Database Tuning

Query Tuning

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at
Department of Computer Sciences
University of Salzburg

M database
research group

http://dbresearch.uni-salzburg.at

SS 2017/18
Version March 7, 2018

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning

Outline

@ Query Tuning
@ Query Processing
@ Problematic Queries
@ Minimizing DISTINCTs
@ Rewriting of Nested Queries

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 2 /58

Query Tuning

About Query Tuning

@ Query tuning: rewrite a query to run faster!

@ Other tuning approaches may have harmful side effects:

e adding index
e changing the schema
e modify transaction length

@ Query tuning: only beneficial side effects
o first thing to do if query is slow!

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 3 /58

Query Tuning Query Processing

Outline

@ Query Tuning
@ Query Processing

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 4 / 58

Query Tuning Query Processing

Steps in Query Processing

1. Parser

e input: SQL query

e output: relational algebra expression
2. Optimizer

e input: relational algebra expression
e output: query plan

3. Execution engine

e input: query plan
e output: query result

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 5/ 58

Query Tuning Query Processing

1. Parser

Parser:

@ Input: SQL query from user
Example: SELECT balanace
FROM account
WHERE balance < 2500

@ Output: relational algebra expression

Example: 0pajance<2500 (Mpaiance (account))

@ Algebra expression for a given query not unique!
Example: The following relational algebra expressions are equivalent.

° Ubalance<2500(nbalance(account))
° I_Ibalance(O-balance<2500(account))

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 6 / 58

Query Tuning Query Processing

2. Optimizer

Optimizer:
@ Input: relational algebra expression
Example: I_Ibalance(O'balance<2500(accour’t))

@ Output: query plan

Example: M palance

O balance<2500
use index 1

account

@ query plan is selected in three steps:

A) equivalence transformation
B) annotation of the relational algebra expression
C) cost estimation for different query plans

SS 2017/18

7 /58

Augsten (Univ. Salzburg) DBT — Query Tuning

Query Tuning Query Processing

A) Equivalence Transformation

@ Equivalence of relational algebra expressions:

e equivalent if they generate the same set of tuples on every legal
database instance

o legal: database satisfies all integrity constraints specified in the
database schema

@ Equivalence rules:

e transform one relational algebra expression into equivalent one
o similar to numeric algebra: a+ b= b+ a, a(b+ ¢) = ab+ ac, etc.

@ Why producing equivalent expressions?

e equivalent algebraic expressions give the same result
e but usually the execution time varies significantly

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 8 / 58

Query Tuning Query Processing

Equivalence Rules — Examples

@ Selection operations are commutative: oy, (0g,(E)) = 0g,(09,(E))

o E is a relation (table)
e 61 and 6, are conditions on attributes, e.g. E.sallary < 2500
e oy selects all tuples that satisfy 6

@ Selection distributes over the theta-join operation if 7 involves only
attributes of E; and 6, only attributes of Es:

091/\92(E1 Mg E2) — (091(E1)) Mg (092(E2))

o KXy is the theta-join; it pairs tuples from the input relations (e.g., E;
and E;) that satisfy condition 0, e.g. Ej.accountlD = E,.ID

o Natural join is associative: (E; M Ep) x Ez3 = By x (Ex X E3)

e the join condition in the natural join is equality on all attributes of the
two input relations that have the same name

@ Many other rules can be found in Silberschatz et al., “Database
System Concepts”

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 9 /58

Query Tuning Query Processing

Equivalence Rules — Example Query

@ Schema:
branch(branch-name, branch-city, assets)
account(account-number, branch-name, balance)
depositor(customer-name,account-number)

@ Query:
SELECT customer-name
FROM branch, account, depositor
WHERE branch-city=Brooklyn AND
balance < 1000 AND
branch.branch-name = account.branch-name AND
account.account-number = depositor.account-number

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 10 / 58

Query Tuning Query Processing

Equivalence Rules — Example Query

@ Equivalent relational algebra expressions:

I_I customer-name
I_I customer-name ‘

‘ "
Ubranch-city = Brooklyn
A balance < 1000 / \

| — X depositor
X AN
VN O branch-city=Brooklyn 0 balance<1000
branch X ‘
RN
account depositor branch account

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 11 / 58

Query Tuning Query Processing

B) Annotation: Creating Query Plans

@ Algebra expression is not a query plan.

@ Additional decisions required:

e which indexes to use, for example, for joins and selects?

e which algorithms to use, for example, sort-merge vs. hash join?
e materialize intermediate results or pipeline them?

e etc.

@ Each relational algebra expression can result in many query plans.

@ Some query plans may be better than others!

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Query Processing

Query Plan — Example

@ query plan of our example query:
(account physically sorted by branch-name; index 1 on branch-city sorts
records with same value of branch-city by branch-name)

I_I customer-name
|

X
hash join
7N
X .
. depositor
merge join

pipelin% \)ipeline

O branch-city=Brooklyn O balance<1000
use index 1 use linear scan
| |
branch account

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 13 / 58

Query Tuning Query Processing

C) Cost Estimation

@ Which query plan is the fastest one?

@ This is a very hard problem:

e cost for each query plan can only be estimated
e huge number of query plans may exist

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 14 / 58

Query Tuning Query Processing

Statistics for Cost Estimation

e Catalog information: database maintains statistics about relations

@ Example statistics:

e number of tuples per relation

e number of blocks on disk per relation
e number of distinct values per attribute
e histogram of values per attribute

@ Statistics used to estimate cost of operations, for example

e selection size estimation
@ join size estimation
@ projection size estimation

@ Problems:

e cost can only be estimated
e updating statistics is expensive, thus they are often out of date

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 15 / 58

Query Tuning Query Processing

Choosing the Cheapest Query Plan

@ Problem: Estimating cost for all possible plans too expensive.

@ Solutions:

e pruning: stop early to evaluate a plan
e heuristics: do not evaluate all plans

@ Real databases use a combination:

e Apply heuristics to choose promising query plans.
@ Choose cheapest plan among the promising plans using pruning.

@ Examples of heuristics:

e perform selections as early as possible
e perform projections early
e avoid Cartesian products

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Query Processing

3. Execution Engine

The execution engine
@ receives query plan from optimizer

@ executes plan and returns query result to user

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 17 / 58

Query Tuning Query Processing

Query Tuning and Query Optimization

@ Optimizers are not perfect:

e transformations produce only a subset of all possible query plans
e only a subset of possible annotations might be considered
e cost of query plans can only be estimated

@ Query Tuning: Make life easier for your query optimizer!

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Problematic Queries

Outline

@ Query Tuning

@ Problematic Queries

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 19 / 58

Query Tuning Problematic Queries

Which Queries Should Be Rewritten?

@ Rewrite queries that run “too slow”

@ How to find these queries?

e query issues far too many disk accesses,
for example, point query scans an entire table
e you look at the query plan and see that relevant indexes are not used

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 20 / 58

Query Tuning Problematic Queries

Running Example

@ Employee(ssnum,name,manager,dept,salary,numfriends)

e clustering index on ssnum

e non-clustering index on name
e non-clustering index on dept
e keys: ssnum, name

@ Students(ssnum,name,course,grade)

e clustering index on ssnum
e non-clustering index on name
e keys: ssnum, name

@ Techdept (dept,manager,location)

clustering index on dept
key: dept
manager may manage many departments

Q
o
o
e a location may contain many departments

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 21 / 58

Query Tuning Problematic Queries

DISTINCT

@ How can DISTINCT hurt?
e DISTINCT forces sort or other overhead.
e If not necessary, it should be avoided.
@ Query: Find employees who work in the information systems
department.

SELECT DISTINCT ssnum

FROM Employee
WHERE dept = ’information systems’

@ DISTINCT not necessary:

e ssnum is a key of Employee, so it is also a key of a subset of Employee.
e Note: Since an index is defined on ssnum, there is likely to be no
overhead in this particular examples.

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 22 / 58

Query Tuning Problematic Queries

Non-Correlated Subqueries

@ Many systems handle subqueries inefficiently.
@ Non-correlated: attributes of outer query not used in inner query.

e Query:
SELECT ssnum
FROM Employee
WHERE dept IN (SELECT dept FROM Techdept)
@ May lead to inefficient evaluation:
e check for each employee whether they are in Techdept
e index on Employee.dept not used!
@ Equivalent query:

SELECT ssnum
FROM Employee, Techdept
WHERE Employee.dept = Techdept.dept

e Efficient evaluation:
e look up employees for each dept in Techdept
e use index on Employee.dept

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

23 / 58

Query Tuning Problematic Queries

Temporary Tables

@ Temporary tables can hurt in the following ways:

e force operations to be performed in suboptimal order
(optimizer often does a very good job!)

o creating temporary tables i.s.s.! causes catalog update — possible
concurrency control bottleneck

e system may miss opportunity to use index

@ Temporary tables are good:

e to rewrite complicated correlated subqueries
o to avoid ORDER BYs and scans in specific cases (see example)

1

In some systems

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Problematic Queries

Unnecessary Temporary Table

@ Query: Find all IT department employees who earn more than 40000.

SELECT * INTO Temp
FROM Employee
WHERE salary > 40000

SELECT ssnum
FROM Temp
WHERE Temp.dept = ’IT’

@ Inefficient SQL:

e index on dept can not be used
o overhead to create Temp table (materialization vs. pipelining)

@ Efficient SQL:

SELECT ssnum

FROM Employee

WHERE Employee.dept = ’IT’
AND salary > 40000

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 25 / 58

Query Tuning Problematic Queries

Joins: Use Clustering Indexes and Numeric Values

@ Query: Find all students who are also employees.
@ Inefficient SQL:

SELECT Employee.ssnum
FROM Employee, Student
WHERE Employee.name = Student.name

@ Efficient SQL:

SELECT Employee.ssnum
FROM Employee, Student
WHERE Employee.ssnum = Student.ssnum

@ Benefits:

o Join on two clustering indexes allows merge join (fast!).
e Numerical equality is faster evaluated than string equality.

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Problematic Queries

Don't use HAVING where WHERE is enough

Query: Find average salary of the IT department.

Inefficient SQL:

SELECT AVG(salary) as avgsalary, dept
FROM Employee

GROUP BY dept

HAVING dept = ’IT’

Problem: May first compute average for employees of all departments.
Efficient SQL: Compute average only for relevant employees.

SELECT AVG(salary) as avgsalary, dept
FROM Employee

WHERE dept = ’IT’

GROUP BY dept

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 27 / 58

Query Tuning Problematic Queries

Use Views with Care (1/I1)

@ Views: macros for queries

e queries look simpler
@ but are never faster and sometimes slower

@ Creating a view:

CREATE VIEW Techlocation

AS SELECT ssnum, Techdept.dept, location
FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

@ Using the view:
SELECT location

FROM Techlocation
WHERE ssnum = 452354786

@ System expands view and executes:

SELECT location

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept
AND ssnum = 452354786

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 28 / 58

Query Tuning Problematic Queries

Use Views with Care (I1/I1)

@ Query: Get the department name for the employee with social
security number 452354786 (who works in a technical department).

@ Example of an inefficient SQL:

SELECT dept
FROM Techlocation
WHERE ssnum = 452354786

@ This SQL expands to:

SELECT Techdept.dept

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept
AND ssnum = 452354786

@ But there is a more efficient SQL (no join!) doing the same thing:

SELECT dept
FROM Employee
WHERE ssnum = 452354786

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 29 / 58

Query Tuning Problematic Queries

System Peculiarity: Indexes and OR

@ Some systems never use indexes when conditions are OR-connected.

@ Query: Find employees with name Smith or who are in the
acquisitions department.

SELECT Employee.ssnum

FROM Employee

WHERE Employee.name = ’Smith’

OR Employee.dept = ’acquisitions’

@ Fix: use UNION instead of OR

SELECT Employee.ssnum
FROM Employee
WHERE Employee.name = ’Smith’

UNION

SELECT Employee.ssnum
FROM Employee
WHERE Employee.dept = ’acquisitions’

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 30 / 58

Query Tuning Problematic Queries

System Peculiarity: Order in FROM clause

@ Order in FROM clause should be irrelevant.

@ However: For long joins (e.g., more than 8 tables) and in some
systems the order matters.

@ How to figure out? Check query plan!

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 31 / 58

Query Tuning Problematic Queries

Experimental Evaluation

Throughput increase in percent.

Augsten (Univ. Salzburg)

80 >10000

70 | m SQLServer 2000
o 60 | @ Oracle 8i
T 50 {ODB2V7.1
5 40
Q.
S 30
=
o 20
L
= 10 j

0 _
10 & & Iy ¥ " & \‘Z'$
& S R N4 O > 2)
& N & &P N N
R & > g
) O {\o N
® & ¢
) \ (‘6
P O N
o0 O
.\9\ N
Running Example: 100k employees, 100k students, 10 technical departments

SS 2017/18 32/ 58

DBT — Query Tuning

Query Tuning Minimizing DISTINCTs

Outline

@ Query Tuning

@ Minimizing DISTINCTs

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 33 / 58

Query Tuning Minimizing DISTINCTs

About Query Tuning

@ DISTINCT removes duplicate tuples from the query result.
@ Goal: avoid DISTINCT if possible!

@ How to know if DISTINCT is necessary?

@ \We use the notions of

e privileged tables and
e reachability

to decide whether there can be duplicates in the query result.

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 34 / 58

Query Tuning Minimizing DISTINCTs

Privileged Tables

@ Privileged table: Attributes returned by SELECT clause contain a key.

@ Example: Get the social security numbers of all employees that work
in a technical department.

SELECT ssnum

FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept
@ Employee is a privileged table:

e the SELECT clause projects the attribute ssnum
e ssnum is a key of Employee

SS 2017/18 35/ 58

Augsten (Univ. Salzburg) DBT — Query Tuning

Query Tuning Minimizing DISTINCTs

Reachability

R and S are tables
R reaches S if

e R and S are joined on equality and
e the join attribute in R is a key of R

Intuition: A tuple from S is joined to at most one tuple from R.

Reachability is transitive: if A reaches B and B reaches C then A
reaches C.

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 36 / 58

Query Tuning Minimizing DISTINCTs

Reachability — Example

@ Previous Example: Get the social security numbers of all employees
that work in a technical department.

SELECT ssnum
FROM Employee, Techdept
WHERE Employee.dept = Techdept.dept

@ Techdept reaches Employee:

e Techdept and Employee are joined on equality
o dept is a key of Techdept

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 37 / 58

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee

@ A query returns no duplicates if the following conditions hold:

e Every attribute in the SELECT clause is from a privileged table.
e Every unprivileged table reaches at least one privileged one.

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee — Examples

@ This query may return duplicates:

SELECT ssnum

FROM Employee, Techdept

WHERE Employee.manager = Techdept.manager
@ Reason:

e manager is not a key of Techdept
e thus Techdept does not reach privileged table Employee

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 39 / 58

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee — Examples

@ This query returns no duplicates:

SELECT ssnum, Techdept.dept
FROM Employee, Techdept
WHERE Employee.manager = Techdept.manager

@ Reason: different from previous example,
e both Techdept and Employee are privileged table

Augsten (Univ. Salzburg) DBT — Query Tuning

SS 2017/18

40 / 58

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee — Examples

@ This query also returns no duplicates:

SELECT ssnum, Techdept.dept
FROM Employee, Techdept

@ Reason: as before,

e both Techdept and Employee are privileged table

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 41 / 58

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee — Examples

@ This query returns no duplicates:
(even if Student .name is not a key)

SELECT Student.ssnum

FROM Student, Employee, Techdept

WHERE Student.name = Employee.name

AND Employee.dept = Techdept.dept
@ Reason:

@ join attribute Employee.name is a key, thus Employee reaches
privileged table Student

@ join attribute Techdept.dept is a key thus Techdept reaches
Employee

e transitivity: Techdept reaches Employee and Employee reaches
Student, thus Techdept reaches Student

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee — Examples

@ This query returns duplicates:
(even if Student .name is a key)

SELECT Student.ssnum

FROM Student, Employee, Techdept

WHERE Student.name = Employee.name

AND Employee.manager = Techdept.manager
@ Reason:

e join attribute Techdept.manager is not key
o thus Techdept does not reach Employee (and Student)

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Minimizing DISTINCTs

No-Duplicate Guarantee — Examples

@ Try the example queries on the following instance (keys underlined):

o Employee(ssnum, name, manager, dept)
ssnum ‘ name ‘ manager ‘ dept

1 Peter | John I'T

2 Rose | Mary ‘ Development
o Techdept(dept, manager)

dept manager

I'T John

Development | Mary

Production John

e Students(ssnum, name)
ssnum ‘name

5 Peter
6 Peter

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 44 / 58

Query Tuning Rewriting of Nested Queries

Outline

@ Query Tuning

@ Rewriting of Nested Queries

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 45 / 58

Query Tuning Rewriting of Nested Queries

Types of Nested Queries

@ Uncorrelated subqueries

e with aggregates in the inner query

SELECT ssnum
FROM Employee
WHERE salary > (SELECT AVG(salary) FROM Employee)

e without aggregates in the inner query

SELECT ssnum
FROM Employee
WHERE dept IN (SELECT dept FROM Techdept)

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 46 / 58

Query Tuning Rewriting of Nested Queries

Types of Nested Queries

@ Correlated subqueries

e with aggregates in the inner query

SELECT ssnum

FROM Employee el, Techdept

WHERE salary = (SELECT AVG(e2.salary)
FROM Employee e2, Techdept
WHERE e2.dept = el.dept
AND e2.dept = Techdept.dept)

o without aggregates in the inner query (uncommon)

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Rewriting of Nested Queries

Uncorrelated Subquery with Aggregates

@ Uncorrelated subqueries with aggregate in the inner query:

SELECT ssnum

FROM Employee
WHERE salary > (SELECT AVG(salary) FROM Employee)

@ Not problematic:

o Result of inner query is a single value (constant).
e Most systems will first execute the inner query and then substitute it

with the resulting constant.

SS 2017/18 48 / 58

Augsten (Univ. Salzburg) DBT — Query Tuning

Query Tuning Rewriting of Nested Queries

Uncorrelated Subquery without Aggregates

@ Uncorrelated subqueries without aggregate in the inner query:

SELECT ssnum
FROM Employee
WHERE dept IN (SELECT dept FROM Techdept)

@ Some systems might not use index on Employee.dept.

@ Unnested query:

SELECT ssnum
FROM Employee, Techdept
WHERE Employee.dept = Techdept.dept

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Rewriting of Nested Queries

Uncorrelated Subquery without Aggregates

@ Unnesting strategy:

1. Combine the arguments of the two FROM clauses.
2. AND together the WHERE clauses.

3. Replace “outer.attrl IN (SELECT inner.attr2 ...)" with
“outer.attrl = inner.attr2” in the WHERE clause.
4. Retain the SELECT clause from the outer block.

@ Strategy works for nesting of any depth.

@ Note: If inner table does not reach outer table in new join
condition, new duplicates may appear.

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Rewriting of Nested Queries

Duplicates in Unnested Queries — Examples

@ Nested query:

SELECT AVG(salary)
FROM Employee
WHERE dept IN (SELECT dept FROM Techdept)

@ Unnested query:

SELECT AVG(salary)
FROM Employee, Techdept
WHERE Employee.dept = Techdept.dept

@ Unnesting is correct:

e Techdept reaches Employee, thus no duplicates are introduced
e each salary appears once in average

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Rewriting of Nested Queries

Duplicates in Unnested Queries — Examples

@ Nested query:

SELECT AVG(salary)
FROM Employee
WHERE manager IN (SELECT manager FROM Techdept)

@ Unnested query:

SELECT AVG(salary)
FROM Employee, Techdept
WHERE Employee.manager = Techdept.manager
@ Unnesting is not correct:
e Techdept does not reach Employee, thus duplicates possible
e some salaries might appears multiple times in the average

@ Note: Duplicates do not matter for aggregates like MIN and MAX.

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Rewriting of Nested Queries

Duplicates in Unnested Queries — Examples

@ Solutions for following query?

SELECT AVG(salary)
FROM Employee
WHERE manager IN (SELECT manager FROM Techdept)

A) Derived table:

SELECT AVG(salary)
FROM Employee, (SELECT DISTINCT manager FROM Techdept) AS T
WHERE Employee.manager = T.manager

B) Temporary table:

SELECT DISTINCT manager INTO Temp
FROM Techdept

SELECT AVG(salary)
FROM Employee, Temp
WHERE Employee.manager = Temp.manager

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 53 / 58

Query Tuning Rewriting of Nested Queries

Correlated Subqueries with Aggregates

@ Correlated subquery with aggregates in the inner query:

SELECT ssnum

FROM Employee el, Techdept

WHERE salary = (SELECT AVG(e2.salary)
FROM Employee e2, Techdept
WHERE e2.dept = el.dept
AND e2.dept = Techdept.dept)

@ Inefficient in many systems.

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

Query Tuning Rewriting of Nested Queries

Strategy for Rewriting Query

SELECT ssnum

FROM Employee el, Techdept

WHERE salary = (SELECT AVG(e2.salary)
FROM Employee e2, Techdept
WHERE e2.dept = el.dept
AND e2.dept = Techdept.dept)

1. Create temporary table:

e GROUP BY on correlated attribute of inner query (must be equality!).
e Use uncorrelated qualifications of inner query for WHERE clause.

SELECT AVG(salary) as avsalary, Employee.dept INTO Temp
FROM Employee e2, Techdept

WHERE e2.dept = Techdept.dept

GROUP BY e2.dept

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 55 / 58

Query Tuning Rewriting of Nested Queries

Strategy for Rewriting Query

SELECT ssnum
FROM Employee el, Techdept
WHERE salary= (SELECT AVG(e2.salary)...WHERE e2.dept = el.dept...)

SELECT AVG(salary) as avsalary, Employee.dept INTO Temp
FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept

GROUP BY Employee.dept

2. Join temporary table with outer query:
e Condition on the grouped attribute replaces correlation condition.
e Depending attribute of grouping replaces subquery.
o All other qualifications of outer query remain (none in example).

SELECT ssnum

FROM Employee el, Temp
WHERE salary = avsalary
AND el.dept = Temp.dept;

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 56 / 58

Query Tuning Rewriting of Nested Queries

The Count Bug

@ Correlated subquery with COUNT aggregate in the inner query:

SELECT ssnum

FROM Employee el, Techdept

WHERE numfriends = COUNT(SELECT e2.ssnum
FROM Employee e2, Techdept
WHERE e2.dept = el.dept
AND e2.dept = Techdept.dept)

@ Rewrite with temporary table:
SELECT COUNT(ssnum) as numcolleagues, Employee.dept INTO Temp
FROM Employee, Techdept

WHERE Employee.dept = Techdept.dept
GROUP BY Employee.dept

SELECT ssnum

FROM Employee, Temp

WHERE numfriends = numcolleagues
AND Employee.dept = Temp.dept;

@ What is going wrong?

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18 57 / 58

Query Tuning Rewriting of Nested Queries

The Count Bug

@ Consider for example an employee Jane:

o Jane is not in a technical department (Techdept).
o Jane has no friends (Employee.numfriends = 0)

e Original (nested) query:

@ since Jane is not in a technical department, inner query is empty
e but COUNT(()=0, thus Jane is in the result set!

@ Rewritten query with temporary table:

e Jane not in a technical department and does not survive the join
e thus Jane is not in the result set

Augsten (Univ. Salzburg) DBT — Query Tuning SS 2017/18

