Similarity Search

Trees and Relational Databases

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at

Dept. of Computer Sciences
University of Salzburg
http://dbresearch.uni-salzburg.at

Version November 16, 2016

Wintersemester 2016/2017

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017

Outline

@ What is a Tree?

© Encoding XML in a Relational Database
@ Adjacency List Encoding
@ Dewey Encoding
@ Interval Encoding

@ Experimental Comparison of the Encodings
@ XML and Trees

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 2 /56

What is a Tree?

Outline

@ What is a Tree?

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 3 /56

What is a Tree?

What is a Tree?

Graph: a pair (N, E) of nodes N and edges E between nodes of N

Tree: a directed, acyclic graph T

e that is connected and
e no node has more than one incoming edge

Edges: E(T) are the edges of T

o an edge (p,c) € E(T) is an ordered pair
o with p,c € N(T)

“Special” Nodes: N(T) are the nodes of T

o parent/child: (p,c) € E(T) < p is the parent of ¢, c is the child of p
siblings: ¢1 and c; are siblings if they have the same parent node
root node: node without parent (no incoming edge)

leaf node: node without children (no outgoing edge)

fanout: fanout f, of node v is the number of children of v

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 4 / 56

What is a Tree?
Unlabeled Trees

@ Unlabeled Tree:

e the focus is on the structure, not on distinguishing nodes
e however, we need to distinguish nodes in order to define edges
= each node v has a unique identifier id(v) within the tree

@ Example: T = ({1,3,5,4,7},{(1,3),(1,5),(5,4),(5,7)})

o]
/\
o3 oh

/\
o4 o7

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 5/ 56

Edge Labeled Trees

@ Edge Labeled Tree:
o an edge e € E(T) between nodes a and b is a triple
e = (id(a), id(b), A(e))
o id(a) and id(b) are node IDs
o A(e) is the edge label (not necessarily unique within the tree)
@ Example:
T=({1,3,5,4,7},{(1,3,2),(1,5,b),(5,4,¢),(5,7,a)})
o 1]
¥
° 3 ® 5
A
o /] o 7/
Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 6 / 56

What is a Tree?
Node Labeled Trees

@ Node Labeled Tree:
e anodev e N(T) is a pair (id(v), A(v))
o id(v) is unique within the tree
o label A(v) needs not to be unique

@ Intuition:

e The identifier is the key of the node.
e The label is the data carried by the node.

@ Example: T = ({(1,2),(3,¢c),(5,b),(4,¢c),(7,d)},
{(1,3),(1,5),(5,4),(5,7)})

(1)
N

(3.¢) (5.b)

/N

(4.c) (7.d)

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 7 /56

What is a Tree?

Notation and Graphical Representation

@ Notation:
o node identifiers: id(v;) =i
o tree identifiers: T1, To,...
@ Graphical representation

o we omit brackets for (identifier,label)-pairs
o we (sometimes) omit node identifiers at all
e we do not show the direction of edges
(edges are always directed from root to leave)

unlabeled tree | edge labeled tree | node labeled tree
° [d
/\ o/ \b /\
° ° ° ° C b
/ \ o/ \a /\
° ° ° ° C d

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 8 /56

What is a Tree?

Ordered Trees

@ Ordered Trees: siblings are ordered

@ contiguous siblings s; < sy have no sibling x such that s; < x < sp

@ ¢; is the /-th child of p if

e p is the parent of c;, and
o i=|{xe N(T):(p,x) € E(T),x <ci}|

@ Example:
Unordered Trees Ordered Trees
a a a a
/ I\ /1I\ / I\ /1N
Cbd = dbc Cbd £ dbc
/\ [\ [\ [\
e f f e e f f e

@ Note: “ordered” does not necessarily mean “sorted alphabetically”

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 9 /56

What is a Tree?

Edit Operations

@ \We assume ordered, labeled trees

@ Rename node: ren(v, /")
o change label / of vto I # I

@ Delete node: del(v) (v is not the root node)

® remove v

o connect v's children directly to v's parent node (preserving order)
@ Insert node: ins(v, p, k, m)

e remove m consecutive children of p, starting with the child at position
k, i.e., the children cy,cxa1, ..., Cham_1

e insert Cx,Cki1,--.,Ckim—1 as children of the new node v
(preserving order)

e insert new node v as k-th child of p

@ Insert and delete are inverse edit operations
(i.e., insert undoes delete and vice versa)

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 10 / 56

What is a Tree?

Example: Edit Operations

Augsten (Univ. Salzburg) Similarity Search

ins((vs,b),v1,2,2) ren(vg,x)
T() < > T1) T2
del(vg,b) ren(vg,c)
V1,4 Vi,d vi,a
PN /N /N
v3,C w,C w.d v3,C vg,b v3,C vg,b
/ N\ / N\
V41C V7,d V41X V7,d

Wintersemester 2016,/2017

Encoding XML in a Relational Database

Outline

© Encoding XML in a Relational Database

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 12 / 56

Encoding XML in a Relational Database Adjacency List Encoding

Outline

© Encoding XML in a Relational Database
@ Adjacency List Encoding

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 13 / 56

Encoding XML in a Relational Database Adjacency List Encoding

Motivation: Trees and Relational Databases

@ Relational Databases:

e highly developed systems
e mature storage and querying capabilities

@ But: there is a gap between ordered trees and relations

o relations are sets (no order)
o relations store tuples (no hierarchy)

@ How can we store an (ordered) tree in a relation?

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017

Encoding XML in a Relational Database Adjacency List Encoding

Adjacency List

@ Adjacency List:

e list of nodes

e each node stores pointer to parent
@ Relational Implementation:

e node is tuple (nid, pid)
e nid the node ID
e pid the node ID of the parent node

@ Example:
tree adjacency list relational implementatig

nid | pid

-b\/

o

\l

~N| PO W=
U

~N B~ 01w
o1l Ol m kL ©

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 15 / 56

Encoding XML in a Relational Database Adjacency List Encoding

Extending the Adjacency List Model

@ Node labeled trees: (v,p, A(v))

o v,p € N(T) are nodes

e v is a child of p
o A(v) is the label of v

o Edge labeled trees: (v,p, A((p,V)))

o v,p € N(T) are nodes

o (p,v) € E(T) is an edge

o A((p,Vv)) is the label of the edge (p, V)
@ Ordered trees: (v,p, i)

o v,p € N(T) are nodes
e v is the i-th child of p

@ All combinations possible. . .

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 16 / 56

Encoding XML in a Relational Database Adjacency List Encoding

Edit Operations with the Adjacency List Encoding

@ Tree relation T(nid, pid, Ibl, pos)
@ Rename: ren(v, /")

o update single tuple (v,p,/,i) — (v,p, /', i)
@ Delete node: del(v)

o delete single tuple
e update right siblings and all children of v

@ Insert node: ins(v, p, k, m)

e insert single tuple
o update right siblings (pos > k) and all children of new node v

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 17 / 56

Encoding XML in a Relational Database Adjacency List Encoding

Example: Delete Node in Adjacency Encoding

nid | pid | pos | Ibl

ao 0 - - a

b / \ 1 |0 |1 |b
: o2 10 |2 |c
// \\p‘ 3 12 |1 |d
/__\ I R I P
/g\’ . 5 |&2|x2|f

o 6 A2 123 | g

7 |6 |1 |h

8 |6 |2 |i

9 |2 |34k

10 |9 |1 I

11 19 |2 |m

12 |2 |45 |n

1310 |3 |o

14 | 13 |1 o)

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 18 / 56

Encoding XML in a Relational Database Adjacency List Encoding

Update Efficiency

@ Worst case: all children of v and of p must be updated

o O(fmax) node updates, where f,,,5 is the maximum fanout in the tree
@ fmax typically small compared to tree size
e update very efficient

@ Implementation hints:

o unique index on nid and on (pid, pos) will speed up queries
e use ...0ORDER BY pos ASC/DESC in update statement to avoid
duplicates

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 19 / 56

Encoding XML in a Relational Database Adjacency List Encoding

Preorder Traversal

@ Preorder: in XML also “document order”
e visit root
o traverse subtrees rooted in children (from left to right) in preorder

@ Example: preorder = (a,d, f,e,c,b)

a
/ I\
dbc
[\
f e

@ Implementation:

e start with root
e recursively select children of root

e Efficiency:

e children of all ancestors on recursion-stack
o O(n) queries for children — very inefficient

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017

20 / 56

Encoding XML in a Relational Database Dewey Encoding

Outline

© Encoding XML in a Relational Database

@ Dewey Encoding

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 21 / 56

Encoding XML in a Relational Database Dewey Encoding

Dewey Encoding

@ Dewey Decimal Classification:
e used in libraries to classify books by topics
e developed by Melvil Dewey in 1876
e Dewey Encoding! [TVB102]:
o list of nodes
e each node stores path from the root

tree relational implementation
nid | pid
1 @ 1 1 1
@ Example: /N 3 1.1
1.1 @ 3 12 @ 5
N 5 1.2
121 @ 4 122 @ 7 4 121
7 | 122

'also “Edge Enumeration” [Cel04]
Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 22 / 56

Encoding XML in a Relational Database Dewey Encoding

About the Dewey Paths

1 @ 1
RN
1.1 @ 3 12 @ 5

@ “0" concatenates a Dewey path dp with an integer / (sibling position)
eg., 1202=122

@ Sort order: 1.2 <13,1.1<1.1.2,19<1.10

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 23 / 56

Encoding XML in a Relational Database Dewey Encoding

Extending the Dewey Encoding

@ Dewey encoding implicitly orders trees!

@ Node labeled trees: (v, dp, A(v))

o ve N(T) is anode ID
e dp is the Dewey path to v
o A(v) is the label of v

o Edge labeled trees: (v, dp, \)

o veE N(T)is anode ID
e dp is the Dewey path to v
e M\ is the label of the edge from the parent of v to v

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 24 / 56

Encoding XML in a Relational Database Dewey Encoding

Edit Operations with the Dewey Encoding

o Tree relation T(nid, dp, Ibl)

@ Rename node: ren(v, /)
o update single tuple (v, dp, /) — (v, dp, ")
@ no structure updates

@ Delete node: del(v)

o remove single tuple (v, dpy, /)
e update nodes with dp > dp,
(descendants of v and descendants v's right-hand siblings)

@ Insert node: ins(v,p, k, m)
o update nodes with dp > dp(p) o k
(children of p at position k or larger, and all their descendants)
o insert single tuple (v, dp(p) o k, A(v))
e Efficiency:
o O(n) in the worst case (insert/delete leftmost child of root node)

o better for nodes with (i) few descendants and (ii) few right siblings
o O(1) for lonely leaf child of a node

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 25 / 56

Encoding XML in a Relational Database Dewey Encoding

Example: Delete Node in Dewey Encoding

nid dp Ibl

dio1 M ki3 no24 . P1.3.1 0 1 a
/ \‘ -./ " 1 1-1 b
................................ \ 2 1.2 c
floo1 81.2.2.2 ho31 M.2.3.2 3 1.2.1 d
......... / 5 2271 1.2.2 f
hi1.222.1 11.2.2.2.2 6 222 1.23 g
........................... 7 =297 1231 h
8 22272 1.2.3.2 i

9 =23 1.24 k

10 231 1.24.1 |

11 232 1242 m

12 =24 1.2.5 n

13 1.3 o

14 131 p

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 26 / 56

Encoding XML in a Relational Database Dewey Encoding

Preorder

@ Tree relation T (nid, dp, Ibl)

@ Implementation:

e sort by attribute dp
e result is preorder traversal

e Efficiency:

e single query with sort on string attribute
o efficient (especially with index on dp)

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 27 / 56

Encoding XML in a Relational Database Dewey Encoding

Implementation: Storing the Dewey Path

@ Goals:

@ minimize space overhead for Dewey path dp
e sorting Dewey path should result in preorder traversal

@ Separator character: e.g.,, 1.2.5, 1.17

o overhead: small (separator char)
e sorting: natural sort order not consistent with preorder (1.2.5 > 1.17)

@ Fixed length: e.g., 0001 0002 0005, 0001 0017

o overhead: large (small and large numbers require same space)
e sorting: sort order ok

@ Variable length encoding (UTF-8):

o UTF-8: 1 byte: 0...(2" — 1), 2 bytes: 27 ... (211 — 1), etc.
e overhead: small space overhead
o sorting: sort order ok (supported by many databases, e.g. PostgreSQL)

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 28 / 56

Encoding XML in a Relational Database Interval Encoding

Outline

© Encoding XML in a Relational Database

@ Interval Encoding

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 29 / 56

Encoding XML in a Relational Database Interval Encoding

Interval Encoding [DTCO03, ABGO5]

@ ldea: Parent “contains’ children, like interval contains other intervals

@ Example:
a
/N
C b
/N
C

@ Interval Encoding:

@ assign numbers to interval start and end points
e store interval start and end point with each node

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 30 / 56

Encoding XML in a Relational Database Interval Encoding

Interval Encoding

Definition (Interval Encoding)

An interval encoding of a tree is a relation T that for each node v of the
tree contains a tuple (A(v), Ift, rgt); A(v) is the label of v, Ift and rgt are
the endpoints of the interval representing the node. /ft and rgt are

constrained as follows:
o Ift < rgt for all (Ibl,Ift,rgt) € T,
e [fty, < Ifty and rgt, > rgty if node a is an ancestor of d, and
(A(a), Ifta, rgty) € T, and (A(d), Ifty, rgty) € T,
@ rgt, < Ift, if node v is a left sibling of node w, and
(A(v), Ifty, rgty) € T, and (A\(w), Ifty, rgtw) € T,)

Wintersemester 2016,/2017 31/ 56

Augsten (Univ. Salzburg) Similarity Search

Encoding XML in a Relational Database Interval Encoding

e traverse tree in preorder
use an incremental counter

1410

N\
2C3 4bg
/N
5C6 798

Augsten (Univ. Salzburg) Similarity Search

@ Example algorithm for a valid interval encoding:

o
e assign left interval value /ft when node is first visited
e assign right interval value rgt when node is last visited

Wintersemester 2016,/2017

Encoding XML in a Relational Database Interval Encoding

Edit Operations with the Interval Encoding

@ Tree relation T(id, Ibl, Ift, rgt)
@ Rename node: ren(v, /")
o update single tuple (id(v),/, L, R) — (id(v), ", L, R)
@ no structure updates
@ Delete node: del(v)
o remove single tuple (id(v),/, L, R)
e remaining tree is valid and correct
@ Insert node: ins(v, p, k, m)

o find left and right interval values L and R
e if values not free, update ancestors and nodes following in preorder
o insert single tuple (id(v), A(v), L, R)
e Efficiency:
o rename and delete are very efficient (constant time)!

o insert may be O(n) in worst case (inefficient)
e sparse numbering reduces number of updates for insert

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 33 / 56

Encoding XML in a Relational Database Interval Encoding

Example: Delete Node in Interval Encoding

nid | Ibl | Ift rgt

0329 0 d 0 29
// \ 1 b 1 2
4ds 16ko1 22M23 26P27 3 d 4 5
7f8/ \9g14 17I18/ 1\9m20 “;f F ? éS
10h11/ \12i13 6 g 9 14
I h 10 11

3 i 12 13

9 k 16 21

10 | | 17 18

11 | m | 19 20

12 | n 22 23

13 o | 25 28

14 | p |26 27

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 34 / 56

Encoding XML in a Relational Database Interval Encoding

Example: Insert Node in Interval Encoding

nid | Ibl | Ift rgt
oaz%’x. 0 a 0 24 29
/ "‘\(———\ 1 b 1 2
////\\\ ST 2 e |3 52 24
4ds 4ds 6f7 8813 | 14k1<_:14k1920n2120h21 : 24P25 : 3 d 4 5
_____ N /XN T 5 [f |67 |7 8
oF smogeiimshosheTnu e 6 |g |8 9 | 1314
:—9;10 ____1;1_2\' 7 h 9 10 111
---------- | 8 |i |1112] 12 13
@ Insert new node with label e: 9 K | 14 16 | 19 21
ins((4, €), 2, 2, 3) 10 |1 | 1517 | 16 18
e update the ancestors of the new 11 |m |17 19 | 18 20
node
e update the nodes following the new 12-1n 20 22 | 24 23
node in preorder 13 o | 2325|2628
o insert single tuple 14 | p |24 26| 25 27
4 e 6 15

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 35 / 56

Encoding XML in a Relational Database Interval Encoding

Preorder

o Tree relation T(id, Ibl, Ift, rgt)
@ Implementation:

e sort by attribute /ft
e result is preorder traversal

e Efficiency:

e single query with sort on integer attribute
o very efficient (especially with index on /ft)

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 36 / 56

Encoding XML in a Relational Database Interval Encoding

Improving Insert /Delete Performance: Sparse Numbering

@ Interval Encoding with sparse numbering:
e leave numbers free for future insert
e avoids global reordering until gaps are filled
e node deletions re-open gaps

0290
PN
@ Example: 10C20 30b20
/N

40C50 60d70

o store node position as (order, size)-pair
e order corresponds to left interval value

0490
PN
@ Example: 10C10 30bs50
/7 N\

40C10 60010

Augsten (Univ. Salzburg) Similarity Search

e order + size corresponds to right interval value

@ Note: Floating-point values do not solve the problem!
@ Sparse numbering using (order, size)-pairs [LMO1]:

Wintersemester 2016,/2017

37 / 56

Encoding XML in a Relational Database Interval Encoding

Node Insertion: How To Deal with Full Gaps?

@ Inserting a node:

a) find the correct gap(s) in the tree
b) if the/each gap is large enough: insert new node
c) otherwise: ...?

@ Solution 1: shift left/right values until new node fits

e cheapest way for inserting a single node
e but: only a small number of gaps are opened

@ Solution 2: reset all gaps

@ more expensive than shifting
e but: happens less frequently because all gaps in the tree are opened

@ Shifting or resetting gaps are called “hard updates”

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 38 / 56

Encoding XML in a Relational Database Interval Encoding

Shifting Gaps is Cheaper than Resetting All Gaps

2500

Sparse+ —+—
Sparse ---x--

2000

1500

Time (ms)

1000

500

4000 8000 12000 16000 20000 24000

Tree size (number of nodes) (Gra ph from [Dag08])

@ Runtime of shifting and resetting:

o “Sparse+": resets all gaps
e “Sparse’: shifts gaps

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 39 / 56

Encoding XML in a Relational Database Interval Encoding

How Often Do We Need a Hard Update

30 ¢
Sparse ——+—
Sparse+ ffffffffffff
25
8 M\WM
= 20 |
©
=1
° 15
©
<
5 10 ¢
X
ST
L A AR A A BT ol

0 4000 8000 12000 16000 20000
Tree size (number of nodes) (Graph from [Dag08])

@ Average number of hard updates when a new node is inserted
(gap size 100):
e “Sparse+": resets all gaps
e “Sparse”: shifts gaps

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 40 / 56

Encoding XML in a Relational Database Interval Encoding

Impact of the Gap Size

100 ¢
g Sparse —
| Sparse+
T 10 ¢
S 3
o [
> .
o B
@ L X
e
© 1t
o .
XX
VAN
XX
01 ..

0O 10 20 30 40 50 60 70 80 90 100
Gap size (Graph from [Dag08])

@ Impact of the gap size on the number of hard updates:

o “Sparse+": resets all gaps
e “Sparse’: shifts gaps

Similarity Search Wintersemester 2016,/2017 41 / 56

Augsten (Univ. Salzburg)

Encoding XML in a Relational Database Experimental Comparison of the Encodings

Outline

© Encoding XML in a Relational Database

@ Experimental Comparison of the Encodings

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 42 / 56

Encoding XML in a Relational Database Experimental Comparison of the Encodings

Performance
1000 ¢ 7 10000
i Dewey —%— 1
! Adjacency]
Sparse+ < -
| Descendants 1
100 | Fanout 1
' 1 1000
. - _
E 3
10 | 3
e 10 - g
= X
| ok { 100
1L ++++++]
XA MR HRHHHHHIAHH ST AAR NN]
ot b
0 4000 8000 12000 16000 20000
Tree size (number of nodes) (Graph from [Dag08])

@ Delete performance of Adjacency List, Dewey, and Interval Encoding
(Sparse+ [Dag08], gap size 100)

@ Each data point in graph shows avg. runtime over 800 deletions

@ Descendants: avg. number of descendants of deleted nodes

@ Fanout: avg. fanout of deleted nodes

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 43 / 56

Encoding XML in a Relational Database Experimental Comparison of the Encodings

Insert Performance

1000 ¢ 7 10000
g Dewey —— 1
Adjacency |
Sparse+ < -
Descendants |
Fanout '
100 1 1000
= i]
E o
o
()
£ 2
=
10 | ;%i%ﬁi&@gx; 1 100
- %XX oot X
B LRGN S
[* ¥+ % +fx+
Jr
1 IS S A RS T S S T S T SR [A S S S N SR S SR SR R S 10
0 4000 8000 12000 16000 20000
Tree size (number of nodes) (Graph from [Dag08])

@ Insert performance of Adjacency List, Dewey, and Interval Encoding
(Sparse+ [Dag08], gap size 100)

@ Each data point in graph shows avg. runtime over 800 insertions

@ Descendants: avg. number of descendants of inserted nodes

@ Fanout: avg. fanout of inserted nodes

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 44 / 56

Encoding XML in a Relational Database Experimental Comparison of the Encodings

Efficiency of the Preorder Traversal

Adjacency List ——+—
4f Dewey
Sparse+ ¥

Time (s)

0 xx%%%%%%%%%*”***””*w %% |
0 4000 8000 12000 16000 20000

Tree size (number of nodes) (Graph from [Dag08])

@ Preorder traversal performance of Adjacency List, Dewey, and Interval
Encoding (Sparse+ [Dag08], gap size 100)

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 45 / 56

Encoding XML in a Relational Database

Comparing the Encodings

Experimental Comparison of the Encodings

Adjacency Dewey Interval
preorder
@ update very efficient preorder very
efficient update efficient
@ simple imple- efficiency: simple imple-
mentation between mentation
others

@ preorder very
inefficient

Augsten (Univ. Salzburg)

update worst
case is O(n)

space
overhead for
storing paths

Similarity Search

insert is O(n)
on average
(patch:
sparse
numbering)

Wintersemester 2016,/2017

Encoding XML in a Relational Database XML and Trees

Outline

© Encoding XML in a Relational Database

@ XML and Trees

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 47 / 56

Encoding XML in a Relational Database XML and Trees

Representing XML as a Tree

@ Many possibilities — we will consider

e single-label tree
e double-label tree

@ Pros/cons depend on application!

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 48 / 56

Encoding XML in a Relational Database XML and Trees

XML as a Single-Label Tree

@ [The XML document is stored as a tree with:

@ Element nodes contain:

@ nodes of their sub-elements
@ nodes of their attributes
@ nodes with their text values

@ Attribute nodes contain:

e single node with their text value

@ Text nodes are always leaves
@ Order:

@ sub-element and text nodes are ordered

e XML element: node labeled with element tag name
o XML attribute: node labeled with attribute name
o Text contained in elements/attributes: node labeled with the text-value

o attributes are not ordered (approach: store them before all
sub-elements, sort according to attribute name)

Wintersemester 2016,/2017

49 / 56

Augsten (Univ. Salzburg) Similarity Search

Encoding XML in a Relational Database XML and Trees

Example: XML as a Single-Label Tree

<article title=’pqgq-Grams’>
<author>Augsten</author>
<author>Boehlen</author>
<author>Gamper</author>

</article>
article
title author author author
\ \ \
pg-Grams Augsten Boehlen Gamper

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 50 / 56

Encoding XML in a Relational Database XML and Trees

XML as a Double-Label Tree

@ Node labels are pairs

@ [The XML document is stored as a tree with:

o XML element: node labeled with (tag-name,text-value)
o XML attribute: node labeled with (attribute-name,text-value)

@ Element nodes contain:
@ nodes of their sub-elements and attributes

@ Attribute nodes are always leaves

@ Element nodes without attributes or sub-elements are leaves
@ Order:

@ sub-element nodes are ordered
o attributes are not ordered (approach: see previous slide)

@ Limitation: Can represent

o either elements with sub-elements and/or attributes
o or elements with a text value

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017

Encoding XML in a Relational Database XML and Trees

Example: XML as a Double-Label Tree

<article title=’pqg-Grams’>
<author>Augsten</author>
<author>Boehlen</author>
<author>Gamper</author>
</article>

(article,e)

///////////;/// \\\:f\\\\\\\\\\

(title, pg-Grams) (author,Augsten) (author,Boehlen) (author,Gamper)

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 52 / 56

Encoding XML in a Relational Database XML and Trees

Example: Single- vs. Double-Label Tree

<xhtml>
<p>This is bold font.</p>
<xhtml>

Single-Label Tree Double-Label Tree

xhtml
|

p
N
This is b

|

bold

font

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017

Encoding XML in a Relational Database XML and Trees

Parsing XML

We discuss two popular parsers for XML:
@ DOM - Document Object Model
@ SAX — Simple API for XML

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 54 / 56

Encoding XML in a Relational Database XML and Trees

DOM — Document Object Model

e W3C? standard for accessing and manipulating XML documents

@ Tree-based: represents an XML document as a tree
(single-label tree with additional node info, e.g. node type)

@ Elements, attributes, and text values are nodes

@ DOM parsers load XML into main memory

e random access by traversing tree :-)
o large XML documents do not fit into main memory :-(

“http://www.w3schools.com/dom

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017

Encoding XML in a Relational Database XML and Trees

SAX - Simple API for XML

o “de facto" standard for parsing XML3

o Event-based: reports parsing events (e.g., start and end of elements)

e no random access :-(
o you see only one element/attribute at a time
e you can parse (arbitrarily) large XML documents :-)

@ Java API available for both, DOM and SAX
@ For importing XML into a database: use SAX!

*http://www.saxproject.org
Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017

@ Nikolaus Augsten, Michael Bohlen, and Johann Gamper.
Approximate matching of hierarchical data using pg-grams.
In Proceedings of the International Conference on Very Large
Databases (VLDB), pages 301-312, Trondheim, Norway, September
2005. ACM Press.

5 Joe Celko.
Trees and Hierarchies in SQL for Smarties.

Morgan Kaufmann Publishers Inc., 2004.

s Eigminas Dagys.
Storing XML using interval encoding with sparse numbering.
Master thesis, Free University of Bozen-Bolzano, March 2008.

@ David DeHaan, David Toman, Mariano P. Consens, and M. Tamer

Ozsu.
A comprehensive XQuery to SQL translation using dynamic interval

encoding.

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 56 / 56

In Proceedings of the ACM SIGMQOD International Conference on
Management of Data, pages 623—634, San Diego, California, June
2003. ACM Press.

1 Quanzhong Li and Bongki Moon.
Indexing and querying XML data for regular path expressions.
In Proceedings of the International Conference on Very Large
Databases (VLDB), pages 361-370, Roma, ltaly, September 2001.
Morgan Kaufmann Publishers Inc.

B lgor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel
Shanmugasundaram, Eugene J. Shekita, and Chun Zhang.
Storing and querying ordered XML using a relational database system.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 204-215, Madison, Wisconsin, June
2002. ACM Press.

Augsten (Univ. Salzburg) Similarity Search Wintersemester 2016,/2017 56 / 56

