
Task: Implementation of Set Similarity Join

Algorithm AllPairs

November 21, 2017

In this project you will implement the set similarity join algorithm AllPairs.
You will be assigned one out of three programming languages (C++/Java/Python)
for your implementation.

Peter {jazz, biking, swimming}
Katrin {skiing, hiking, running, opera}
Astrid {skiing, hiking, biking, jazz}

Table 1: Social Network: User interests

Many interesting problems can be represented as a set similarity join. Con-
sider, for example, a social networking site that collects user interests. Users
with similar interests should be recommended to each other. We represent the
interests of each user as a set as shown in Table 1. Then, we compute the pairs
of sets that are similar. Users with similar interests are recommended to each
other.

1 Background

Given a collection of sets R, the set similarity join computes all pairs of sets
in R that are similar. The similarity is assessed using a set similarity function
sim(r, s) (e.g., Jaccard, Cosine, Dice). A pair is similar if the similarity is above
a user-defined threshold t. Formally, the similarity join is defined as follows:

simjoin(R, t) = {(r, s) ∈ R×R | sim(r, s) ≥ t}

Note that in our definition of similarity join, R is joined with itself; this kind
of join is called a self join. In this project we only deal with self joins. R–S
similarity joins, which involve two different collections R and S, use very similar
techniques as similarity self joins.

In recent years, many algorithms have been proposed to compute the set
similarity join. A relatively simple algorithm is AllPairs [1]. In an experimental
study conducted by Mann et al. [2] AllPairs was among the three winners for
computing the set similarity join.

1

2 Tasks

The project consists of two tasks: First, efficiently implement the AllPairs al-
gorithm, following the pseudo-code in Algorithm 1 (along with Algorithm 2
for verification). Second, extend your implementation for weighted similarity
functions (details later).

Algorithm 1 computes a similarity self join on a collection of sets R using
similarity threshold t. r is a record (=sorted set) in R. Each record has a
unique ID. The token at position p, 0 ≤ p < |r|, of record r is denoted as r[p].
I is an inverted list index, which initially is empty. The key of each inverted
list is a token, the entries in the inverted list are record IDs. Ir[p] is the list
for token r[p]. πr is the probing prefix length of r, πI

r is the indexing prefix
length. The length filter checks if a record s in the inverted list is long enough
for r: a record s must be at least of length lbr to match with r. The verification
function Verify(r,M, t) (Algorithm 2) verifies for each candidate set s in M if
sim(r, s) ≥ t; an efficient verification function will leverage the partial overlaps
stored in M . The function verify ssjoin paper(r, s, t, o, pr, ps) refers to the
efficient verify function in Mann et al. [2]: r and s are the two sets, t is the
required overlap (as computed with eqoverlap), o is the overlap of the prefixes,
pr and ps are the positions where to start verification in the resp. sets.

2.1 Task 1

Efficiently implement the pseudo-code in Algorithm 1. The data has to be
read from a text file, where each line represents a set containing integer tokens
separated by white space. The set tokens are sorted by the token value, which
represent the inverse document frequency rank of the token. The sets are already
sorted by set size. Here is an example:

1 2 3 4 14

10 11 12 13 14

5 6 7 8 9 12 13 14

Your binary or script should be callable with the following parameters (in-
cluding example):

./binary_or_script input_file jaccard_threshold

./binary_or_script bms-pos-raw.txt 0.85

The output of your program will contain the output size, i.e., the number
of pairs in the output and the time to compute the join (without reading the
input file). The time should be the CPU-time, not wallclock time. The expected
format is

output_size

join_time_in_seconds

A valid output would be (if 543265 is the correct number of result pairs and
3.708 is your real CPU time):

2

543265

3.708

The similarity function to be implemented is Jaccard similarity, which is
defined as:

J(r, s) =
|r ∩ s|
|r ∪ s|

Algorithm 1: AllPairs(R, tJ)

input : R collection of sets, tJ similarity threshold
output: res set of result pairs (similarity at least t)

1 I = {}; /* I inverted list index covering prefix of sets */

2 foreach r in R /* process in ascending length order of r */

3 do
4 M = {}; /* dictionary for candidate set. Key: candidate,

value: number of intersecting tokens found so far. */

5 for p← 0 to πr − 1 /* πr: probing prefix length of r */

6 do
7 for s in Ir[p] do
8 if |s| < lbr /* lbr: length bound */

9 then
10 remove index entry with s from Ir[p];
11 else
12 if s not in M then
13 M [s] = 0;
14 M [s] = M [s] + 1;

15 for p← 0 to πI
r − 1 /* πI

r: indexing prefix length of r */

16 do
17 Ir[p] = Ir[p] ◦ r; /* Add set r to index */

/* Verify() verifies the candidates in M */

18 res = res ∪ V erify(r,M, tJ);

2.2 Task 2

AllPairs can be modified to allow weighted similarity functions. Each token
has a particular weight associated with it. The weight is the same for each
occurrence of this token, g.g., token 14 in the input example above could have
weight 0.1. It has this weight in all three sets it occurs in.

Your binary or script will therefore accept another input parameter:

./binary_or_script input_file weight_file jaccard_threshold

The weight file consists of a mapping of tokens to their weight. There is one
mapping per line. Each line contains the token and the weight, separated by a
colon. If a token is not mapped, 1 should be assumed as its weight. It may look
like this:

3

Algorithm 2: Verify(r,M, tJ)

input : r probing set, M candidates map (candidate → overlap), tJ
Jaccard threshold

1 res← ∅;
2 foreach (s, o) in M // Foreach cand. map item (cand., overlap)

3 do
4 πr ← probing prefix length of r;
5 πs ← indexing prefix length of s;
6 wr ← πr-th token in r; // Last token of prefix in r
7 ws ← πs-th token in s; // Last token of prefix in s
8 t← eqoverlap(r, s, tJ);
9 if wr < ws then

10 ret← verify ssjoin paper(r, s, t, o, πr + 1, o+ 1);
11 else
12 ret← verify ssjoin paper(r, s, t, o, o+ 1, πs + 1);
13 if ret is true then
14 res← res ∪ (r, s);

15 return res;

3:0.1

2:0.2

14:0.1

The similarity function to implement is weighted Jaccard, which is defined
as

JW (r, s) =

∑
w∈|r∩s| weight(w)∑
w∈|r∪s| weight(w)

3 Further Readings

AllPairs combines the prefix filter and the length filter in a filter-verification
framework. We recommend to start with [2]. Particularly relevant to under-
stand AllPairs are the paragraphs “Prefix Filter” and “Length Filter” in Section
2.1 and the whole Section 2.2.

The weighted set similarity join is discussed in [3].

References

[1] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search.
In Proc. WWW, pages 131–140, 2007.

[2] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation of set simi-
larity join techniques. PVLDB, 9(4):360–371, May 2015.

4

[3] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity joins
for near-duplicate detection. TODS, 36(3):15, Aug. 2011.

5

