
Database Tuning
Query Tuning

Nikolaus Augsten

University of Salzburg
Department of Computer Science

Database Group

Unit 2 – WS 2016/17

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 1 / 58

Query Tuning

Outline

1 Query Tuning
Query Processing
Problematic Queries
Minimizing DISTINCTs
Rewriting of Nested Queries

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 2 / 58

Query Tuning

About Query Tuning

Query tuning: rewrite a query to run faster!

Other tuning approaches may have harmful side effects:

adding index
changing the schema
modify transaction length

Query tuning: only beneficial side effects

first thing to do if query is slow!

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 3 / 58

Query Tuning Query Processing

Outline

1 Query Tuning
Query Processing
Problematic Queries
Minimizing DISTINCTs
Rewriting of Nested Queries

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 4 / 58



Query Tuning Query Processing

Steps in Query Processing

1. Parser

input: SQL query
output: relational algebra expression

2. Optimizer

input: relational algebra expression
output: query plan

3. Execution engine

input: query plan
output: query result

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 5 / 58

Query Tuning Query Processing

1. Parser

Parser:

Input: SQL query from user
Example: SELECT balanace

FROM account

WHERE balance < 2500

Output: relational algebra expression
Example: σbalance<2500(Πbalance(account))

Algebra expression for a given query not unique!
Example: The following relational algebra expressions are equivalent.

σbalance<2500(Πbalance(account))
Πbalance(σbalance<2500(account))

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 6 / 58

Query Tuning Query Processing

2. Optimizer

Optimizer:

Input: relational algebra expression
Example: Πbalance(σbalance<2500(account))

Output: query plan
Example: Πbalance

σbalance<2500

use index 1

account

query plan is selected in three steps:

A) equivalence transformation
B) annotation of the relational algebra expression
C) cost estimation for different query plans

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 7 / 58

Query Tuning Query Processing

A) Equivalence Transformation

Equivalence of relational algebra expressions:

equivalent if they generate the same set of tuples on every legal
database instance
legal: database satisfies all integrity constraints specified in the
database schema

Equivalence rules:

transform one relational algebra expression into equivalent one
similar to numeric algebra: a + b = b + a, a(b + c) = ab + ac , etc.

Why producing equivalent expressions?

equivalent algebraic expressions give the same result
but usually the execution time varies significantly

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 8 / 58



Query Tuning Query Processing

Equivalence Rules – Examples

Selection operations are commutative: σθ1(σθ2(E )) = σθ2(σθ1(E ))

E is a relation (table)
θ1 and θ2 are conditions on attributes, e.g. E .sallary < 2500
σθ selects all tuples that satisfy θ

Selection distributes over the theta-join operation if θ1 involves only
attributes of E1 and θ2 only attributes of E2:

σθ1∧θ2(E1 onθ E2) = (σθ1(E1)) onθ (σθ2(E2))

onθ is the theta-join; it pairs tuples from the input relations (e.g., E1

and E2) that satisfy condition θ, e.g. E1.accountID = E2.ID

Natural join is associative: (E1 on E2) on E3 = E1 on (E2 on E3)

the join condition in the natural join is equality on all attributes of the
two input relations that have the same name

Many other rules can be found in Silberschatz et al.,“Database
System Concepts”

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 9 / 58

Query Tuning Query Processing

Equivalence Rules – Example Query

Schema:
branch(branch-name, branch-city, assets)
account(account-number, branch-name, balance)
depositor(customer-name,account-number)

Query:
SELECT customer-name
FROM branch, account, depositor
WHERE branch-city=Brooklyn AND

balance < 1000 AND
branch.branch-name = account.branch-name AND
account.account-number = depositor.account-number

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 10 / 58

Query Tuning Query Processing

Equivalence Rules – Example Query

Equivalent relational algebra expressions:

Πcustomer-name

σbranch-city = Brooklyn
∧ balance < 1000

on

branch on
account depositor

=

Πcustomer-name

on

on

σbranch-city=Brooklyn

branch

σbalance<1000

account

depositor

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 11 / 58

Query Tuning Query Processing

B) Annotation: Creating Query Plans

Algebra expression is not a query plan.

Additional decisions required:

which indexes to use, for example, for joins and selects?
which algorithms to use, for example, sort-merge vs. hash join?
materialize intermediate results or pipeline them?
etc.

Each relational algebra expression can result in many query plans.

Some query plans may be better than others!

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 12 / 58



Query Tuning Query Processing

Query Plan – Example

query plan of our example query:
(account physically sorted by branch-name; index 1 on branch-city sorts

records with same value of branch-city by branch-name)

Πcustomer-name

on
hash join

on
merge join

σbranch-city=Brooklyn
use index 1

branch

pipeline

σbalance<1000
use linear scan

account

pipeline

depositor

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 13 / 58

Query Tuning Query Processing

C) Cost Estimation

Which query plan is the fastest one?

This is a very hard problem:

cost for each query plan can only be estimated
huge number of query plans may exist

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 14 / 58

Query Tuning Query Processing

Statistics for Cost Estimation

Catalog information: database maintains statistics about relations

Example statistics:

number of tuples per relation
number of blocks on disk per relation
number of distinct values per attribute
histogram of values per attribute

Statistics used to estimate cost of operations, for example

selection size estimation
join size estimation
projection size estimation

Problems:

cost can only be estimated
updating statistics is expensive, thus they are often out of date

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 15 / 58

Query Tuning Query Processing

Choosing the Cheapest Query Plan

Problem: Estimating cost for all possible plans too expensive.

Solutions:

pruning: stop early to evaluate a plan
heuristics: do not evaluate all plans

Real databases use a combination:

Apply heuristics to choose promising query plans.
Choose cheapest plan among the promising plans using pruning.

Examples of heuristics:

perform selections as early as possible
perform projections early
avoid Cartesian products

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 16 / 58



Query Tuning Query Processing

3. Execution Engine

The execution engine

receives query plan from optimizer

executes plan and returns query result to user

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 17 / 58

Query Tuning Query Processing

Query Tuning and Query Optimization

Optimizers are not perfect:

transformations produce only a subset of all possible query plans
only a subset of possible annotations might be considered
cost of query plans can only be estimated

Query Tuning: Make life easier for your query optimizer!

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 18 / 58

Query Tuning Problematic Queries

Outline

1 Query Tuning
Query Processing
Problematic Queries
Minimizing DISTINCTs
Rewriting of Nested Queries

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 19 / 58

Query Tuning Problematic Queries

Which Queries Should Be Rewritten?

Rewrite queries that run “too slow”

How to find these queries?

query issues far too many disc accesses,
for example, point query scans an entire table
you look at the query plan and see that relevant indexes are not used

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 20 / 58



Query Tuning Problematic Queries

Running Example

Employee(ssnum,name,manager,dept,salary,numfriends)

clustering index on ssnum

non-clustering index on name

non-clustering index on dept

keys: ssnum, name

Students(ssnum,name,course,grade)

clustering index on ssnum

non-clustering index on name

keys: ssnum, name

Techdept(dept,manager,location)

clustering index on dept

key: dept

manager may manage many departments
a location may contain many departments

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 21 / 58

Query Tuning Problematic Queries

DISTINCT

How can DISTINCT hurt?

DISTINCT forces sort or other overhead.
If not necessary, it should be avoided.

Query: Find employees who work in the information systems
department.

SELECT DISTINCT ssnum

FROM Employee

WHERE dept = ’information systems’

DISTINCT not necessary:

ssnum is a key of Employee, so it is also a key of a subset of Employee.
Note: Since an index is defined on ssnum, there is likely to be no
overhead in this particular examples.

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 22 / 58

Query Tuning Problematic Queries

Non-Correlated Subqueries

Many systems handle subqueries inefficiently.

Non-correlated: attributes of outer query not used in inner query.

Query:

SELECT ssnum

FROM Employee

WHERE dept IN (SELECT dept FROM Techdept)

May lead to inefficient evaluation:
check for each employee whether they are in Techdept
index on Employee.dept not used!

Equivalent query:

SELECT ssnum

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

Efficient evaluation:
look up employees for each dept in Techdept
use index on Employee.dept

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 23 / 58

Query Tuning Problematic Queries

Temporary Tables

Temporary tables can hurt in the following ways:

force operations to be performed in suboptimal order
(optimizer often does a very good job!)
creating temporary tables i.s.s.1 causes catalog update – possible
concurrency control bottleneck
system may miss opportunity to use index

Temporary tables are good:

to rewrite complicated correlated subqueries
to avoid ORDER BYs and scans in specific cases (see example)

1in some systems
Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 24 / 58



Query Tuning Problematic Queries

Unnecessary Temporary Table

Query: Find all IT department employees who earn more than 40000.

SELECT * INTO Temp

FROM Employee

WHERE salary > 40000

SELECT ssnum

FROM Temp

WHERE Temp.dept = ’IT’

Inefficient SQL:

index on dept can not be used
overhead to create Temp table (materialization vs. pipelining)

Efficient SQL:

SELECT ssnum

FROM Employee

WHERE Employee.dept = ’IT’

AND salary > 40000

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 25 / 58

Query Tuning Problematic Queries

Joins: Use Clustering Indexes and Numeric Values

Query: Find all students who are also employees.

Inefficient SQL:

SELECT Employee.ssnum

FROM Employee, Student

WHERE Employee.name = Student.name

Efficient SQL:

SELECT Employee.ssnum

FROM Employee, Student

WHERE Employee.ssnum = Student.ssnum

Benefits:

Join on two clustering indexes allows merge join (fast!).
Numerical equality is faster evaluated than string equality.

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 26 / 58

Query Tuning Problematic Queries

Don’t use HAVING where WHERE is enough

Query: Find average salary of the IT department.

Inefficient SQL:

SELECT AVG(salary) as avgsalary, dept

FROM Employee

GROUP BY dept

HAVING dept = ’IT’

Problem: May first compute average for employees of all departments.

Efficient SQL: Compute average only for relevant employees.

SELECT AVG(salary) as avgsalary, dept

FROM Employee

WHERE dept = ’IT’

GROUP BY dept

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 27 / 58

Query Tuning Problematic Queries

Use Views with Care (I/II)

Views: macros for queries
queries look simpler
but are never faster and sometimes slower

Creating a view:

CREATE VIEW Techlocation

AS SELECT ssnum, Techdept.dept, location

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

Using the view:

SELECT location

FROM Techlocation

WHERE ssnum = 452354786

System expands view and executes:

SELECT location

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

AND ssnum = 452354786

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 28 / 58



Query Tuning Problematic Queries

Use Views with Care (II/II)

Query: Get the department name for the employee with social
security number 452354786 (who works in a technical department).

Example of an inefficient SQL:

SELECT dept

FROM Techlocation

WHERE ssnum = 452354786

This SQL expands to:

SELECT Techdept.dept

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

AND ssnum = 452354786

But there is a more efficient SQL (no join!) doing the same thing:

SELECT dept

FROM Employee

WHERE ssnum = 452354786

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 29 / 58

Query Tuning Problematic Queries

System Peculiarity: Indexes and OR

Some systems never use indexes when conditions are OR-connected.

Query: Find employees with name Smith or who are in the
acquisitions department.

SELECT Employee.ssnum

FROM Employee

WHERE Employee.name = ’Smith’

OR Employee.dept = ’acquisitions’

Fix: use UNION instead of OR

SELECT Employee.ssnum

FROM Employee

WHERE Employee.name = ’Smith’

UNION

SELECT Employee.ssnum

FROM Employee

WHERE Employee.dept = ’acquisitions’

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 30 / 58

Query Tuning Problematic Queries

System Peculiarity: Order in FROM clause

Order in FROM clause should be irrelevant.

However: For long joins (e.g., more than 8 tables) and in some
systems the order matters.

How to figure out? Check query plan!

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 31 / 58

Query Tuning Problematic Queries

Experimental Evaluation

Throughput increase in percent.

>10000

10

0

10

20

30

40

50

60

70

80

dist
in

ct

su
bq

uer
ies

co
rre

lat
ed

 su
bquer

y

join 
an

d nu
mer

ic 
att

rib
ute

join 
an

d cl
uste

re
d in

dex
hav

ing
vie

w
T

h
ro

u
g

h
p

u
t r

at
io

SQLServer 2000
Oracle 8i
DB2 V7.1

Running Example: 100k employees, 100k students, 10 technical departments
Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 32 / 58



Query Tuning Minimizing DISTINCTs

Outline

1 Query Tuning
Query Processing
Problematic Queries
Minimizing DISTINCTs
Rewriting of Nested Queries

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 33 / 58

Query Tuning Minimizing DISTINCTs

About Query Tuning

DISTINCT removes duplicate tuples from the query result.

Goal: avoid DISTINCT if possible!

How to know if DISTINCT is necessary?

We use the notions of

privileged tables and
reachability

to decide whether there can be duplicates in the query result.

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 34 / 58

Query Tuning Minimizing DISTINCTs

Privileged Tables

Privileged table: Attributes returned by SELECT clause contain a key.

Example: Get the social security numbers of all employees that work
in a technical department.

SELECT ssnum

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

Employee is a privileged table:

the SELECT clause projects the attribute ssnum

ssnum is a key of Employee

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 35 / 58

Query Tuning Minimizing DISTINCTs

Reachability

R and S are tables

R reaches S if

R and S are joined on equality and
the join attribute in R is a key of R

Intuition: A tuple from S is joined to at most one tuple from R.

Reachability is transitive: if A reaches B and B reaches C then A
reaches C .

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 36 / 58



Query Tuning Minimizing DISTINCTs

Reachability – Example

Previous Example: Get the social security numbers of all employees
that work in a technical department.

SELECT ssnum

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

Techdept reaches Employee:

Techdept and Employee are joined on equality
dept is a key of Techdept

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 37 / 58

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee

A query returns no duplicates if the following conditions hold:

Every attribute in the SELECT clause is from a privileged table.
Every unprivileged table reaches at least one privileged one.

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 38 / 58

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee – Examples

This query may return duplicates:

SELECT ssnum

FROM Employee, Techdept

WHERE Employee.manager = Techdept.manager

Reason:

manager is not a key of Techdept
thus Techdept does not reach privileged table Employee

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 39 / 58

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee – Examples

This query returns no duplicates:

SELECT ssnum, Techdept.dept

FROM Employee, Techdept

WHERE Employee.manager = Techdept.manager

Reason: different from previous example,

both Techdept and Employee are privileged table

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 40 / 58



Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee – Examples

This query also returns no duplicates:

SELECT ssnum, Techdept.dept

FROM Employee, Techdept

Reason: as before,

both Techdept and Employee are privileged table

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 41 / 58

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee – Examples

This query returns no duplicates:
(even if Student.name is not a key)

SELECT Student.ssnum

FROM Student, Employee, Techdept

WHERE Student.name = Employee.name

AND Employee.dept = Techdept.dept

Reason:

join attribute Employee.name is a key, thus Employee reaches
privileged table Student

join attribute Techdept.dept is a key thus Techdept reaches
Employee

transitivity: Techdept reaches Employee and Employee reaches
Student, thus Techdept reaches Student

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 42 / 58

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee – Examples

This query returns duplicates:
(even if Student.name is a key)

SELECT Student.ssnum

FROM Student, Employee, Techdept

WHERE Student.name = Employee.name

AND Employee.manager = Techdept.manager

Reason:

join attribute Techdept.manager is not key
thus Techdept does not reach Employee (and Student)

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 43 / 58

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee – Examples

Try the example queries on the following instance (keys underlined):

Employee(ssnum, name, manager, dept)

ssnum name manager dept

1 Peter John IT
2 Rose Mary Development

Techdept(dept, manager)

dept manager

IT John
Development Mary
Production John

Students(ssnum, name)
ssnum name

5 Peter
6 Peter

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 44 / 58



Query Tuning Rewriting of Nested Queries

Outline

1 Query Tuning
Query Processing
Problematic Queries
Minimizing DISTINCTs
Rewriting of Nested Queries

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 45 / 58

Query Tuning Rewriting of Nested Queries

Types of Nested Queries

Uncorrelated subqueries

with aggregates in the inner query

SELECT ssnum

FROM Employee

WHERE salary > (SELECT AVG(salary) FROM Employee)

without aggregates in the inner query

SELECT ssnum

FROM Employee

WHERE dept IN (SELECT dept FROM Techdept)

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 46 / 58

Query Tuning Rewriting of Nested Queries

Types of Nested Queries

Correlated subqueries

with aggregates in the inner query

SELECT ssnum

FROM Employee e1, Techdept

WHERE salary = (SELECT AVG(e2.salary)

FROM Employee e2, Techdept

WHERE e2.dept = e1.dept

AND e2.dept = Techdept.dept)

without aggregates in the inner query (uncommon)

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 47 / 58

Query Tuning Rewriting of Nested Queries

Uncorrelated Subquery with Aggregates

Uncorrelated subqueries with aggregate in the inner query:

SELECT ssnum

FROM Employee

WHERE salary > (SELECT AVG(salary) FROM Employee)

Not problematic:

Result of inner query is a single value (constant).
Most systems will first execute the inner query and then substitute it
with the resulting constant.

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 48 / 58



Query Tuning Rewriting of Nested Queries

Uncorrelated Subquery without Aggregates

Uncorrelated subqueries without aggregate in the inner query:

SELECT ssnum

FROM Employee

WHERE dept IN (SELECT dept FROM Techdept)

Some systems might not use index on Employee.dept.

Unnested query:

SELECT ssnum

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 49 / 58

Query Tuning Rewriting of Nested Queries

Uncorrelated Subquery without Aggregates

Unnesting strategy:

1. Combine the arguments of the two FROM clauses.
2. AND together the WHERE clauses.
3. Replace “outer.attr1 IN (SELECT inner.attr2 ...)” with

“outer.attr1 = inner.attr2” in the WHERE clause.
4. Retain the SELECT clause from the outer block.

Strategy works for nesting of any depth.

Note: If inner table does not reach outer table in new join
condition, new duplicates may appear.

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 50 / 58

Query Tuning Rewriting of Nested Queries

Duplicates in Unnested Queries – Examples

Nested query:

SELECT AVG(salary)

FROM Employee

WHERE dept IN (SELECT dept FROM Techdept)

Unnested query:

SELECT AVG(salary)

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

Unnesting is correct:

Techdept reaches Employee, thus no duplicates are introduced
each salary appears once in average

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 51 / 58

Query Tuning Rewriting of Nested Queries

Duplicates in Unnested Queries – Examples

Nested query:

SELECT AVG(salary)

FROM Employee

WHERE manager IN (SELECT manager FROM Techdept)

Unnested query:

SELECT AVG(salary)

FROM Employee, Techdept

WHERE Employee.manager = Techdept.manager

Unnesting is not correct:

Techdept does not reach Employee, thus duplicates possible
some salaries might appears multiple times in the average

Note: Duplicates do not matter for aggregates like MIN and MAX.

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 52 / 58



Query Tuning Rewriting of Nested Queries

Duplicates in Unnested Queries – Examples

Solutions for following query?

SELECT AVG(salary)

FROM Employee

WHERE manager IN (SELECT manager FROM Techdept)

A) Derived table:

SELECT AVG(salary)

FROM Employee, (SELECT DISTINCT manager FROM Techdept) AS T

WHERE Employee.manager = T.manager

B) Temporary table:

SELECT DISTINCT manager INTO Temp

FROM Techdept

SELECT AVG(salary)

FROM Employee, Temp

WHERE Employee.manager = Temp.manager

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 53 / 58

Query Tuning Rewriting of Nested Queries

Correlated Subqueries with Aggregates

Correlated subquery with aggregates in the inner query:

SELECT ssnum

FROM Employee e1, Techdept

WHERE salary = (SELECT AVG(e2.salary)

FROM Employee e2, Techdept

WHERE e2.dept = e1.dept

AND e2.dept = Techdept.dept)

Inefficient in many systems.

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 54 / 58

Query Tuning Rewriting of Nested Queries

Strategy for Rewriting Query

SELECT ssnum

FROM Employee e1, Techdept

WHERE salary = (SELECT AVG(e2.salary)

FROM Employee e2, Techdept

WHERE e2.dept = e1.dept

AND e2.dept = Techdept.dept)

1. Create temporary table:

GROUP BY on correlated attribute of inner query (must be equality!).
Use uncorrelated qualifications of inner query for WHERE clause.

SELECT AVG(salary) as avsalary, Employee.dept INTO Temp

FROM Employee e2, Techdept

WHERE e2.dept = Techdept.dept

GROUP BY e2.dept

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 55 / 58

Query Tuning Rewriting of Nested Queries

Strategy for Rewriting Query

SELECT ssnum

FROM Employee e1, Techdept

WHERE salary = (SELECT AVG(e2.salary)... WHERE e2.dept = e1.dept ...)

SELECT AVG(salary) as avsalary, Employee.dept INTO Temp

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

GROUP BY Employee.dept

2. Join temporary table with outer query:
Condition on the grouped attribute replaces correlation condition.
Depending attribute of grouping replaces subquery.
All other qualifications of outer query remain (none in example).

SELECT ssnum

FROM Employee e1, Temp

WHERE salary = avsalary

AND e1.dept = Temp.dept;

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 56 / 58



Query Tuning Rewriting of Nested Queries

The Count Bug

Correlated subquery with COUNT aggregate in the inner query:
SELECT ssnum

FROM Employee e1, Techdept

WHERE numfriends = COUNT(SELECT e2.ssnum

FROM Employee e2, Techdept

WHERE e2.dept = e1.dept

AND e2.dept = Techdept.dept)

Rewrite with temporary table:
SELECT COUNT(ssnum) as numcolleagues, Employee.dept INTO Temp

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

GROUP BY Employee.dept

SELECT ssnum

FROM Employee, Temp

WHERE numfriends = numcolleagues

AND Employee.dept = Temp.dept;

What is going wrong?

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 57 / 58

Query Tuning Rewriting of Nested Queries

The Count Bug

Consider for example an employee Jane:

Jane is not in a technical department (Techdept).
Jane has no friends (Employee.numfriends = 0)

Original (nested) query:

since Jane is not in a technical department, inner query is empty
but COUNT(∅)=0, thus Jane is in the result set!

Rewritten query with temporary table:

Jane not in a technical department and does not survive the join
thus Jane is not in the result set

Nikolaus Augsten (DIS) DBT – Query Tuning Unit 2 – WS 2016/17 58 / 58


