Similarity Search The q-Gram Distance

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at

Dept. of Computer Sciences University of Salzburg http://dbresearch.uni-salzburg.at

Version November 9, 2016

Wintersemester 2016/2017

Augsten (Univ. Salzburg)

Similarity Search

Filters for the Edit Distance Motivation

Wintersemester 2016/2017

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017 2 / 41

Outline

Filters for the Edit Distance

- Motivation
- Lower Bound Filters
- Length Filter
- q-Grams: Count Filter
- q-Grams: Position Filtering
- Experiments
- The q-Gram Distance

Outline

Filters for the Edit Distance

- Motivation
- Lower Bound Filters
- Length Filter
- q-Grams: Count Filter
- q-Grams: Position Filtering
- Experiments
- The q-Gram Distance

Filters for the Edit Distance Motivation Application Scenario

Scenario:

Augsten (Univ. Salzburg)

- A company offers a number of services on the Web.
- You can subscribe for each service independently.
- Each service has its own database (no unique key across databases).
- Example: customer tables of two different services:

А				В	
	ID	name	 ID	name	
	1023	Frodo Baggins	 948483	John R. R. Tolkien	
	21	J. R. R. Tolkien	 153494	C. S. Lewis	
	239	C.S. Lewis	 494392	Fordo Baggins	
	863	Bilbo Baggins	 799294	Biblo Baggins	

Task: Created unified customer view!

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016/2017 Similarity Search Wintersemester 2016/2017 Filters for the Edit Distance Motivation

The Join Approach

• Solution: Join customer tables on name attribute (Q1):

```
SELECT * FROM A,B
WHERE A.name = B.name
```

- Exact Join: Does not work!
- Similarity Join: Allow k errors...
 - (1) Register UDF (User Defined Function) for the edit distance:

returns the union cost edit distance between the strings x and y.

(2) Rewrite query Q1 as similarity join (Q2):

Augsten (Univ. Salzburg)

Wintersemester 2016/2017

Filters for the Edit Distance Motivation

Using a Filter for Search Space Reduction

- Search space: $A \times B$ ($\Rightarrow |A| \cdot |B|$ edit distance computations)
- Filtering (Pruning): Remove tuples that can not match, without actually computing the distance.

Filters for the Edit Distance Motivation

Effectiveness and Efficiency of the Approximate Join

• Effectiveness: Join result for k = 3:

ID	name	ID	name
1023	Frodo Baggins	494392	Fordo Baggins
21	J. R. R. Tolkien	948483	John R. R. Tolkien
239	C.S. Lewis	153494	C. S. Lewis
863	Bilbo Baggins	799294	Biblo Baggins

 \Rightarrow very good (100% correct)

- Efficiency: How does the DB evaluate the query?
 - (1) compute $A \times B$
 - (2) evaluate UDF on each tuple $t \in A \times B$
- Experiment [GIJ+01]: Self-join on string table (average string length = 14):

• 1K tuples: ca. 30min • 14K tuples: > 3 days!

Prohibitive runtime!

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017 6 / 41

Filters for the Edit Distance Lower Bound Filters

Outline

- Motivation
 - Lower Bound Filters
 - Length Filter
 - q-Grams: Count Filter
 - q-Grams: Position Filtering
 - Experiments
 - The q-Gram Distance

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017

Augsten (Univ. Salzburg)

Similarity Search

Filters for the Edit Distance Lower Bound Filters

Filter Properties

Error Types:

Correct Result

		positive	negative
Filter	positive	true positive	false positive
Test	negative	false negative	true negative

- Example: "Are x and y within edit distance k?"
 - Correct result: compute edit distance and test $ed(x, y) \le k$
 - Filter test: give answer without computing edit distance
 - False negatives: x and y are pruned although ed(x, y) < k.
 - False positives: x and y are not pruned although $ed(x, y) \nleq k$.
- Good filters have
 - no false negatives (i.e., miss no correct results)
 - few false positive (i.e., avoid unnecessary distance computations)

Augsten (Univ. Salzburg)

Similarity Search

Filters for the Edit Distance Length Filter

Wintersemester 2016/2017 9 / 41

Similarity Search

Wintersemester 2016/2017 10 / 41

Outline

Filters for the Edit Distance

- Motivation
- Lower Bound Filters
- Length Filter
- q-Grams: Count Filter
- q-Grams: Position Filtering
- Experiments
- The q-Gram Distance

Filters for the Edit Distance Lower Bound Filters

Lower Bound Filters

• Lower bound (lb) for distance dist(x, y):

$$dist(x, y) \ge lb_{dist}(x, y)$$

• Query Q3 with Lower Bound Filter :

```
SELECT * FROM A,B
WHERE 1b(A.name, B.name) <= k AND
      ed(A.name, B.name) <= k
```

- lb(A.name, B.name) is a cheap function
- database will optimize guery: compute ed (A.name, B.name) only if lb(A.name.B.name) > k
- No false negatives!

Augsten (Univ. Salzburg)

Filters for the Edit Distance Length Filter

Length Filtering

Theorem (Length Filtering [GIJ $^+$ 01])

If two strings x and y are within edit distance k, their lengths cannot differ by more than k:

$$\operatorname{ed}(x,y) \ge \operatorname{abs}(|x| - |y|)$$

- Proof: At least abs(|x| |y|) inserts are needed to bring x and y to the same length.
- Query Q4 with Length Filtering:

```
SELECT * FROM A,B
WHERE ABS(LENGTH(A.name)-LENGTH(B.name)) <= k AND
      ed(A.name, B.name) <= k
```

Similarity Search

Filters for the Edit Distance Length Filter

Example: Length Filtering

• Execute query without/with length filter (k = 3):

Α			В		
	ID	ID name		ID	name
	1023	Frodo Baggins ₁₃		948483	John R. R. Tolkien ₁₈
	21	J. R. R. Tolkien ₁₆		153494	C. S. Lewis ₁₁
	239	C.S. Lewis ₁₀		494392	Fordo Baggins ₁₃
	863	Bilbo Baggins ₁₃		799294	Biblo Baggins ₁₃

- Without length filter: 16 edit distance computations
- With length filter (k = 3): 12 edit distance computations
 - ullet J. R. R. Tolkien \leftrightarrow C. S. Lewis is pruned
 - all pairs (..., John R. R. Tolkien) except (J. R. R. Tolkien, John R. R. Tolkien) are pruned

Augsten (Univ. Salzburg)

Filters for the Edit Distance q-Grams: Count Filter

Wintersemester 2016/2017

What is a *q*-Gram?

- Intuition:
 - slide window of length q over string $x \in \Sigma^*$
 - characters covered by window form a q-gram
 - where window extends string: fill with dummy character # $\notin \Sigma$
- Example: x = Frodo, q = 3

- q-Gram Profile G_x : bag of all q-grams of x
- Profile size: $|G_x| = |x| + q 1$

Filters for the Edit Distance q-Grams: Count Filter

Outline

- Filters for the Edit Distance
 - Motivation
 - Lower Bound Filters
 - Length Filter
 - q-Grams: Count Filter
 - q-Grams: Position Filtering
 - Experiments
 - The q-Gram Distance

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017

Filters for the Edit Distance q-Grams: Count Filter Single Edit Operations and Changing q-Grams

- Intuition: Strings within small edit distance share many q-grams.
- How many q-grams (q = 3) change/remain?

X	$ G_x $	у	$ G_y $	$ G_x \cap G_y $
peter	7	meter	7	4
peter	7	peters	8	5
peter	7	peer	6	4

 \bullet ed $(x,y) = 1 \Rightarrow |G_x \cap G_y| = \max(|G_x|, |G_y|) - q$

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017

Augsten (Univ. Salzburg)

Similarity Search

Multiple Edit Operations and Changing q-Grams

- $\bullet \ \operatorname{ed}(x,y) = 1 \Rightarrow |G_x \cap G_y| = \max(|G_x|, |G_y|) q$
- What if ed(x, v) = k > 1?

X	$ G_x $	у	$ G_y $	$ G_x \cap G_y $
peter	7	meters	8	2
peter	7	petal	7	3

• Multiple edit operations may affect the same q-gram:

peter
$$\rightarrow G_x = \{ \#p, \#pe, pet, ete, ter, er\#, r\#\# \}$$

petal $\rightarrow G_x = \{ \#p, \#pe, pet, eta, tal, al\#, l\#\# \}$

• Each edit operation affects at most q q-grams.

Augsten (Univ. Salzburg)

Filters for the Edit Distance q-Grams: Count Filter

Wintersemester 2016/2017

Implementation of *q*-Grams

- Given: tables A and B with schema (id, name)
 - id is the key attribute
 - name is string-valued
- Compute auxiliary tables QA and QB with schema (id, qgram):
 - each tuple stores one q-gram
 - string x of attribute *name* is represented by its |x| + q 1 q-grams
 - QA.id is the key value (A.id) of a tuple with A.name = x
 - QA.qgram is one of the q-grams of x
- Example:

name Frodo Baggins		id	qgram
Frodo Baggins		1000	
J. R. R. Tolkien		1023	##F #Fr
C.S. Lewis Bilbo Baggins		21 21	##J #J.
	C.S. Lewis	C.S. Lewis	C.S. Lewis Bilbo Baggins 21

Filters for the Edit Distance q-Grams: Count Filter

Count Filtering

Theorem (Count Filtering [GIJ⁺01])

Consider two strings x and y with the q-gram profiles G_x and G_y , respectively. If x and y are within edit distance k, then the cardinality of the q-gram profile intersection is at least

$$|G_x \cap G_y| \ge \max(|G_x|, |G_y|) - kq$$

- Proof (by induction):
 - true for k = 1: $|G_x \cap G_y| \ge \max(|G_x|, |G_y|) q$
 - $k \rightarrow k + 1$: each additional edit operation changes at most q *q*-grams. □

Augsten (Univ. Salzburg)

Augsten (Univ. Salzburg)

Wintersemester 2016/2017

Filters for the Edit Distance q-Grams: Count Filter

Count Filtering Query

• Query Q5 with Count Filtering:

SELECT A.id, B.id, A.name, B.name

FROM A, QA, B, QB

A.id = QA.id AND WHERE B.id = QB.id AND

QA.qgram = QB.qgram AND

ABS(LENGTH(A.name)-LENGTH(B.name)) <= k

GROUP BY A.id, B.id, A.name, B.name

COUNT(*) >= LENGTH(A.name)-1-(k-1)*q ANDHAVING

COUNT(*) >= LENGTH(B.name)-1-(k-1)*q AND

ed(A.name,B.name) <= k

Filters for the Edit Distance q-Grams: Count Filter

Problem with Count Filtering Query

- Previous query Q5 works fine for $kq < \max(|G_x|, |G_y|)$.
- However: If $kq > \max(|G_x|, |G_y|)$, no q-grams may match even if $ed(x, y) \le k$.
- Example (q = 3, k = 2): WHERE-clause prunes x and y, although ed(x, y) $\leq k$

- False negatives:
 - short strings with respect to edit distance (e.g., |x| = 3, k = 3)
 - even if within given edit distance, matches tend to be meaningless (e.g., abc and xyz are within edit distance k = 3)

Augsten (Univ. Salzburg)

Wintersemester 2016/2017

Filters for the Edit Distance q-Grams: Position Filtering

Outline

Filters for the Edit Distance

- Motivation
- Lower Bound Filters
- Length Filter
- q-Grams: Count Filter
- q-Grams: Position Filtering
- Experiments
- The q-Gram Distance

Filters for the Edit Distance q-Grams: Count Filter

Fixing Count Filtering Query

- Fix query to avoid false negatives [GIJ+03]:
 - Join pairs (x, y) with $kq \ge \max(|G_x|, |G_y|)$ using only length filter.
 - Union results with results of previous query Q5.
- Query Q6 without false negatives (extends previous query Q5):

```
UNION
SELECT A.id, B.id, A.name, B.name
FROM A, B
WHERE LENGTH(A.name)+q-1 \leq k*q AND
       LENGTH(B.name)+q-1 \le k*q AND
       ABS(LENGTH(A.name) - LENGTH(B.name)) <= k AND
       ed(A.name.B.name) <= k
```

• Note: We omit this part in subsequent versions of the query since it remains unchanged.

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017 22 / 41

Filters for the Edit Distance q-Grams: Position Filtering

Positional q-Grams

- Enrich *q*-grams with position information:
 - extended string: prefix and suffix string x with q-1 characters #
 - slide window of length q over extended string x'
 - characters covered by window after shifting it i times form the q-gram at position i + 1

(7,0 # #)

• Example: x = Frodo

```
extended string:
                         ##Frodo##
positional q-grams:
                     (1, # # F)
                       (2, \# Fr)
                        (3.Fro)
                          (4,r o'd)
                            (5.0 do)
                             (6.d o \#)
```

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017

Augsten (Univ. Salzburg)

Similarity Search

Filters for the Edit Distance q-Grams: Position Filtering

Computing Positional q-Grams in SQL

- Given: table N
 - N has a single attribute i
 - N is filled with numbers from 1 to max (max is the maximum string length plus q-1)
- Positional q-grams for table A in SQL (Q7):

```
CREATE TABLE QA AS
      SELECT A.id, N.i AS pos,
           SUBSTRING(CONCAT(
               SUBSTRING('#..#', 1, q - 1),
               LOWER(A.name),
               SUBSTRING('#..#', 1, q - 1)),
           N.i, q) AS ggram
       FROM A, N
      WHERE N.i <= LENGTH(A.name) + q - 1
```

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017

Filters for the Edit Distance q-Grams: Position Filtering

Position Filtering

Theorem (Position Filtering [GIJ+01])

If two strings x and y are within edit distance k, then a positional q-gram in one cannot correspond to a positional q-gram in the other that differs from it by more then k positions.

- Proof:
 - each increment (decrement) of a position requires an insert (delete);
 - a shift by k positions requires k inserts/deletes.

Filters for the Edit Distance q-Grams: Position Filtering

Corresponding q-Grams

- Corresponding *q*-gram:
 - Given: positional q-grams (i, g) of x
 - transform x to y applying edit operations
 - (i,g) "becomes" (i,g) in y
 - We define: (i,g) corresponds to (j,g)
- Example:
 - x' = #abaZabaabaaba##, y' = #abaabaabaabaaba##
 - edit distance is 1 (delete Z from x)
 - (7, aba) in x corresponds to (6, aba) in y
 - ... but not to (9, aba)

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017

Filters for the Edit Distance q-Grams: Position Filtering

Position Filtering

SELECT

Query Q8 with Count and Position Filtering:

```
A.id, B.id, A.name, B.name
FROM
         A, QA, B, QB
WHERE
         A.id = QA.id AND
         B.id = QB.id AND
         QA.qgram = QB.qgram AND
         ABS(LENGTH(A.name)-LENGTH(B.name)) <= k AND
         ABS(QA.pos-QB.pos) <= k
GROUP BY A.id, B.id, A.name, B.name
```

HAVING COUNT(*) >= LENGTH(A.name)-1-(k-1)*q ANDCOUNT(*) >= LENGTH(B.name)-1-(k-1)*q ANDed(A.name,B.name) <= k

Similarity Search

Augsten (Univ. Salzburg)

• Question: How many edit distances do we have to compute?

Similarity Search

• Show candidate set size for different filters (small is good).

Filters for the Edit Distance Experiments

- q = 2
- Caption:
 - CP: cross product
 - L: length filtering, P: position filtering, C: count filtering
 - Real: number of real matches

Set 1

Augsten (Univ. Salzburg) Similarity Search

Filters for the Edit Distance Experiments

Candidate Set Size

- Question: How many edit distances do we have to compute?
- Show candidate set size for different filters (small is good).
- q = 2
- Caption:
 - CP: cross product
 - L: length filtering, P: position filtering, C: count filtering
 - Real: number of real matches

Set 2

Wintersemester 2016/2017

Filters for the Edit Distance Experiments

Various q-Gram Lengths

- Question: How does the choice of *q* influence the filter effectiveness?
- Show candidate set size for different q values (small is good).

Edit Distance Threshold k = 2

Edit Distance Threshold k = 3

Filters for the Edit Distance Experiments

Candidate Set Size

- Question: How many edit distances do we have to compute?
- Show candidate set size for different filters (small is good).
- q = 2
- Caption:
 - CP: cross product
 - L: length filtering, P: position filtering, C: count filtering
 - Real: number of real matches

Set 3

Augsten (Univ. Salzburg)

Similarity Search Filters for the Edit Distance Experiments Wintersemester 2016/2017 32 / 41

Response Time

- Approximate self-join on small sample of 1000 tuples (set 1) (full dataset > 3 days without filters!)
- Measure response time (small is good).
- Caption:

Augsten (Univ. Salzburg)

- k: edit distance threshold
- Q1: edit distance without filters
- Q2: edit distance with filters

Filters for the Edit Distance The q-Gram Distance

Outline

Filters for the Edit Distance

- Motivation
- Lower Bound Filters
- Length Filter
- q-Grams: Count Filter
- q-Grams: Position Filtering
- Experiments
- The q-Gram Distance

Augsten (Univ. Salzburg)

Wintersemester 2016/2017

Filters for the Edit Distance The g-Gram Distance

Pseudo Metric q-Gram Distance

• The q-gram distance is a pseudo metric:

For all $x, y, z \in \Sigma^*$

- $\operatorname{dist}_{a}(x, y) + \operatorname{dist}_{a}(y, z) \geq \operatorname{dist}_{a}(x, z)$ (triangle inequality)
- $\operatorname{dist}_{a}(x, y) = \operatorname{dist}_{a}(y, x)$ (symmetric)
- $\operatorname{dist}_{a}(x, y) = 0 \Leftarrow x = y$
- Note: Identity condition relaxed: $dist_{\sigma}(x, y) = 0 \Rightarrow x = y$ i.e., the q-gram distance between two different strings can be 0
- Example:

$$\begin{aligned} &\mathsf{dist}_q(\mathtt{axybxycxyd},\mathtt{axycxybxyd}) = 0 \\ &G_x = G_y = \{ \texttt{\##a}, \texttt{\#ax}, \mathtt{axy}, \mathtt{xyb}, \mathtt{ybx}, \mathtt{bxy}, \mathtt{xyc}, \mathtt{ycx}, \mathtt{cxy}, \mathtt{xyd}, \mathtt{yd\#}, \mathtt{d\#\#} \} \end{aligned}$$

Filters for the Edit Distance The q-Gram Distance

The q-Gram Distance

Definition (q-Gram Distance [Ukk92])

Let G_x and G_y be the q-gram profiles of the strings x and y, respectively. The q-gram distance between two strings is the number of q-grams in G_x and G_{v} that have no match in the other profile,

$$\mathsf{dist}_q(x,y) = |G_x \uplus G_y| - 2|G_x \cap G_y|.$$

• Example: q = 2, x = abab, y = abcab $G_{x} = \{\text{#a, ab, ba, ab, b#}\}$ $G_v = \{ \text{#a, ab, bc, ca, ab, b#} \}$

 $G_x \uplus G_y = \{ \text{\#a,ab,ba,ab,b\#,\#a,ab,bc,ca,ab,b\#} \}$ $G_x \cap G_v = \{\text{\#a,ab,ab,b\#}\}$

$$dist_q(x, y) = |G_x \uplus G_y| - 2|G_x \cap G_y| = 11 - 2 \cdot 4 = 3$$

Augsten (Univ. Salzburg)

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017

Filters for the Edit Distance The q-Gram Distance

Distance Normalization (1/3)

• What is a good threshold?

ed(International Business Machines Corporation, International Bussiness Machine Corporation) = 2ed(IBM, BMW) = 2ed(Int. Business Machines Corp., International Business Machines Corporation) = 17

- Problem: Absolute numbers not always meaningful...
- Solution: Compute error relative to string length!

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017

Similarity Search

Filters for the Edit Distance The q-Gram Distance

Distance Normalization (2/3)

• Normalize distance such that $\delta(x, y) \in [0..1]$

• Edit Distance: 0 < ed(x, y) < max(|x|, |y|)

• Normalized Edit Distance: 0 < norm-ed(x, y) < 1

$$norm-ed(x,y) = \frac{ed(x,y)}{max(|x|,|y|)}$$

- q-Gram Distance: $0 \le \operatorname{dist}_q(x, y) \le |G_x \uplus G_v| |G_x \cap G_v|$
- Normalized *q*-Gram Distance: $0 < \text{norm-dist}_{q}(x, y) < 1$

$$\mathsf{norm\text{-}dist}_q(x,y) = \frac{\mathsf{dist}_q(x,y)}{|G_x \uplus G_y| - |G_x \cap G_y|} = 1 - \frac{|G_x \cap G_y|}{|G_x \uplus G_y| - |G_x \cap G_y|}$$

• Dividing by $|G_x \uplus G_y|$ also normalizes to [0..1], but the metric properties (triangle inequality) get lost [ABG10].

Wintersemester 2016/2017

Filters for the Edit Distance The g-Gram Distance

Edit Distance vs. q-Gram Distance

- Edit distance can not handle block-moves well:
 - x =Nikolaus Augsten y =Augsten Nikolaus norm-ed(x, y) = 1.0norm-dist_q $(x, y) = 0.39 \quad (q = 3)$
- *q*-Gram distance may be too strict:

```
x = +39-06-46-74-22 y = (39\ 06\ 467422)
norm-ed(x, y) = 0.4
norm-dist<sub>q</sub>(x, y) = 1.0 \quad (q = 3)
```

Filters for the Edit Distance The q-Gram Distance

Distance Normalization (3/3)

Normalized edit distance:

```
norm-ed(International Business Machines Corporation.
       International Bussiness Machine Corporation) = 0.047
norm-ed(IBM, BMW) = 0.66
norm-ed(Int. Business Machines Corp...
       International Business Machines Corporation) = 0.4
```

• Normalized q-gram distance (q = 3):

```
norm-dist<sub>a</sub>(International Business Machines Corporation,
          International Bussiness Machine Corporation) = 0.089
norm-dist_a(IBM, BMW) = 1.0
norm-dist<sub>a</sub>(Int. Business Machines Corp.,
          International Business Machines Corporation = 0.36
```

Augsten (Univ. Salzburg)

Similarity Search

Wintersemester 2016/2017

- Nikolaus Augsten, Michael Böhlen, and Johann Gamper. The pa-gram distance between ordered labeled trees. ACM Transactions on Database Systems (TODS), 35(1):1–36, 2010.
- Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan, and Divesh Srivastava. Approximate string joins in a database (almost) for free. In Proceedings of the International Conference on Very Large Databases (VLDB), pages 491-500, Roma, Italy, September 2001. Morgan Kaufmann Publishers Inc.
- Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan, and Divesh Srivastava. Approximate string joins in a database (almost) for free — Erratum. Technical Report CUCS-011-03, Department of Computer Science, Columbia University, 2003.
- Esko Ukkonen.

Approximate string-matching with q-grams and maximal matches.

Augsten (Univ. Salzburg)

Similarity Search

