
IT Security
Database Authorization

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at

Dept. of Computer Sciences
University of Salzburg

Winter Semester 2016/17

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 1 / 39

Table of Contents

1 Introduction

2 Access Control Models

3 Authorization in SQL

4 Application Security

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 2 / 39

Introduction

Table of Contents

1 Introduction

2 Access Control Models

3 Authorization in SQL

4 Application Security

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 3 / 39

Introduction

All infos about the database part in this lecture

http://dbresearch.uni-salzburg.at/teaching/2016ws/its/

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 4 / 39

Introduction

Acknowledgments

The sections “Authorization in SQL” and “Application Security” are
adapted with kind permission from Sven Helmer’s slides on these topics:

http://www.inf.unibz.it/dis/teaching/DBS/

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 5 / 39

Access Control Models

Table of Contents

1 Introduction

2 Access Control Models

3 Authorization in SQL

4 Application Security

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 6 / 39

Access Control Models

Access Control Models

Discretionary Access Control (DAC)

File permissions in Unix (read/write/execute for user, group, and
others)
ACL: Access Control List (supported by Windows since NT and many
Unix file systems)
RBAC: Role Based Access Control (supported by many database
systems)

Mandatory Access Control (MAC)

allows policies to be enforced
safer than DAC for sensitive information
governmental and military use

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 7 / 39

Authorization in SQL

Table of Contents

1 Introduction

2 Access Control Models

3 Authorization in SQL

4 Application Security

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 8 / 39

Authorization in SQL

Authorization

A user may be assigned authorizations on parts of a database

Authorizations cover

reading data
inserting new data
updating data
deleting data

Each type is called a privilege

A user may have all, none, or a combination of privileges (for parts of
a DB)

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 9 / 39

Authorization in SQL

Granting Privileges

Privileges can be granted to a user . . .

. . . and later on be revoked again

One user, the database administrator, has all the privileges

Granting and revoking privileges is done via SQL commands

This is part of the Data Definition Language (DDL)

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 10 / 39

Authorization in SQL

SQL Syntax

The general statement for granting privileges is:

grant privilege list
on relation or view name
to user or role list;

A privilege list is made up of a combination of select, insert,
update, and delete

. . . or all privileges for all of them

This is followed by a relation or view name

and a user name (we’ll come to roles in just a moment)

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 11 / 39

Authorization in SQL

Examples

grant select
on student
to peter, paul, mary;

The users peter, paul, and mary may run select queries on the
relation student

When granting update and insert privileges, attributes can be
specified:

grant update(office no)
on professor
to peter;

This allows the user peter to update the attribute office no in the
relation professor

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 12 / 39

Authorization in SQL

Revoking Privileges

Privileges can also be withdrawn via a revoke statement

The general syntax is:

revoke privilege list
on relation or view name
from user or role list;
Works like a grant statement in reverse

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 13 / 39

Authorization in SQL

Multiple Users

Large database system may have hundreds or even thousands of users

Granting and revoking privileges individually on all relations may be
very tedious

The user name public grants a privilege to every user of the system

A more fine-grained approach uses roles

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 14 / 39

Authorization in SQL

Roles

Often groups of people do similar work and need the same privileges

In a database it is possible to

define a role
give privileges to this role
and add users to this role

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 15 / 39

Authorization in SQL

SQL Syntax

Here are some examples on how this looks in SQL:

create role instructor;

grant select
on course
to instructor;

grant instructor to john;
create role professor;
grant instructor to professor;
grant professor to sven;

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 16 / 39

Authorization in SQL

Authorization and Views

Privileges in combination with views can be used to make parts of a
relation visible

For example, an administrator may only see records of computer
science assistants

Create the following view:

create view csasst as
select *
from assistant
where area = ’computer science’;

Then grant select privilege on csasst and revoke all privileges on
base table assistant

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 17 / 39

Authorization in SQL

Transfer of Privileges [1]

A user who has been granted a privilege may be allowed to pass it on

The default does not allow this

If we want to allow someone to grant a privilege to others, we use the
with grant option

grant select
on student
to peter with grant option;

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 18 / 39

Authorization in SQL

Transfer of Privileges [2]

Usually the creator of a database object holds all privileges

This includes the privilege to grant privileges

What happens if there is a whole chain of granted privileges and we
start revoking some?

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 19 / 39

Authorization in SQL

Authorization Graph

We can use an authorization graph to check:

DBA U
2

U
1

U
3

U
4

U
5

A user has a privilege, iff there is a path from the root (DBA) to the
user node

Revoking a privilege from a user

removes that user
and everyone on outgoing edges of that user not connected to the root
otherwise

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 20 / 39

Authorization in SQL

Cascading Revokes [1]

Revoking a privilege from U1 from the previous graph

also removes U4’s privilege
but not U5’s, as he/she is still connected via U2

Recursively revoking privileges is called a cascading revoke

Can be prevented by the restrict clause

Will return an error if there is a cascading revoke

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 21 / 39

Authorization in SQL

Cascading Revokes [2]

Sometimes privileges should be granted by a role, not an individual

For example, the role of dean can grant privileges associated with the
role of professor or instructor

If the current dean steps down and the user account is removed,
granted privileges should stay
Can be done by adding the clause granted by current role

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 22 / 39

Authorization in SQL

Limits of Authorization in SQL [1]

While SQL supports a fairly flexible system, it has limits

Many applications require a very fine-grained authorization

For example, we want students to see only their own grades

That means, we need authorization on the tuple level

Databases only support relation, view, or attribute level

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 23 / 39

Authorization in SQL

Limits of Authorization in SQL [2]

Often, there is a lack of end-user information

For example, in web applications end users usually do not have
individual user IDs in the database

Makes it difficult to apply the SQL authorization scheme

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 24 / 39

Authorization in SQL

Limits of Authorization in SQL [3]

As a consequence a lot of the authorization moves into the
application code

The point of a DBS was to provide infrastructure and have clear
responsibilities

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 25 / 39

Application Security

Table of Contents

1 Introduction

2 Access Control Models

3 Authorization in SQL

4 Application Security

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 26 / 39

Application Security

Application Security

Even if the database is pretty secure, a badly written application can
compromise the whole system

Many database applications have a web (or mobile) interface that can
be exploited

In particular, we are looking at
SQL injection
Cross-site scripting and request forgery

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 27 / 39

Application Security

SQL Injection [1]

In SQL injection attacks, the database runs an SQL query created by
an attacker

This is usually done by manipulating a valid SQL statement:

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 28 / 39

Application Security

SQL Injection [2]

Applications that build SQL queries on the fly are especially
vulnerable to this

For example, assume a Java application gets a string name and
constructs the query

"select * from student where name = ’"+name+"’;"

Instead of a name, a user might enter some SQL:

X’ or ’Y’ = ’Y

turning the SQL statement into

select * from student

where name = ’X’ or ’Y’ = ’Y’;

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 29 / 39

Application Security

SQL Injection [3]

Depending on the application, this can have serious consequences:

Here comments are used to cut part of the SQL query

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 30 / 39

Application Security

SQL Injection [4]

This is not just limited to select statements

Depending on the configuration of the server, multiple statements
may be executed in one go

Source: http://xkcd.com/327/

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 31 / 39

Application Security

Remedies

So, how should you build your database application?

Any query that relies on user input should use prepared statements

In prepared statements, some values are replaced by “?”

For example, the following will insert a tuple

PreparedStatement pSt = con.prepareStatement(

"insert into student values (?,?,?)");

pSt.setInt(1, 102093);

pSt.setString(2, "James Smith");

pSt.setDate(3, "1991-10-05");

pSt.executeUpdate();

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 32 / 39

Application Security

Prepared Statement

Not only will this run faster (if SQL statement is used multiple times)

It will also escape special characters

For example, the string

X’ or ’Y’ = ’Y

would become

X\’ or \’Y\’ = \’Y

rendering the attempted attack harmless

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 33 / 39

Application Security

Other Forms of Attack

Not every attack can be prevented with prepared statements

For example, the following lets a user sort a result:

"select * from student order by "+orderAtt+";"

Application has to make sure that the variable orderAtt can only
contain valid attribute names

In general, any input coming from a user has to be sanitized!

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 34 / 39

Application Security

Cross-Site Scripting (XSS) [1]

Many web sites rely on the execution of code embedded in HTML on
the client side

Client-side scripting languages such as JavaScript are a popular option

If an attacker is able to smuggle code onto a web site, it may be
executed on a client

For a database-related example, assume the following:

Users enter data into a database via a web site
Later on, other users view this information
Malicious users can enter JavaScript instead of data

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 35 / 39

Application Security

Cross-Site Scripting (XSS) [2]

The effects of executing malicious code include

changing or deleting files on the local system
monitoring key strokes
sending out confidential information (e.g. cookies)
interacting with other web sites of a user

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 36 / 39

Application Security

Cross-Site Request Forgery (XSRF)

XSRF attempts to hijack a session running in another tab or window
of the browser

Can fool a server, as request is coming from a valid client
Can even be done without scripting, e.g.

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 37 / 39

Application Security

Protection from XSS/XSRF

We provide some general remarks (there are more complex attacks)

Preventing your site from becoming an attack launch pad:

Sanitize all user input
There are functions to strip out HTML, scripts, or other code

Preventing your site from becoming a target:

Check referer in the HTTP header
Tie session not only to cookies, but also to IP address
Never use GET to update any data or to send sensitive data

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 38 / 39

Application Security

Password Leakage

Storing passwords in clear text in application code or a database is
not a good idea

If you have to store a password, it needs to be encrypted

Many databases can be configured to use authentication scheme of
operating system

Augsten (Univ. Salzburg) ITS – Database Authorization Winter Semester 2016/17 39 / 39

