Non-Standard Database Systems
Graph Databases

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at
FB Computerwissenschaften
Universitat Salzburg

l\ database
research group
http: //dbresearch.uni-salzburg.at

Sommersemester 2016
Version 9. Juni 2016

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 1/32

Introduction to Graphs

@ Introduction to Graphs

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 2/ 32

Introduction to Graphs

Storing Data in Graphs — Examples

Name: Clare
Age: 29

Name: Alice
Age: 34

dislikes

(© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

City: Braunschweig
Population: 248K

City: Hannover
Population: 522K

City: Hildesheim
Population: 102K

© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB - Graph Databases Sommersemester 2016

Introduction to Graphs

Graph Terms

graph G = (V, E)
V : set of nodes (node = vertex)

E : set of edges
adjacent nodes (=neighbors) are connected with an edge

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 4/ 32

an edge is incident to a node if it is connected to the node

Introduction to Graphs

Different Types of Graphs

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 5/ 32

simple undirected graph
simple directed graph
undirectred multi-graph
directed multi-graph
weighted graphs

Introduction to Graphs

Simple Undirected Graphs

€
1 es

U1 U3
€3

(© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

@ edges are (unordered) two-element subsets of V, e.g.,
{vi,vsf ={w3,n1} € E
n(n—1)

e complete graph: maximum of ==—= edges for n = |V/| nodes
(without self-loops)

Augsten (Univ. Salzburg) NSDB - Graph Databases Sommersemester 2016

Introduction to Graphs
Simple Directed Graphs

(© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

@ edges E C V x V are (ordered) two-element tuples of V, e.g.,
(vi,w3) € E,(v3,v1) ¢ E

@ source/tail node of an edge: outgoing (e.g., v1 in (v1, v3))

o target/head node of an edge: incoming (e.g., v3 in (v1, v3))

@ complete graph: maximum of n(n — 1) edges for n = |V/| nodes
(without self-loops)

Augsten (Univ. Salzburg) NSDB - Graph Databases Sommersemester 2016

Introduction to Graphs

Multigraphs

@ a pair of nodes may be connected by multiple edges (in the same
direction)

@ undirected multigraph

€1 @

€4
© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

@ directed multigraph

© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 8/ 32

Introduction to Graphs

Weighted Graph

@ a weight (e.g., road distance) is assigned to edges

€4 . Wy

© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB - Graph Databases Sommersemester 2016

Introduction to Graphs

Graph Traversals

@ depth-first: visit start node, recursively traverse all un-visited
neighbors in depth-first

@ breath-first: visit start node (distance 0), visit all neighbors
(distance 1), then all other nodes in increasing distance order

@ Eulerian path/cycle: visit each edge exactly once
@ Hamiltonian path/cycle: visit each vertex exactly once

@ spanning tree: visit each vertex and a subset of edges such that
visited vertices and edges form a tree

Augsten (Univ. Salzburg) NSDB - Graph Databases Sommersemester 2016

Introduction to Graphs

Graph Data Structures
o
o
o
o
o

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 11 / 32

edge list
adjacency matrix
incidence matrix
adjacency list

Incidence list

Introduction to Graphs

Edge List

@ edge list follows mathematical definition: store edges E and nodes V
as sets

@ add/delete edge/node are efficient

@ small memory

@ most queries inefficient and require search among all edges:

e find all neighbors of a node
e find incident edges in directed graph
e traverse a specific path

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 12 / 32

Introduction to Graphs

Adjacency Matrix

matrix A of size |V| x |V/|
element a;; is the number of (directed) edges between v; and v;
adjacency matrix for undirected graphs is symmetric

adding/deleting nodes is problematic, adding/deleting edges is
efficient

e storage size O(|V/|?), large overhead if graph is sparse (small average
degree, i.e., few edges per node)

@ edge lookup by tail and head nodes is very efficient

e finding incident edges requires scanning matrix row or column

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 13 / 32

Introduction to Graphs
Incidence Matrix

@ matrix B of size |V| x |E|

@ element b;; is 1 if edge ¢ is incident to v; (-1 for outgoing edge in
directed graph)

@ adding/deleting nodes/edges is problematic

@ less memory than adjacency matrix for sparse graphs since no
zero-only columns

e storage size may grow to O(|V|?) (since |E| = O(|V/|?) in complete
graph)

@ checking for the existence of an edge between vertex pair is expensive

e finding incident edges requires searching matrix row

@ finding the head for a given edge tail requires searching column

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 14 / 32

Introduction to Graphs

Adjacency List

@ each vertex stores linked list of incident edges (outgoing edges in
directed graph)

edges are not stored explicitly
adding/deleting nodes/edges is efficient
finding all neighbors is efficient

small memory

checking existence of edge between vertex pair requires search in
adjacency list

e finding incoming edges in directed graphs is inefficient (solution:
forward and backward search adjacency list)

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 15 / 32

Introduction to Graphs

Adjacency List — Examples

@ simple, undirected graph

B {2} (7]
c B (o))
o ; E B o} —{v]

(© Lena Wiese: Advanced Data Management, DeGruyter, 2015. (© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

€1

@ directed multigraph

€1 @

€2
o) B
e

(© Lena Wiese: Advanced Data Management, DeGruyter, 2015. (©) Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 16 / 32

Introduction to Graphs

Incidence List

@ each vertex stores linked list of incident edges (outgoing edges in
directed graph)

@ edges are listed explicitly such that information can be stored with
edges

e finding all neighbors is efficient
@ small memory

@ checking existence of edge between vertex pair requires search in
incidence list

e finding incoming edges in directed graphs is inefficient (solution:
forward and backward search incidence list)

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 17 / 32

Introduction to Graphs

Incidence List — Examples

@ simple, undirected graph

€1 €3

—
{U17v2} {’1)1,’1)3}

€1 €2
—
{U17U2} {’1)2, ’U3}
e
; €2 €3 €2
—
U1 U3 {Ul,’l)g} {’1)2, 1)3}

€3
(© Lena Wiese: Advanced Data Management, DeGruyter, 2015. (© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

@ directed multigraph

€1 €3 €4

EH
!
!

1

(v1,v2) (v1,v3) (v1,v3)

(e @ es €92

" O =
€3
€4

(© Lena Wiese: Advanced Data Management, DeGruyter, 2015. (©) Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 18 / 32

Property Graph Model

© Property Graph Model

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 19 / 32

Property Graph Model
Property Graph Model

@ directed, multi-relational, labeled multi-graph

@ multi-relational

o single-relational graph: only one “kind” of nodes/edges
e multi-relational graph: nodes and edges have a type

@ labels

e node label is the node type
e edge label is the edge type

@ nodes and edges may have attributes

e name:value pairs
e name is the key (e.g., age)
o value has a domain (e.g., non-negative integer)

@ each node and each edge has an explicit 1D
@ only one edge of a specific type allowed between a given pair of nodes

@ restrictions on edges can be defined (e.g., edges of type “likes”
allowed only between nodes of type “person”)

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 20 / 32

Property Graph Model

Property Graph — Social Network Example

Id: 2
Label: Person
Name: Bob

Id: 4 Age: 27

Label: knows
since: 31-21-2009

Id: 5
Label: knows
since: 10-04-2011

Id: 1
Label: Person

Name: Alice
Age: 34

Id: 3
Label: Person

Name: Charlene
Age: 29

Id: 6
Label: dislikes

(© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 21 / 32

Property Graph Model

Property Graph — Social Network Example

@ multiple edges between node pair only allowed if they differ by type

Id: 2
Label: Person
Name: Bob

Age: 27

Id: 4
Label: knows
since: 31-21-2009

Id: 5
Label: knows
since: 10-04-2011

Id: 1
Label: Person

Name: Alice
Age: 34

Id: 3
Label: Person

Name: Charlene
Age: 29

Id: 6
Label: dislikes

Id: 7
Label: dislikes (not allowed!)

(© Lena Wiese: Advanced Data Management, DeGruyter, 2015.

Augsten (Univ. Salzburg) NSDB - Graph Databases Sommersemester 2016

Property Graph Model

Storing Property Graphs in Relations

Alternative 1:

@ Nodes and their attributes:
Node(NodelD, NodelLabel)
Person(NodelD, Name, Age)
TNodelD(Person) € modeip(Node)

@ Edges and their attributes:
Edge(EdgelD, Edgelabel, Source, Target)
Knows(EdgelD, Since)

TEdgelD (Knows) C Teqgeip(Edge)
7"'Source(Edge) C 7"'NodeID(NOde)
7"-Target(Edge) C 7"-NodeID(NOde)
Alternative 2:
@ General attribute table:
Attributes(ID, Name, Value)
ID is edge or node ID, Name is attribute key

@ problem: values may be of different type

Sommersemester 2016

23 / 32

Augsten (Univ. Salzburg) NSDB — Graph Databases

Graph Database Implementations

© Graph Database Implementations

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 24 / 32

Graph Database Implementations
Apache TinkerPop

@ Java interfaces for property graphs

@ Gremlin traversal language: queries over TinkerPop graphs

o TinkerPop-enabled databases implement these interfaces:!

Hadoop (Giraph) - OLAP graph processor using Giraph

Hadoop (Spark) - OLAP graph processor using Spark

Neo4j - OLTP graph database

Sqlg - RDBMS OLTP implementation with HSQLDB and Postresq|

support

e TinkerGraph - In-memory OLTP and OLAP reference implementation

e Titan - Distributed OLTP and OLAP graph database with BerkeleyDB,
Cassandra and HBase support

o ...

@ storage backend can be substituted without changing the code

'see http://tinkerpop.incubator.apache.org
Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 25 / 32

Graph Database Implementations

TinkerPop Structure API

Graph: set of edges and vertices

Element: has a label and a collection of properties
Vertex: Element with incoming and outgoing edges

Edge: Element with one incoming and one outgoing vertex
Property: attribute key:value pair, key is of type string,
Property<V> allows only values of type V

@ VertexProperty: Property with a collection of key value pairs (i.e.,
allows for nested properties)

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 26 / 32

Graph Database Implementations

TinkerPop Structure APl — Code Example

Graph g = TinkerGraph.open();

Vertex alice = g.addVertex("name", "Alice");
alice.property("age", 34);

Vertex bob = g.addVertex("name", "Bob");
alice.addEdge ("knows", bob, "knows_since", 2010);

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 27 / 32

Graph Database Implementations

TinkerPop Graph Process API

@ defines “traversals” in the graph

o traversal: definition of how the graph should be traversed (starting
with nodes or edges)

@ returns a GraphTraversal object (iterator)
@ code example: names of all nodes that Alice knows

g.traversal () .V().
has("name","Alice") .out("knows") .values("name") ;

@ Gremlin console is an interpreter for the Gremlin query language

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 28 / 32

Graph Database Implementations
Neo4dJ

widely used graph database for property graphs
support for ACID transactions (but eventual consistency with replicas)

support for replication

properties

e Apache Lucene indices for properties
e property names are strings
e property values can be strings, booleans, numbers, or arrays

e CIPHER query language:

START alice = (people_index, name, "Alice")
MATCH (alice)-[:knows]->(aperson)
RETURN (aperson)

@ TinkerPop enabled

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 29 / 32

Graph Database Implementations

Neo4J Clusters — Updates and Replication

@ master node and slaves with full replication

@ updates on slaves

e slave must be up-to-date
e acquire lock on slave and master
e commit on master first

@ replication

e push from master to slaves
e optimistic: commit happens before push is successful
e eventual consistency: outdated reads on slave are possible

Augsten (Univ. Salzburg) NSDB — Graph Databases Sommersemester 2016 30 / 32

Graph Database Implementations

Neo4J Clusters — Availability

e failing nodes are detected and marked
@ master fails:

e other nodes elect new master
e master needs quorum
e no writes during master election

@ network partitioning?®:

writes only on (strict) majority partition with master
minority partition cannot elect a new master
minority partition with master cannot perform writes
reads are possible in any minority partition

see http://neo4j.com/resources/understanding-neo4j-scalability-white-paper/

Augsten (Univ. Salzburg) NSDB - Graph Databases Sommersemester 2016

Graph Database Implementations

Resource Description Framework — RDF

@ RDF stores so-called “linked data”

@ RDF stores graphs as triples

o subject (source node): string or URI
o object (target node): string or URI
o predicate (edge source—target): string or URI

@ based on XML
@ RDF databases are called “triple stores”

Oracle Spatial and Graph

@ common query language: SPARQL

Augsten (Univ. Salzburg) NSDB — Graph Databases

RDF3X (based on relations, joins, and B-tree indexes)
Blazegraph - RDF graph database with OLTP support

Sommersemester 2016

