

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

Theorem (Lower Bound)

If the trees are at tree edit distance k, then the string edit distance between their preorder or postorder traversals is at most k.

Proof.

Tree operations map to string operations (illustration on next slide):

- Insertion (ins(v, p, k, m)): Let $t_1 \dots t_f$ be the subtrees rooted in the children of p. Then the preorder traversal of the subtree rooted in p is $p pre(t_1) \dots pre(t_{k-1}) pre(t_k) \dots pre(t_m) pre(t_{m+1}) \dots pre(t_f).$
 - Inserting v moves the subtrees k to m:
 - $ppre(t_1) \dots pre(t_{k-1}) \vee pre(t_k) \dots pre(t_m) pre(t_{m+1}) \dots pre(t_f).$

Wintersemester 2016/2017

The string distance is 1. Analog rationale for postorder.

- Deletion: Inverse of insertion.
- Rename: With node rename a single string character is renamed. Similarity Search

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Lower Bound

Augsten (Univ. Salzburg)

• From the lower bound theorem it follows that

 $\max(\delta_s(pre(\mathsf{T}_1), pre(\mathsf{T}_2)), \delta_s(post(\mathsf{T}_1), post(\mathsf{T}_2))) \le \delta_t(\mathsf{T}_1, \mathsf{T}_2)$

where δ_s and δ_t are the string and the tree edit distance, respectively.

- The string edit distance can be computed faster:
 - string edit distance runtime: $O(n^2)$
 - tree edit distance runtime: $O(n^3)$
- Similarity join: match all trees with $\delta_t(T_1, T_2) \leq \tau$
 - if $\max(\delta_s(pre(\mathsf{T}_1), pre(\mathsf{T}_2)), \delta_s(post(\mathsf{T}_1), post(\mathsf{T}_2))) > \tau$ then $\delta_t(\mathsf{T}_1,\mathsf{T}_2) > \tau$
 - thus we do not have to compute the expensive tree edit distance

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings Illustration for the Lower Bound Proof (Preorder)

Similarity Search

Search Space Reduction for the Tree Edit Distance Lower Bound: Traversal Strings

Example: Traversal String Lower Bound

- The string distances of preorder and postorder may be different.
- The string distances and the tree distance may be different.

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Similarity Search

Wintersemester 2016/2017

13 / 21

15 / 21

Augsten (Univ. Salzburg)

Edit Mapping

Augsten (Univ. Salzburg)

• Recall the definition of the edit mapping:

Definition (Edit Mapping)

An edit mapping M between T_1 and T_2 is a set of node pairs that satisfy the following conditions:

- (1) $(a,b) \in M \Rightarrow a \in N(T_1), b \in N(T_2)$
- (2) for any two pairs (a, b) and (x, y) of M:

(i)
$$a = x \Leftrightarrow b = y$$
 (one-to-one condition)

- (ii) a is to the left of $x^1 \Leftrightarrow b$ is to the left of y (order condition)
- (iii) a is an ancestor of x \Leftrightarrow b is an ancestor of y (ancestor condition)

(3) Optional:
$$a = root(T_1)$$
 and $b = root(T_1) \Rightarrow (a, b) \in M$
(forbid deleting the root node)

 1 i.e., a precedes x in both preorder and postorder

```
Augsten (Univ. Salzburg)
```

Similarity Search

Wintersemester 2016/2017

16 / 21

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance

Example: Constrained Edit Distance

T_2 T_1 • Constrained edit distance (dashed lines): $\delta_c(T_1, T_2) = 5$ • constrained mapping $M_c = \{(a, a), (d, d), (c, i), (f, f)(g, g)\}$ • edit sequence: ren(c, i), del(b), del(e), ins(h), ins(e) • Unconstrained edit distance (dotted lines): $\delta_t(T_1, T_2) = 3$ • mapping $M_t = \{(a, a), (d, d), (e, e), (c, i), (f, f)(g, g)\}$ • edit sequence: ren(c, i), del(b), ins(h)Augsten (Univ. Salzburg) Wintersemester 2016/2017 Similarity Search 17 / 21 Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance Complexity of the Constrained Edit Distance Theorem (Complexity of the Constrained Edit Distance) Let T_1 and T_2 be two trees with $|T_1|$ and $|T_2|$ nodes, respectively. There is an algorithm that computes the constrained edit distance between T_1 and T_2 with runtime $O(|T_1||T_2|).$ Proof. See [Zha95, GJK⁺02].

Search Space Reduction for the Tree Edit Distance Upper Bound: Constrained Edit Distance Example: Constrained Edit Distance

