
Non-Standard Database Systems
Graph Databases

Nikolaus Augsten
nikolaus.augsten@sbg.ac.at

FB Computerwissenschaften
Universität Salzburg

http://dbresearch.uni-salzburg.at

Sommersemester 2016
Version 9. Juni 2016

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 1 / 32

Introduction to Graphs

Inhalt

1 Introduction to Graphs

2 Property Graph Model

3 Graph Database Implementations

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 2 / 32

Introduction to Graphs

Storing Data in Graphs – Examples

Name: Alice
Age: 34

Name: Bob
Age: 27

Name: Clare
Age: 29

knows knows

dislikes

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

City: Hannover
Population: 522K

City: Hildesheim
Population: 102K

City: Braunschweig
Population: 248K

35km 45km

65km

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 3 / 32

Introduction to Graphs

Graph Terms

graph G = (V ,E)

V : set of nodes (node = vertex)

E : set of edges

adjacent nodes (=neighbors) are connected with an edge

an edge is incident to a node if it is connected to the node

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 4 / 32

Introduction to Graphs

Different Types of Graphs

simple undirected graph

simple directed graph

undirectred multi-graph

directed multi-graph

weighted graphs

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 5 / 32

Introduction to Graphs

Simple Undirected Graphs

v1

v2

v3

e1 e2

e3
c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

edges are (unordered) two-element subsets of V , e.g.,
{v1, v3} = {v3, v1} ∈ E

complete graph: maximum of n(n−1)
2 edges for n = |V | nodes

(without self-loops)

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 6 / 32

Introduction to Graphs

Simple Directed Graphs

v1

v2

v3

e1 e2

e3

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

edges E ⊆ V × V are (ordered) two-element tuples of V , e.g.,
(v1, v3) ∈ E , (v3, v1) /∈ E

source/tail node of an edge: outgoing (e.g., v1 in (v1, v3))

target/head node of an edge: incoming (e.g., v3 in (v1, v3))

complete graph: maximum of n(n − 1) edges for n = |V | nodes
(without self-loops)

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 7 / 32

Introduction to Graphs

Multigraphs

a pair of nodes may be connected by multiple edges (in the same
direction)

undirected multigraph

v1

v2

v3

e1 e2

e3

e4

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

directed multigraph

v1

v2

v3

e1 e2

e3

e4

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 8 / 32

Introduction to Graphs

Weighted Graph

a weight (e.g., road distance) is assigned to edges

v1

v2

v3

e1 : w1 e2 : w2

e3 : w3

e4 : w4

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 9 / 32

Introduction to Graphs

Graph Traversals

depth-first: visit start node, recursively traverse all un-visited
neighbors in depth-first

breath-first: visit start node (distance 0), visit all neighbors
(distance 1), then all other nodes in increasing distance order

Eulerian path/cycle: visit each edge exactly once

Hamiltonian path/cycle: visit each vertex exactly once

spanning tree: visit each vertex and a subset of edges such that
visited vertices and edges form a tree

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 10 / 32

Introduction to Graphs

Graph Data Structures

edge list

adjacency matrix

incidence matrix

adjacency list

incidence list

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 11 / 32

Introduction to Graphs

Edge List

edge list follows mathematical definition: store edges E and nodes V
as sets

add/delete edge/node are efficient

small memory

most queries inefficient and require search among all edges:

find all neighbors of a node
find incident edges in directed graph
traverse a specific path

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 12 / 32

Introduction to Graphs

Adjacency Matrix

matrix A of size |V | × |V |
element ai ,j is the number of (directed) edges between vi and vj

adjacency matrix for undirected graphs is symmetric

adding/deleting nodes is problematic, adding/deleting edges is
efficient

storage size O(|V |2), large overhead if graph is sparse (small average
degree, i.e., few edges per node)

edge lookup by tail and head nodes is very efficient

finding incident edges requires scanning matrix row or column

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 13 / 32

Introduction to Graphs

Incidence Matrix

matrix B of size |V | × |E |
element bi ,j is 1 if edge ei is incident to vi (-1 for outgoing edge in
directed graph)

adding/deleting nodes/edges is problematic

less memory than adjacency matrix for sparse graphs since no
zero-only columns

storage size may grow to O(|V |3) (since |E | = O(|V |2) in complete
graph)

checking for the existence of an edge between vertex pair is expensive

finding incident edges requires searching matrix row

finding the head for a given edge tail requires searching column

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 14 / 32

Introduction to Graphs

Adjacency List

each vertex stores linked list of incident edges (outgoing edges in
directed graph)

edges are not stored explicitly

adding/deleting nodes/edges is efficient

finding all neighbors is efficient

small memory

checking existence of edge between vertex pair requires search in
adjacency list

finding incoming edges in directed graphs is inefficient (solution:
forward and backward search adjacency list)

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 15 / 32

Introduction to Graphs

Adjacency List – Examples

simple, undirected graph

v1

v2

v3

e1 e2

e3
c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

v1 v2 v3

v2 v1 v3

v3 v1 v2

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

directed multigraph

v1

v2

v3

e1 e2

e3

e4

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

v1 v2 v3 v3

v2 v3

v3

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 16 / 32

Introduction to Graphs

Incidence List

each vertex stores linked list of incident edges (outgoing edges in
directed graph)

edges are listed explicitly such that information can be stored with
edges

finding all neighbors is efficient

small memory

checking existence of edge between vertex pair requires search in
incidence list

finding incoming edges in directed graphs is inefficient (solution:
forward and backward search incidence list)

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 17 / 32

Introduction to Graphs

Incidence List – Examples

simple, undirected graph

v1

v2

v3

e1 e2

e3
c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

v1
e1

{v1, v2}
e3

{v1, v3}

v2
e1

{v1, v2}
e2

{v2, v3}

v3
e3

{v1, v3}
e2

{v2, v3}
c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

directed multigraph

v1

v2

v3

e1 e2

e3

e4

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

v1
e1

(v1, v2)

e3

(v1, v3)

e4

(v1, v3)

v2
e2

(v2, v3)

v3

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 18 / 32

Property Graph Model

Inhalt

1 Introduction to Graphs

2 Property Graph Model

3 Graph Database Implementations

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 19 / 32

Property Graph Model

Property Graph Model

directed, multi-relational, labeled multi-graph

multi-relational

single-relational graph: only one “kind” of nodes/edges
multi-relational graph: nodes and edges have a type

labels

node label is the node type
edge label is the edge type

nodes and edges may have attributes

name:value pairs
name is the key (e.g., age)
value has a domain (e.g., non-negative integer)

each node and each edge has an explicit ID

only one edge of a specific type allowed between a given pair of nodes

restrictions on edges can be defined (e.g., edges of type “likes”
allowed only between nodes of type “person”)

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 20 / 32

Property Graph Model

Property Graph – Social Network Example

Id: 1
Label: Person
Name: Alice
Age: 34

Id: 2
Label: Person
Name: Bob
Age: 27

Id: 3
Label: Person
Name: Charlene
Age: 29

Id: 4

Label: knows

since: 31-21-2009

Id: 5

Label: knows

since: 10-04-2011

Id: 6

Label: dislikes

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 21 / 32

Property Graph Model

Property Graph – Social Network Example

multiple edges between node pair only allowed if they differ by type

Id: 1
Label: Person
Name: Alice
Age: 34

Id: 2
Label: Person
Name: Bob
Age: 27

Id: 3
Label: Person
Name: Charlene
Age: 29

Id: 4

Label: knows

since: 31-21-2009

Id: 5

Label: knows

since: 10-04-2011

Id: 6

Label: dislikes

Id: 7

Label: dislikes (not allowed!)

c© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 22 / 32

Property Graph Model

Storing Property Graphs in Relations

Alternative 1:

Nodes and their attributes:
Node(NodeID, NodeLabel)
Person(NodeID, Name, Age)
πNodeID(Person) ⊆ πNodeID(Node)

Edges and their attributes:
Edge(EdgeID, EdgeLabel, Source, Target)
Knows(EdgeID, Since)
πEdgeID(Knows) ⊆ πEdgeID(Edge)
πSource(Edge) ⊆ πNodeID(Node)
πTarget(Edge) ⊆ πNodeID(Node)

Alternative 2:

General attribute table:
Attributes(ID, Name, Value)
ID is edge or node ID, Name is attribute key

problem: values may be of different type
Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 23 / 32

Graph Database Implementations

Inhalt

1 Introduction to Graphs

2 Property Graph Model

3 Graph Database Implementations

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 24 / 32

Graph Database Implementations

Apache TinkerPop

Java interfaces for property graphs

Gremlin traversal language: queries over TinkerPop graphs

TinkerPop-enabled databases implement these interfaces:1

Hadoop (Giraph) - OLAP graph processor using Giraph
Hadoop (Spark) - OLAP graph processor using Spark
Neo4j - OLTP graph database
Sqlg - RDBMS OLTP implementation with HSQLDB and Postresql
support
TinkerGraph - In-memory OLTP and OLAP reference implementation
Titan - Distributed OLTP and OLAP graph database with BerkeleyDB,
Cassandra and HBase support
. . .

storage backend can be substituted without changing the code

1see http://tinkerpop.incubator.apache.org
Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 25 / 32

Graph Database Implementations

TinkerPop Structure API

Graph: set of edges and vertices

Element: has a label and a collection of properties

Vertex: Element with incoming and outgoing edges

Edge: Element with one incoming and one outgoing vertex

Property: attribute key:value pair, key is of type string,
Property<V> allows only values of type V

VertexProperty: Property with a collection of key value pairs (i.e.,
allows for nested properties)

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 26 / 32

Graph Database Implementations

TinkerPop Structure API – Code Example

Graph g = TinkerGraph.open();

Vertex alice = g.addVertex("name", "Alice");

alice.property("age", 34);

Vertex bob = g.addVertex("name", "Bob");

alice.addEdge("knows", bob, "knows_since", 2010);

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 27 / 32

Graph Database Implementations

TinkerPop Graph Process API

defines “traversals” in the graph

traversal: definition of how the graph should be traversed (starting
with nodes or edges)

returns a GraphTraversal object (iterator)

code example: names of all nodes that Alice knows

g.traversal().V().

has("name","Alice").out("knows").values("name");

Gremlin console is an interpreter for the Gremlin query language

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 28 / 32

Graph Database Implementations

Neo4J

widely used graph database for property graphs

support for ACID transactions (but eventual consistency with replicas)

support for replication

properties

Apache Lucene indices for properties
property names are strings
property values can be strings, booleans, numbers, or arrays

CIPHER query language:

START alice = (people_index, name, "Alice")

MATCH (alice)-[:knows]->(aperson)

RETURN (aperson)

TinkerPop enabled

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 29 / 32

Graph Database Implementations

Neo4J Clusters – Updates and Replication

master node and slaves with full replication

updates on slaves

slave must be up-to-date
acquire lock on slave and master
commit on master first

replication

push from master to slaves
optimistic: commit happens before push is successful
eventual consistency: outdated reads on slave are possible

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 30 / 32

Graph Database Implementations

Neo4J Clusters – Availability

failing nodes are detected and marked

master fails:

other nodes elect new master
master needs quorum
no writes during master election

network partitioning2:

writes only on (strict) majority partition with master
minority partition cannot elect a new master
minority partition with master cannot perform writes
reads are possible in any minority partition

2
see http://neo4j.com/resources/understanding-neo4j-scalability-white-paper/

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 31 / 32

Graph Database Implementations

Resource Description Framework – RDF

RDF stores so-called “linked data”

RDF stores graphs as triples

subject (source node): string or URI
object (target node): string or URI
predicate (edge source→target): string or URI

based on XML

RDF databases are called “triple stores”

RDF3X (based on relations, joins, and B-tree indexes)
Blazegraph - RDF graph database with OLTP support
Oracle Spatial and Graph
. . .

common query language: SPARQL

Augsten (Univ. Salzburg) NSDB – Graph Databases Sommersemester 2016 32 / 32

