
Database Tuning
Index Tuning

Nikolaus Augsten
nikolaus.augsten@sbg.ac.at

Department of Computer Sciences
University of Salzburg

http://dbresearch.uni-salzburg.at

SS 2017/18
Version May 14, 2018

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 1 / 78

Outline

1 Index Tuning
Query Types
Index Types
Data Structures
Composite Indexes
Indexes and Joins
Index Tuning Examples

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 2 / 78

Index Tuning Query Types

Outline

1 Index Tuning
Query Types
Index Types
Data Structures
Composite Indexes
Indexes and Joins
Index Tuning Examples

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 3 / 78

Index Tuning Query Types

Query Types

Different indexes are good for different query types.

We identify categories of queries with different index requirements.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 4 / 78

Index Tuning Query Types

Query Types

Point query: returns at most one record

SELECT name

FROM Employee

WHERE ID = 8478

Multipoint query: returns multiple records based on equality condition

SELECT name

FROM Employee

WHERE department = ’IT’

Range query on X returns records with values in interval of X

SELECT name

FROM Employee

WHERE salary >= 155000

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 5 / 78

Index Tuning Query Types

Query Types

Prefix match query: given an ordered sequence of attributes, the
query specifies a condition on a prefix of the attribute sequence

Example: attribute sequence: lastname, firstname, city
The following are prefix match queries:

lastname=’Gates’

lastname=’Gates’ AND firstname=’George’

lastname=’Gates’ AND firstname like ’Ge%’

lastname=’Gates’ AND firstname=’George’ AND city=’San

Diego’

The following are not prefix match queries:

firstname=’George’

lastname LIKE ’%ates’

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 6 / 78

Index Tuning Query Types

Query Types

Extremal query: returns records with max or min values on some
attributes

SELECT name

FROM Employee

WHERE salary = MAX(SELECT salary FROM Employee)

Ordering query: orders records by some attribute value

SELECT *

FROM Employee

ORDER BY salary

Grouping query: partition records into groups;
usually a function is applied on each partition

SELECT dept, AVG(salary)

FROM Employee

GROUP BY dept

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 7 / 78

Index Tuning Query Types

Query Types

Join queries: link two or more tables

Equality join:

SELECT Employee.ssnum

FROM Employee, Student

WHERE Employee.ssnum = Student.ssnum

Join with non-equality condition:

SELECT e1.ssnum

FROM Employee e1, Employee e2

WHERE e1.manager = e2.ssnum

AND e1.salary > e2.salary

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 8 / 78

Index Tuning Index Types

Outline

1 Index Tuning
Query Types
Index Types
Data Structures
Composite Indexes
Indexes and Joins
Index Tuning Examples

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 9 / 78

Index Tuning Index Types

What is an Index?

An index is a data structure that supports efficient access to data:

Set of
Records

index
Condition

on
attribute

value

Matching
records

(search key)

Index tuning essential to performance!

Improper index selection can lead to:

indexes that are maintained but never used
files that are scanned in order to return a single record
multitable joins that run for hours or days

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 10 / 78

Index Tuning Index Types

Key of an Index

Search key or simply “key” of an index:

single attribute or sequence of attributes
values on key attributes used to access records in table

Sequential Key:

value is monotonic with insertion order
examples: time stamp, counter

Non-sequential Key:

value unrelated to insertion order
examples: social security number, last name

Note: index key different from key in relational theory

relational theory: key attributes have unique values
index key: not necessarily unique

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 11 / 78

Index Tuning Index Types

Index Characteristics

Indexes can often be viewed as trees (B+-tree, hash)

some nodes are in main memory (e.g., root)
nodes deeper down in tree are less likely to be in main memory

Number of levels: number of nodes in root-leaf path

a node is typically a disk block
one block read required per level
reading a block costs several milliseconds (involves disk seek)

Fanout: number of children a node can have

large fanout means few levels

Overflow strategy: insert into a full index node n

a new node n′ must be allocated on disk
B+-tree: split n into n and n′, both at same distance from root
hash index: n stores pointer to new node n′ (overflow chaining)

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 12 / 78

Index Tuning Index Types

Sparse vs. Dense

Sparse index: pointers to disk pages

at most one pointer per disk page
usually much fewer pointers than records

P1 PiP2

Dense index: pointers to individual records

one key per record
usually more keys than sparse index
optimization: store repeating keys only once,
followed by pointers

record

record
record

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 13 / 78

Index Tuning Index Types

Sparse vs. Dense

Number of pointers:

ptrs in dense index = records per page× ptrs in sparse index

Pro sparse: fewer pointers

typically record size is smaller than page size
fewer pointers result in fewer levels (and disk accesses)
uses less space

Pro dense:

index may “cover” query
multiple dense indexes per table possible (vs. only 1 spares index)

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 14 / 78

Index Tuning Index Types

Covering Index

Covering index:

answers read-only query within index structure
fast: data records are not accessed

Example 1: dense index on lastname

SELECT COUNT(lastname) WHERE lastname=’Smith’

Example 2: dense index on A, B, C (in that order)

covered query:

SELECT B, C

FROM R

WHERE A = 5

covered query, but not prefix:

SELECT A, C

FROM R

WHERE B = 5

non-covered query: D requires data access

SELECT B, D

FROM R

WHERE A = 5

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 15 / 78

Index Tuning Index Types

Clustering vs. Non-Clustering

Clustering index on attribute X
(also primary index)

records are grouped by attribute X on disk
B+-tree: records sorted by attribute X
only one clustering index per table
dense or sparse

Records

Non-clustering index on attribute X
(also secondary index)

no constraint on table organization
more than one index per table
always dense Records

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 16 / 78

Index Tuning Index Types

Clustering Indexes

Can be sparse:
fewer pointers than non-clustering index (always dense!)

Good for multi-point queries:
equality access on non-unique attribute
all result records are on consecutive pages
example: look up last name in phone book

Good for range, prefix, ordering queries:
works if clustering index is implemented as B+-tree
prefix example: look up all last names starting with ’St’ in phone book
result records are on consecutive pages

Good for equality join:
fast also for join on non-key attributes
index on one table: indexed nested-loop
index on both tables: merge-join

Overflow pages reduce efficiency:
if disk page is full, overflowing records go to overflow pages
overflow pages require additional disk accesses

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 17 / 78

Index Tuning Index Types

Equality Join with Clustering Index

Example query:

SELECT Employee.ssnum, Student.course

FROM Employee, Student

WHERE Employee.firstname = Student.firstname

Index on Emplyee.firstname: use index nested loop join

for each student look up employees with same first name
all matching employees are on consecutive pages

Index on both firstname attributes: use merge join

read both tables in sorted order and merge (B+-tree)
each page read exactly once
works also for hash indexes with same hash function

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 18 / 78

Index Tuning Index Types

Clustering Index and Overflow Pages

Why overflow pages?

clustering index stores records on consecutive disk pages
insertion between two consecutive pages not possible
if disk page is full, overflowing records go to overflow pages

Additional disk access for overflow page: reduced speed

Overflow pages can result from:

inserts
updates that change key value
updates that increase record size (e.g., replace NULL by string)

Reorganize index:

invoke special tool
or simply drop and re-create index

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 19 / 78

Index Tuning Index Types

Overflow Strategies

Tune free space in disk pages:

Oracle, DB2: pctfree (0 is full), SQLServer: fillfactor (100 is full)
free space in page is used for new or growing records
little free space: space efficient, reads are faster
much free space: reduced risk of overflows

Overflow strategies:

split: split full page into two half-full pages and link new page
e.g., A→ B → C , splitting B results in A→ B ′ → B ′′ → C
(SQLServer)
chaining: full page has pointer to overflow page (Oracle)
append: overflowing records of all pages are appended at the end of
the table (DB2)

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 20 / 78

Index Tuning Index Types

Non-Clustering Index

Always useful for point queries.

Particularly good if index covers query.

Critical tables: covering index on all relevant attribute combinations

Multi-point query (not covered): good for strongly selective queries
(=small result size)

#r : number of records returned by query
#p: number of disk pages in table
the #r records are uniformly distributed over all pages
thus query will read min(#r ,#p) disk pages

Index may slow down weakly selective multi-point query:

scan is by factor 2–10 faster than accessing all pages with index
thus #r should be significantly smaller than #p

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 21 / 78

Index Tuning Index Types

Non-Clustering Index and Multi-point Queries – Example

Example 1:

records size: 50B
page size: 4kB
attribute A takes 20 different values (evenly distributed among records)
does non-clustering index on A help?

Evaluation:

#r = n/20 (n is the total number of records)
#p = n/80 (80 records per page)
n/20 > n/80 thus index does not help

Example 2: as above, but record size is 2kB

Evaluation:

#r = n/20 (n is the total number of records)
#p = n/2 (2 records per page)
n/20 << n/2 thus index might be useful

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 22 / 78

Index Tuning Index Types

Clustering vs. Non-Clustering Index

0

0.2

0.4

0.6

0.8

1

SQLServer Oracle DB2

T
h

ro
u

g
h

p
u

t
ra

ti
o

clustered nonclustered no index

multi-point query with selectivity 100/1M records (0.01%)

clustering index much faster than non-clustering index

full table scan (no index) orders of magnitude slower than index

DB2 UDB V7.1, Oracle 8.1, SQL Server 7 on Windows 2000

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 23 / 78

Index Tuning Index Types

Covering vs. Non-Covering Index

0

10

20

30

40

50

60

70

SQLServer

T
h

ro
u

g
h

p
u

t
(q

u
er

ie
s/

se
c)

covering

covering - not
ordered

non clustering

clustering

prefix match query on sequence of attributes

covering: index covers query, query condition on prefix

covering, not ordered: index covers query, but condition not prefix

non-clustering: non-covering index, query condition on prefix

clustering: sparse index, query condition on prefix

SQL Server 7 on Windows 2000

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 24 / 78

Index Tuning Index Types

Non-Clustering vs. Table Scan

0 5 10 15 20 25

% of selected records

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/s

e
c

)
scan

non clustering

query: range query

non clustering: non-clustering non-covering index

scan: no index, i.e., table scan required

index is faster if less than 15% of the records are selected

DB2 UDB V7.1 Windows 2000
Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 25 / 78

Index Tuning Index Types

Index Maintenance - DB2

DB2

0

10

20

30

40

50

0 20 40 60 80 100

% Increase in Table Size

Th
ro

ug
hp

ut

(q
ue

ri
es

/s
ec

)

No maintenance
Maintenance

query: batch of 100 multi-point queries, pctfree=0 (data pages full)
performance degrades with insertion
overflow records simply appended
query traverses index and then scans all overflow records
reorganization helps

DB2 UDB V7.1 on Windows 2000
Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 26 / 78

Index Tuning Index Types

Index Maintenance - SQL Server

SQLServer

0 20 40 60 80 100

% Increase in Table Size

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/s

e
c

)

No maintenance

Maintenance

fillfactor=100 (data pages full)
performance degrades with insertion
overflow chain maintained for overflowing page
extra disk access
reorganization helps

SQL Server 7 on Windows 2000
Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 27 / 78

Index Tuning Index Types

Index Maintenance - Oracle

Oracle

0 20 40 60 80 100

% Increase in Table Size

T
h

ro
u

g
h

p
u

t
(q

u
er

ie
s/

se
c)

No
maintenance

pctfree = 0 (data pages full), performance degrades with insertion
all indexes in Oracle are non-clustering
recreating index does not reorganize table
index-organized table (IOT) is clustered by primary key
maintenance: export and re-import IOT (ALTER TABLE MOVE)

Oracle 8i EE on Windows 2000
Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 28 / 78

Index Tuning Data Structures

Outline

1 Index Tuning
Query Types
Index Types
Data Structures
Composite Indexes
Indexes and Joins
Index Tuning Examples

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 29 / 78

Index Tuning Data Structures

Index Data Structures

Indexes can be implemented with different data structures.

We discuss:

B+-tree index
hash index
bitmap index (briefly)

Not discussed here:

dynamic hash indexes: number of buckets modified dynamically
R-tree: index for spatial data (points, lines, shapes)
quadtree: recursively partition a 2D plane into four quadrants
octree: quadtree version for three dimensional data
main memory indexes: T-tree, 2-3 tree, binary search tree

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 30 / 78

Index Tuning Data Structures

B+-Tree

96

75 83 107

96 98 103 107 110 12083 92 9575 80 8133 48 69

balanced tree of key-pointer pairs

keys are sorted by value

nodes are at least half full

access records for key: traverse tree from root to leaf

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 31 / 78

Index Tuning Data Structures

Key Length and Fanout

Key length is relevant in B+-trees: short keys are good!

fanout is maximum number of key-pointer pairs that fit in node
long keys result in small fanout
small fanout results in more levels

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 32 / 78

Index Tuning Data Structures

Key Length and Fanout – Example

Store 40M key-pointer pairs in leaf pages (page: 4kB, pointer: 4B)

6B key: fanout 400 ⇒ 3 block reads per accesses
level nodes key-pointer pairs
1 1 400
2 400 160,000
3 160,000 64,000,000

96B key: fanout 40 ⇒ 5 block reads per accesses
level nodes key-pointer pairs
1 1 40
2 40 1,600
3 1,600 64,000
4 64,000 2,560,000
5 2,560,000 102,400,000

6B key almost twice as fast as 96B key!

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 33 / 78

Index Tuning Data Structures

Estimate Number of Levels

Page utilization:

examples assumes 100% utilization
typical utilization is 69% (if half-full nodes are merged)

Number of levels:

fanout = b node size
key-pointer sizec

number of levels = dlogfanout×utilization(leaf key-pointer pairs)e

Previous example with utilization = 69%:

6B key: fanout = 400, levels = d3.11e = 4
96B key: fanout = 40, levels = d5.28e = 6

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 34 / 78

Index Tuning Data Structures

Key Compression

Key compression: produce smaller keys

reduces number of levels
adds some CPU cost (ca. 30% per access)

Key compression is useful if

keys are long, for example, string keys
data is static (few updates)
CPU time is not an issue

Prefix compression: very popular

non-leaf nodes only store prefix of key
prefix is long enough to distinguish neighbors
example: Cagliari, Casoria, Catanzaro → Cag, Cas, Cat

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 35 / 78

Index Tuning Data Structures

Hash Index

Hashed key values

0
1

n

R1 R5

R3 R6 R9 R14 R17 R21 R25
Hash

function

key

2341

Hash function:
maps keys to integers in range [0..n] (hash values)
pseudo-randomizing: most keys are uniformly distributed over range
similar keys usually have very different hash values!
database chooses good hash function for you

Hash index:
hash function is “root node” of index tree
hash value is a bucket number
bucket either contains records for search key
or pointer to overflow chain with records

Key length:
size of hash structure independent of key length
key length slightly increases CPU time for hash function

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 36 / 78

Index Tuning Data Structures

Overflow Chains

Hash index without overflows: single disk access

If bucket is full: overflow chain

each overflow page requires additional disk access
under-utilize hash space to avoid chains!
empirical utilization value: 50%

Hash index with many overflows: reorganize

use special reorganize function
or simply drop and add index

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 37 / 78

Index Tuning Data Structures

Bitmap Index

Index for data warehouses

One bit vector per attribute value (e.g., two for gender)

length of each bit vector is number of records
bit i for vector “male” is set if key value in row i is “male”

Works best if

query predicates are on many attributes
the individual predicates have weak selectivity (e.g., male/female)
all predicates together have strong selectivity (i.e., return few tuples)

Example: “Find females who have brown hair, blue eyes, wear glasses,
are between 50 and 60, work in computer industry, and live in
Bolzano”

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 38 / 78

Index Tuning Data Structures

Which Queries Are Supported?

96

75 83 107

96 98 103 107 110 12083 92 9575 80 8133 48 69

B+-tree index supports

point: traverse tree once to find page
multi-point: traverse tree once to find page(s)
range: traverse tree once to find one interval endpoint and follow
pointers between index nodes
prefix: traverse tree once to find prefix and follow pointers between
index nodes
extremal: traverse tree always to left/right (MIN/MAX)
ordering: keys ordered by their value
grouping: ordered keys save sorting

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 39 / 78

Index Tuning Data Structures

Which Queries Are Supported?

Hashed key values

0
1

n

R1 R5

R3 R6 R9 R14 R17 R21 R25
Hash

function

key

2341

Hash index supports

point: single disk access!
multi-point: single disk access to first record
grouping: grouped records have same hash value

Hash index is useless for

range, prefix, extremal, ordering
similar key values have dissimilar hash values
thus similar keys are in different pages

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 40 / 78

Index Tuning Data Structures

Experimental Setup

Employee(ssnum, name, hundreds ...)

1,000,000 records

ssnum is a key (point query)

hundreds has the same value for 100 employees (multipoint query)

point query: index on ssnum

multipoint and range query: index on hundreds

B+-tree and hash indexes are clustered

bitmap index is never clustered

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 41 / 78

Index Tuning Data Structures

Experiment: Point Query

Point Queries

0

10

20

30

40

50

60

B-Tree hash index

T
h

ro
u

g
h

p
u

t(
q

u
e
ri

e
s
/s

e
c
)

Oracle 8i Enterprise Edition on Windows 2000.

B+-tree: search in B+-tree requires additional disk accesses

Hash index: bucket address is computed without disk access; search
key is unique, i.e., bucket overflows are less likely

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 42 / 78

Index Tuning Data Structures

Experiment: Multi-point Query

 Multipoint Queries

0

5

10

15

20

25

B-Tree Hash index Bitmap index

T
h

ro
u

g
h

p
u

t
(q

u
e

ri
e

s
/s

e
c

)

Setup: 100 records returned by each query
B+-tree: efficient since records are on consecutive pages
Hash index: all relevant records in one bucket, but bucket contains
also other records; in this experiment, the bucket was too small and
an overflow chain was created
Bitmap index: traverses entire bitmap to fetch a few records

Oracle 8i Enterprise Edition on Windows 2000.
Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 43 / 78

Index Tuning Data Structures

Experiment: Range Query

Range Queries

0

0.1

0.2

0.3

0.4

0.5

B-Tree Hash index Bitmap index

T
h

ro
u

g
h

p
u

t
(q

u
e
ri

e
s
/s

e
c
)

B+-tree: efficient since records are on consecutive pages

Hash index, bitmap index: do not help

Oracle 8i Enterprise Edition on Windows 2000.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 44 / 78

Index Tuning Composite Indexes

Outline

1 Index Tuning
Query Types
Index Types
Data Structures
Composite Indexes
Indexes and Joins
Index Tuning Examples

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 45 / 78

Index Tuning Composite Indexes

Composite Indexes

Index on more than one attribute (also “concatenated index”)

Example: Person(ssnum,lastname,firstname,age,address,...)

composite index on (lastname,firstname)

phone books are organized like that!

Index can be dense or sparse.

Dense index on (A,B,C)

one pointer is stored per record
all pointers to records with the same A value are stored together
within one A value, pointers to same B value stored together
within one A and B value, pointers to same C value stored together

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 46 / 78

Index Tuning Composite Indexes

Composite Indexes – Efficient for Prefix Queries

Example: composite index on (lastname,firstname)

SELECT * FROM Person

WHERE lastname=’Gates’ and firstname LIKE ’Ge%’

Composite index more efficient than two single-attribute indexes:

many records may satisfy firstname LIKE ’Ge%’

condition on lastname and firstname together has stronger
selectivity
two-index solution: results for indexes on lastname and firstname

must be intersected

Dense composite indexes can cover prefix query.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 47 / 78

Index Tuning Composite Indexes

Composite Indexes – Skip Scan in Oracle

Typically composite index on (lastname,firstname) not useful for

SELECT lastname FROM Person

WHERE firstname=’George’

Problem: Index covers query, but condition is not a prefix.

Solution: Index skip scan (implemented in Oracle)

composite index on (A,B)
scan each A value until you find required B values
then jump to start of next A value
partial index scan instead of full table scan!
especially useful if A can take few values (e.g., male/female)

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 48 / 78

Index Tuning Composite Indexes

Composite Indexes – Multicolumn Uniqueness

Example: Order(supplier, part, quantity)

supplier is not unique
part is not unique
but (supplier,part) is unique

Efficient way to ensure uniqueness:

create unique, composite index on (supplier,part)

CREATE UNIQUE INDEX s_p ON Order(supplier,part)

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 49 / 78

Index Tuning Composite Indexes

Composite Indexes – Attribute Order Matters

Put attribute with more constraints first.

Example: Geographical Queries

table: City(name,longitude,latitude,population)

SELECT name FROM city

WHERE population >= 10000 AND latitude = 22

AND longitude >= 5 AND longitude <= 15

Efficient: clustered composite index on (latitude,longitude)

pointers to all result records are packed together

Inefficient: clustered composite index on (longitude, latitude)

each longitude 5 to 15 has some pointers to latitude 22 records

General geographical queries should use a multi-dimensional index
(for example, an R-tree)

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 50 / 78

Index Tuning Composite Indexes

Disadvantages of Composite Indexes

Large key size:

B+ tree will have many layers
key compression can help
hash index: large keys no problem, but no range and prefix queries
supported

Expensive updates:

in general, index must be updated when key attribute is updated
composite index has many key attributes
update required if any of the attributes is updated

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 51 / 78

Index Tuning Indexes and Joins

Outline

1 Index Tuning
Query Types
Index Types
Data Structures
Composite Indexes
Indexes and Joins
Index Tuning Examples

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 52 / 78

Index Tuning Indexes and Joins

Join Strategies – Running Example

Relations: R and S

disk block size: 4kB
R: nr = 5000 records, br = 100 disk blocks, 0.4MB
S : ns = 10000 records, bs = 400 disk blocks, 1.6MB

Running Example: R on S

R is called the outer relation
S is called the inner relation

Example from Silberschatz, Korth, Sudarashan. Database System Concepts. McGraw-Hill.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 53 / 78

Index Tuning Indexes and Joins

Join Strategies – Naive Nested Loop

Naive nested loop join

take each record of R (outer relation) and search through all records of
S (inner relation) for matches
for each record of R, S is scanned

Example: Naive nested loop join

worst case: buffer can hold only one block of each relation
R is scanned once, S is scanned nr times
in total nrbs + br = 2, 000, 100 blocks must be read (= 8GB)!
note: worst case different if S is outer relation
best case: both relations fit into main memory
bs + br = 500 block reads

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 54 / 78

Index Tuning Indexes and Joins

Join Strategies – Block Nested Loop

Block nested loop join

compare all rows of each block of R to all records in S
for each block of R, S is scanned

Example: (continued)

worst case: buffer can hold only one block of each relation
R is scanned once, S is scanned br times
in total brbs + br = 40, 100 blocks must be read (= 160MB)
best case: bs + br = 500 block reads

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 55 / 78

Index Tuning Indexes and Joins

Join Strategies – Indexed Nested Loop

Indexed nested loop join

take each row of R and look up matches in S using index
runtime is O(|R| × log |S |) (vs. O(|R| × |S |) of naive nested loop)
efficient if index covers join (no data access in S)
efficient if R has less records than S has pages: not all pages of S must
be read (e.g., foreign key join from small to large table)

Example: (continued)

B+-tree index on S has 4 layers, thus max. c = 5 disk accesses per
record of S
in total br + nrc = 25, 100 blocks must be read (= 100MB)

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 56 / 78

Index Tuning Indexes and Joins

Join Strategies – Merge Join

Merge join (two clustered indexes)

scan R and S in sorted order and merge
each block of R and S is read once

No index on R and/or S

if no index: sort and store relation with b(2dlogM−1(b/M)e+ 1) + b
block transfers (M: free memory blocks)
if non-clustered index present: index scan possible

Example: (continued)

best case: clustered indexes on R and S (M = 2 enough)
br + bs = 500 blocks must be read (2MB)
worst case: no indexes, only M = 3 memory blocks
sort and store R (1400 blocks) and S (7200 blocks) first:
join with 9100 (36MB) block transfers in total
case M = 25 memory blocks: 2500 block transfers (10MB)

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 57 / 78

Index Tuning Indexes and Joins

Join Strategies – Hash Join

Hash join (equality, no index):

hash both tables into buckets using the same hash function
join pairs of corresponding buckets in main memory
R is called probe input, S is called build input

Joining buckets in main memory:

build hash index on one bucket from S (with new hash function)
probe hash index with all tuples in corresponding bucket of R
build bucket must fit main memory, probe bucket needs not

Example: (continued)

assume that each probe bucket fits in main memory
R and S are scanned to compute buckets, buckets are written to disk,
then buckets are read pairwise
in total 3(br + bs) = 1500 blocks are read/written (6MB)
default in SQLServer and DB2 UDB when no index present

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 58 / 78

Index Tuning Indexes and Joins

Distinct Values and Join Selectivity

Join selectivity:

number of retrieved pairs divided by cardinality of cross product
(|R on S |/|R × S |)
selectivity is low if join result is small

Distinct values refer to join attributes of one table

Performance decreases with number of distinct join values

few distinct values in both tables usually means many matching records
many matching records: join result is large, join slow
hash join: large buckets (build bucket does not fit main memory)
index join: matching records on multiple disk pages
merge join: matching records do not fit in memory at the same time

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 59 / 78

Index Tuning Indexes and Joins

Foreign Keys

Foreign key: attribute R.A stores key of other table, S .B

Foreign key constraints: R.A must be subset of S .B

insert in R checks whether foreign key exists in S
deletion in S checks whether there is a record with that key in R

Index makes checking foreign key constraints efficient:

index on R.A speeds up deletion from S
index on S .B speeds up insertion into R
some systems may create index on R.A and/or S .B by default

Foreign key join:

each record of one table matches at most one record of the other table
most frequent join in practice
both hash and index nested loop join work well

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 60 / 78

Index Tuning Indexes and Joins

Indexes on Small Tables

Read query on small records:

tables may fit on a single track on disk
read query requires only one seek
index not useful: seeks at least one index page and one table page

Table with large records (∼page size):

each record occupies a whole page
for example, 200 records occupy 200 pages
index useful for point queries (read 3 pages vs. 200)

Many inserts and deletions:

index must be reorganized (locking!)
lock conflicts near root since index is small

Update of single records:

without index table must be scanned
scanned records are locked
scan (an thus lock contention) can be avoided with index

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 61 / 78

Index Tuning Indexes and Joins

Update Queries on a Small Tables

0

2

4

6
8

10

12

14

16

18

no index index

T
h

ro
u

g
h

p
u

t
(u

p
d

at
es

/s
ec

)

Index avoids tables scan and thus lock contention.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 62 / 78

Index Tuning Indexes and Joins

Experiment – Join with Few Matching Records

non-clustered index is ignored, hash join used instead

SQL Server 7 on Windows 2000

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 63 / 78

Index Tuning Indexes and Joins

Experiment – Join with Many Matching Records

all joins slow since output size is large

hash join (no index) slow because buckets are very large

SQL Server 7 on Windows 2000

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 64 / 78

Index Tuning Index Tuning Examples

Outline

1 Index Tuning
Query Types
Index Types
Data Structures
Composite Indexes
Indexes and Joins
Index Tuning Examples

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 65 / 78

Index Tuning Index Tuning Examples

Index Tuning Examples

The examples use the following tables:

Employee(ssnum,name,dept,manager,salary)

Student(ssnum,name,course,grade,stipend,evaluation)

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 66 / 78

Index Tuning Index Tuning Examples

Exercise 1 – Query for Student by Name

Student was created with non-clustering index on name.

Query:

SELECT *

FROM Student

WHERE name=’Bayer’

Problem: Query does not use index on name.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 67 / 78

Index Tuning Index Tuning Examples

Exercise 2 – Query for Salary I

Non-clustering index on salary.

Catalog statistics are up-to-date.

Query:

SELECT *

FROM Employee

WHERE salary/12 = 4000

Problem: Query is too slow.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 68 / 78

Index Tuning Index Tuning Examples

Exercise 3 – Query for Salary II

Non-clustering index on salary.

Catalog statistics are up-to-date.

Query:

SELECT *

FROM Employee

WHERE salary = 48000

Problem: Query still does not use index. What could be the reason?

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 69 / 78

Index Tuning Index Tuning Examples

Exercise 4 – Clustering Index and Overflows

Clustering index on Student.ssnum

Page size: 2kB

Record size in Student table: 1KB (evaluation is a long text)

Problem: Overflow when new evaluations are added.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 70 / 78

Index Tuning Index Tuning Examples

Exercise 5 – Non-clustering Index I

Employee table:

30 employee records per page
each employee belongs to one of 50 departments (dept)
the departments are of similar size

Query:

SELECT ssnum

FROM Employee

WHERE dept = ’IT’

Problem: Does a non-clustering index on Employee.dept help?

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 71 / 78

Index Tuning Index Tuning Examples

Exercise 6 – Non-clustering Index II

Employee table:

30 employee records per page
each employee belongs to one of 5000 departments (dept)
the departments are of similar size

Query:

SELECT ssnum

FROM Employee

WHERE dept = ’IT’

Problem: Does a non-clustering index on Employee.dept help?

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 72 / 78

Index Tuning Index Tuning Examples

Exercise 7 – Statistical Analysis

Auditors run a statistical analysis on a copy of Employee.

Queries:

count employees with a certain salary (frequent)
find employees with maximum or minimum salary within a particular
department (frequent)
find an employee by its social security number (rare)

Problem: Which indexes to create?

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 73 / 78

Index Tuning Index Tuning Examples

Exercise 8 – Algebraic Expressions

Student stipends are monthly, employee salaries are yearly.

Query: Which employee is paid as much as which student?

There are two options to write the query:

SELECT * SELECT *

FROM Employee, Student FROM Employee, Student

WHERE salary = 12*stipend WHERE salary/12 = stipend

Index on a table with an algebraic expression not used.

Problem: Which query is better?

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 74 / 78

Index Tuning Index Tuning Examples

Exercise 9 – Purchasing Department

Purchasing department maintains table
Onorder(supplier,part,quantity,price).

The table is heavily used during the opening hours, but not over night.

Queries:

Q1: add a record, all fields specified (very frequent)
Q2: delete a record, supplier and part specified (very frequent)
Q3: find total quantity of a given part on order (frequent)
Q4: find the total value on order to a given supplier (rare)

Problem: Which indexes should be used?

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 75 / 78

Index Tuning Index Tuning Examples

Exercise 10 – Point Query Too Slow

Employee has a clustering B+-tree index on ssnum.

Queries:

retrieve employee by social security number (ssnum)
update employee with a specific social security number

Problem: Throughput is still not enough.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 76 / 78

Index Tuning Index Tuning Examples

Exercise 11 – Historical Immigrants Database

Digitalized database of US immigrants between 1800 and 1900:

17M records
each record has approx. 200 fields
e.g., last name, first name, city of origin, ship taken, etc.

Queries retrieve immigrants:

by last name and at least one other attribute
second attribute is often first name (most frequent) or year

Problem: Efficiently serve 2M descendants of the immigrants. . .

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 77 / 78

Index Tuning Index Tuning Examples

Exercise 12 – Flight Reservation System

An airline manages 1000 flights and uses the tables:

Flight(flightID, seatID, passanger-name)

Totals(flightID, number-of-passangers)

Query: Each reservation

adds a record to Flight

increments Totals.number-of-passangers

Queries are separate transactions.

Problem: Lock contention on Totals.

Augsten (Univ. Salzburg) DBT – Index Tuning SS 2017/18 78 / 78

