research.bell-labs.com/o=Lucent,c=USA

 Optional further parts separated by ? symbol
 ldap:://aura.research.bell-labs.com/o=Lucent,c=USA??sub?cn=Korth
 Optional parts specify

1. attributes to return (empty means all)
2. Scope (sub indicates entire subtree)
3. Search condition (cn=Korth)

©Silberschatz, Korth and Sudarshan 19.108 Database System Concepts - 6th Edition

C Code using LDAP API

 #include <stdio.h>
#include <ldap.h>
main() {
 LDAP *ld;
 LDAPMessage *res, *entry;
 char *dn, *attr, *attrList [] = {“telephoneNumber”, NULL};
 BerElement *ptr;
 int vals, i;
 // Open a connection to server
 ld = ldap_open(“aura.research.bell-labs.com”, LDAP_PORT);
 ldap_simple_bind(ld, “avi”, “avi-passwd”);

 … actual query (next slide) …

 ldap_unbind(ld);
}

©Silberschatz, Korth and Sudarshan 19.109 Database System Concepts - 6th Edition

C Code using LDAP API (Cont.)
 ldap_search_s(ld, “o=Lucent, c=USA”, LDAP_SCOPE_SUBTREE,

 “cn=Korth”, attrList, /* attrsonly*/ 0, &res);
 /*attrsonly = 1 => return only schema not actual results*/
printf(“found%d entries”, ldap_count_entries(ld, res));
for (entry=ldap_first_entry(ld, res); entry != NULL;
 entry=ldap_next_entry(id, entry)) {
 dn = ldap_get_dn(ld, entry);
 printf(“dn: %s”, dn); /* dn: DN of matching entry */
 ldap_memfree(dn);
 for(attr = ldap_first_attribute(ld, entry, &ptr); attr != NULL;
 attr = ldap_next_attribute(ld, entry, ptr))
 { // for each attribute
 printf(“%s:”, attr); // print name of attribute
 vals = ldap_get_values(ld, entry, attr);
 for (i = 0; vals[i] != NULL; i ++)
 printf(“%s”, vals[i]); // since attrs can be multivalued
 ldap_value_free(vals);
 }
}
ldap_msgfree(res);

©Silberschatz, Korth and Sudarshan 19.110 Database System Concepts - 6th Edition

LDAP API (Cont.)

 LDAP API also has functions to create, update and delete entries
 Each function call behaves as a separate transaction

 LDAP does not support atomicity of updates

©Silberschatz, Korth and Sudarshan 19.111 Database System Concepts - 6th Edition

Distributed Directory Trees

 Organizational information may be split into multiple directory information trees
 Suffix of a DIT gives RDN to be tagged onto to all entries to get an overall

DN
 E.g. two DITs, one with suffix o=Lucent, c=USA

 and another with suffix o=Lucent, c=India
 Organizations often split up DITs based on geographical location or by

organizational structure
 Many LDAP implementations support replication (master-slave or multi-

master replication) of DITs (not part of LDAP 3 standard)
 A node in a DIT may be a referral to a node in another DIT

 E.g. Ou= Bell Labs may have a separate DIT, and DIT for o=Lucent may
have a leaf with ou=Bell Labs containing a referral to the Bell Labs DIT

 Referalls are the key to integrating a distributed collection of directories
 When a server gets a query reaching a referral node, it may either

 Forward query to referred DIT and return answer to client, or
 Give referral back to client, which transparently sends query to referred

DIT (without user intervention)

©Silberschatz, Korth and Sudarshan 19.112 Database System Concepts - 6th Edition

End of Chapter

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Extra Slides on 3PC

©Silberschatz, Korth and Sudarshan 19.114 Database System Concepts - 6th Edition

Three Phase Commit (3PC)

 Assumptions:
 No network partitioning
 At any point, at least one site must be up.
 At most K sites (participants as well as coordinator) can fail

 Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.
 Every site is ready to commit if instructed to do so

 Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC
 In phase 2 coordinator makes a decision as in 2PC (called the pre-commit

decision) and records it in multiple (at least K) sites
 In phase 3, coordinator sends commit/abort message to all participating

sites,
 Under 3PC, knowledge of pre-commit decision can be used to commit despite

coordinator failure
 Avoids blocking problem as long as < K sites fail

 Drawbacks:
 higher overheads
 assumptions may not be satisfied in practice

©Silberschatz, Korth and Sudarshan 19.115 Database System Concepts - 6th Edition

Three Phase Commit (3PC)

 Assumptions:
 No network partitioning
 At any point, at least one site must be up.
 At most K sites (participants as well as coordinator) can fail

 Phase 1: Obtaining Preliminary Decision: Identical to 2PC Phase 1.
 Every site is ready to commit if instructed to do so
 Under 2 PC each site is obligated to wait for decision from

coordinator
 Under 3PC, knowledge of pre-commit decision can be used to

commit despite coordinator failure.

©Silberschatz, Korth and Sudarshan 19.116 Database System Concepts - 6th Edition

3PC: Phase 2. Recording the Preliminary
Decision

 Coordinator adds a decision record (<abort T> or
< precommit T>) in its log and forces record to stable storage.

 Coordinator sends a message to each participant informing it of the
decision

 Participant records decision in its log
 If abort decision reached then participant aborts locally
 If pre-commit decision reached then participant replies with

<acknowledge T>

©Silberschatz, Korth and Sudarshan 19.117 Database System Concepts - 6th Edition

3PC: Phase 3. Recording Decision in the
Database

 Executed only if decision in phase 2 was to precommit
 Coordinator collects acknowledgements. It sends <commit T>

message to the participants as soon as it receives K
acknowledgements.

 Coordinator adds the record <commit T> in its log and forces record
to stable storage.

 Coordinator sends a message to each participant to <commit T>
 Participants take appropriate action locally

©Silberschatz, Korth and Sudarshan 19.118 Database System Concepts - 6th Edition

3PC: Handling Site Failure

 Site Failure. Upon recovery, a participating site examines its log and
does the following:
 Log contains <commit T> record: no action
 Log contains <abort T> record: no action
 Log contains <ready T> record, but no <abort T> or <precommit

T> record: site consults Ci to determine the fate of T.
 if Ci says T aborted, site executes undo (T) (and writes

<abort T> record)
 if Ci says T committed, site executes redo (T) (and writes

< commit T> record)
 if c says T committed, site resumes the protocol from receipt of

precommit T message (thus recording <precommit T> in the
log, and sending acknowledge T message sent to
coordinator).

©Silberschatz, Korth and Sudarshan 19.119 Database System Concepts - 6th Edition

3PC: Handling Site Failure (Cont.)

 Log contains <precommit T> record, but no <abort T> or <commit
T>: site consults Ci to determine the fate of T.
 if Ci says T aborted, site executes undo (T)
 if Ci says T committed, site executes redo (T)
 if Ci says T still in precommit state, site resumes protocol at this

point
 Log contains no <ready T> record for a transaction T: site executes

undo (T) writes <abort T> record

©Silberschatz, Korth and Sudarshan 19.120 Database System Concepts - 6th Edition

Figure 19.02

©Silberschatz, Korth and Sudarshan 19.121 Database System Concepts - 6th Edition

Figure 19.03

©Silberschatz, Korth and Sudarshan 19.122 Database System Concepts - 6th Edition

Figure 19.04

©Silberschatz, Korth and Sudarshan 19.123 Database System Concepts - 6th Edition

Figure 19.05

©Silberschatz, Korth and Sudarshan 19.124 Database System Concepts - 6th Edition

Figure 19.06

©Silberschatz, Korth and Sudarshan 19.125 Database System Concepts - 6th Edition

Figure 19.07

