QOutline

Database Tuning
Index Tuning

© Index Tuning

@ Query Types
Index Types
Data Structures
Composite Indexes
Indexes and Joins
Index Tuning Examples

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at
Department of Computer Sciences
University of Salzburg

y database
research group

http://dbresearch.uni-salzburg.at

SS 2017/18

Version May 14, 2018

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 1/78 Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 2/78

Index Tuning Query Types Index Tuning Query Types

Outline Query Types

@ Index Tuning
@ Query Types
o Different indexes are good for different query types.

@ We identify categories of queries with different index requirements.

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 3/78 Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 4/78

Index Tuning Query Types

Query Types

@ Point query: returns at most one record

SELECT name
FROM Employee
WHERE ID = 8478

SELECT name
FROM Employee
WHERE department = ’IT’

@ Range query on X returns records with values in interval of X

SELECT name
FROM Employee
WHERE salary >= 155000

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

Index Tuning Query Types

Query Types

@ Extremal query: returns records with max or min values on some
attributes

SELECT name
FROM Employee
WHERE salary = MAX(SELECT salary FROM Employee)

@ Ordering query: orders records by some attribute value
SELECT =*

FROM Employee
ORDER BY salary

@ Grouping query: partition records into groups;
usually a function is applied on each partition
SELECT dept, AVG(salary)

FROM Employee
GROUP BY dept

DBT - Index Tuning SS 2017/18

Augsten (Univ. Salzburg)

@ Multipoint query: returns multiple records based on equality condition

5/78

Index Tuning Query Types

Query Types

@ Prefix match query: given an ordered sequence of attributes, the
query specifies a condition on a prefix of the attribute sequence

o Example: attribute sequence: lastname, firstname, city

e The following are prefix match queries:
@ lastname=’Gates’
@ lastname=’Gates’ AND firstname=’George’
o lastname=’Gates’ AND firstname like ’Ge},’
@ lastname=’Gates’ AND firstname=’George’ AND city=’San

Diego’

e The following are not prefix match queries:
o firstname=’George’
o lastname LIKE ’Jates’

SS 2017/18

Augsten (Univ. Salzburg) DBT - Index Tuning

Index Tuning Query Types

Query Types

@ Join queries: link two or more tables
e Equality join:

SELECT Employee.ssnum

FROM Employee, Student

WHERE Employee.ssnum = Student.ssnum
@ Join with non-equality condition:

SELECT el.ssnum

FROM Employee el, Employee e2

WHERE el.manager = e2.ssnum
AND el.salary > e2.salary

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

Index Tuning

Index Types

Outline

@ Index Tuning

@ Index Types

Augsten (Univ. Salzburg)

DBT - Index Tuning

Index Tuning Index Types

Key of an Index

@ Search key or simply “key” of an index:

@ single attribute or sequence of attributes

o values on key attributes used to access records in table
@ Sequential Key:

e value is monotonic with insertion order

e examples: time stamp, counter
@ Non-sequential Key:

e value unrelated to insertion order
e examples: social security number, last name
@ Note: index key different from key in relational theory

o relational theory: key attributes have unique values
o index key: not necessarily unique

Augsten (Univ. Salzburg)

DBT - Index Tuning

SS 2017/18

SS 2017/18

9/78

11/ 78

Index Tuning Index Types

What is an Index?

Augsten (Univ. Salzburg)

An index is a data structure that supports efficient access to data:

Condition Matching
on — — records
attribute
value

(search key)

Index tuning essential to performance!
Improper index selection can lead to:

e indexes that are maintained but never used
o files that are scanned in order to return a single record
e multitable joins that run for hours or days

DBT - Index Tuning SS 2017/18

Index Tuning Index Types

Index Characteristics

Indexes can often be viewed as trees (BT -tree, hash)

e some nodes are in main memory (e.g., root)
e nodes deeper down in tree are less likely to be in main memory

Number of levels: number of nodes in root-leaf path

e a node is typically a disk block
e one block read required per level
o reading a block costs several milliseconds (involves disk seek)

Fanout: number of children a node can have
o large fanout means few levels
Overflow strategy: insert into a full index node n

e a new node n’ must be allocated on disk
e Bt-tree: split ninto n and n’, both at same distance from root
e hash index: n stores pointer to new node n’ (overflow chaining)

DBT - Index Tuning SS 2017/18

Augsten (Univ. Salzburg)

12/78

Index Tuning Index Types

Sparse vs. Dense

Index Tuning Index Types

Sparse vs. Dense

@ Sparse index: pointers to disk pages

e at most one pointer per disk page |
o usually much fewer pointers than records

@ Dense index: pointers to individual records

e one key per record
o usually more keys than sparse index

e optimization: store repeating keys only once, ﬁ;]\@
followed by pointers

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 13 /78

Index Tuning Index Types

Covering Index

@ Number of pointers:
ptrs in dense index = records per page X ptrs in sparse index

@ Pro sparse: fewer pointers
o typically record size is smaller than page size
o fewer pointers result in fewer levels (and disk accesses)
@ uses less space

@ Pro dense:

e index may “cover” query
o multiple dense indexes per table possible (vs. only 1 spares index)

DBT - Index Tuning SS 2017/18 14 / 78

Augsten (Univ. Salzburg)

Index Tuning Index Types

Clustering vs. Non-Clustering

o Covering index:

o answers read-only query within index structure
o fast: data records are not accessed

@ Example 1: dense index on lastname
SELECT COUNT(lastname) WHERE lastname=’Smith’

@ Example 2: dense index on A, B, C (in that order)

e covered query: e covered query, but not prefix:

SELECT B, C SELECT A, C
FROM R FROM R
WHERE A = 5 WHERE B = 5

e non-covered query: D requires data access
SELECT B, D
FROM R
WHERE A = 5

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 15/ 78

@ Clustering index on attribute X
(also primary index)
e records are grouped by attribute X on disk
o Bt-tree: records sorted by attribute X
e only one clustering index per table Records
o dense or sparse

@ Non-clustering index on attribute X
(also secondary index)

@ no constraint on table organization

e more than one index per table Record
I
o always dense ecoras
Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 16 / 78

Index Tuning Index Types

Clustering Indexes

@ Can be sparse:
o fewer pointers than non-clustering index (always dense!)
Good for multi-point queries:
o equality access on non-unique attribute
e all result records are on consecutive pages
o example: look up last name in phone book
@ Good for range, prefix, ordering queries:
o works if clustering index is implemented as BT -tree
o prefix example: look up all last names starting with 'St’ in phone book
o result records are on consecutive pages
Good for equality join:
o fast also for join on non-key attributes
o index on one table: indexed nested-loop
o index on both tables: merge-join
Overflow pages reduce efficiency:
o if disk page is full, overflowing records go to overflow pages
o overflow pages require additional disk accesses

Augsten (Univ. Salzburg)

DBT - Index Tuning SS 2017/18 17 / 78

Index Tuning Index Types

Clustering Index and Overflow Pages

@ Why overflow pages?
e clustering index stores records on consecutive disk pages
o insertion between two consecutive pages not possible
o if disk page is full, overflowing records go to overflow pages
o Additional disk access for overflow page: reduced speed
@ Overflow pages can result from:
e inserts
o updates that change key value
o updates that increase record size (e.g., replace NULL by string)
@ Reorganize index:

e invoke special tool
e or simply drop and re-create index

DBT - Index Tuning SS 2017/18 19 /78

Augsten (Univ. Salzburg)

Index Tuning Index Types

Equality Join with Clustering Index

@ Example query:
SELECT Employee.ssnum, Student.course
FROM Employee, Student
WHERE Employee.firstname = Student.firstname
@ Index on Emplyee.firstname: use index nested loop join
e for each student look up employees with same first name
e all matching employees are on consecutive pages
@ Index on both firstname attributes: use merge join

o read both tables in sorted order and merge (B™-tree)
e each page read exactly once
e works also for hash indexes with same hash function

Augsten (Univ. Salzburg) DBT - Index Tuning

SS2017/18 18 /78

Index Tuning Index Types ‘

‘ Overflow Strategies

@ Tune free space in disk pages:
o Oracle, DB2: pctfree (0 is full), SQLServer: fillfactor (100 is full)
o free space in page is used for new or growing records
o little free space: space efficient, reads are faster
e much free space: reduced risk of overflows
o Overflow strategies:
e split: split full page into two half-full pages and link new page
e.g., A— B — C, splitting B resultsin A— B — B" — C
(SQLServer)
e chaining: full page has pointer to overflow page (Oracle)

e append: overflowing records of all pages are appended at the end of
the table (DB2)

DBT - Index Tuning SS 2017/18 20 /78

Augsten (Univ. Salzburg)

Index Tuning Index Types

Non-Clustering Index

Index Tuning Index Types

Non-Clustering Index and Multi-point Queries — Example

Always useful for point queries.
Particularly good if index covers query.

Critical tables: covering index on all relevant attribute combinations

Multi-point query (not covered): good for strongly selective queries
(=small result size)

e #r: number of records returned by query

o #p: number of disk pages in table

o the #r records are uniformly distributed over all pages

o thus query will read min(#r, #p) disk pages

Index may slow down weakly selective multi-point query:

e scan is by factor 2-10 faster than accessing all pages with index
o thus #r should be significantly smaller than #p

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 21 /78

Index Tuning Index Types

Clustering vs. Non-Clustering Index

ll clustered O nonclustered B no index

14

o
-]
|

(=]
o
|

=)
a
,

Throughput ratio

o
N
,

o
I

SQLServer Oracle DB2

e multi-point query with selectivity 100/1M records (0.01%)
@ clustering index much faster than non-clustering index

o full table scan (no index) orders of magnitude slower than index

DB2 UDB V7.1, Oracle 8.1, SQL Server 7 on Windows 2000

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 23 /78

Example 1:

records size: 508

page size: 4kB

attribute A takes 20 different values (evenly distributed among records)
does non-clustering index on A help?

o Evaluation:
o #r =n/20 (nis the total number of records)
o #p = n/80 (80 records per page)
e n/20 > n/80 thus index does not help

Example 2: as above, but record size is 2kB
Evaluation:

o #r =n/20 (nis the total number of records)
o #p = n/2 (2 records per page)
e n/20 << n/2 thus index might be useful

DBT - Index Tuning SS 2017/18 22 /78

Augsten (Univ. Salzburg)

Index Tuning Index Types

Covering vs. Non-Covering Index

-
o

(=23
o
n

W covering

o
o
n

@ covering - not
ordered

—— |@non clustering

F'
o

N
o

M clustering

-
o
n

Throughput (queries/sec)
w
o

o
4

SQLServer

prefix match query on sequence of attributes

covering: index covers query, query condition on prefix

covering, not ordered: index covers query, but condition not prefix
non-clustering: non-covering index, query condition on prefix
clustering: sparse index, query condition on prefix

SQL Server 7 on Windows 2000
DBT - Index Tuning SS 2017/18 24 /78

Augsten (Univ. Salzburg)

Index Tuning Index Types Index Tuning Index Types

Non-Clustering vs. Table Scan Index Maintenance - DB2

= l-‘-I\ DB2

[

2 —’\0

8 50

5 e ——

S = = 40 O ‘ —& _

G 28 *—9

3 20 30

2 23

= 1 | —e—scan 3T 2

o) S0

3 —#- non clustering = g 10 4 No maintenance

= r . . : 0 ; —&— Maintenance H
0 5 10 15 20 25 0 20 40 60 80 100

% of selected records

% Increase in Table Size

@ query: range query query: batch of 100 multi-point queries, pctfree=0 (data pages full)
performance degrades with insertion
overflow records simply appended

query traverses index and then scans all overflow records

@ non clustering: non-clustering non-covering index
@ scan: no index, i.e., table scan required

@ index is faster if less than 15% of the records are selected

Augsten (Univ. Salzburg)

Index Maintenance

DB2 UDB V7.1 Windows 2000
DBT - Index Tuning

Index Tuning Index Types

- SQL Server

SS 2017/18

25/ 78

Augsten (Univ. Salzburg)

fillfactor=100 (data pages full)
performance degrades with insertion

overflow chain maintained for overflowing page
extra disk access

reorganization helps

SQL Server 7 on Windows 2000
DBT - Index Tuning

SS 2017/18

27 /78

reorganization helps

Augsten (Univ. Salzburg)

DB2 UDB V7.1 on Windows 2000
DBT - Index Tuning

Index Tuning Index Types

Index Maintenance - Oracle

SQLServer Oracle
33 H-—.——-‘.———- g SO
g0 | ag *— = ___
o v £ = ”’
5.2 I o9 -
o5 | — - p 3.2
L 3 . 9 Q
= 4 No maintenance £ 2 4—No —
—m— Maintenance = maintenance
0 20 40 60 80 100 0 20 40 60 80 100
% Increase in Table Size % Increase in Table Size

all indexes in Oracle are non-clustering
recreating index does not reorganize table

Oracle 8i EE on Windows 2000

Augsten (Univ. Salzburg) DBT - Index Tuning

index-organized table (IOT) is clustered by primary key
maintenance: export and re-import |IOT (ALTER TABLE MOVE)

SS 2017/18

SS 2017/18

26/ 78

pctfree = 0 (data pages full), performance degrades with insertion

28/ 78

Index Tuning Data Structures

Outline

@ Index Tuning

@ Data Structures

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 29 / 78

Index Tuning Data Structures

balanced tree of key-pointer pairs
keys are sorted by value

nodes are at least half full

access records for key: traverse tree from root to leaf

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 31/78

Index Tuning Data Structures

Index Data Structures

@ Indexes can be implemented with different data structures.
@ We discuss:

o BT-tree index

e hash index

e bitmap index (briefly)

@ Not discussed here:

dynamic hash indexes: number of buckets modified dynamically
R-tree: index for spatial data (points, lines, shapes)

quadtree: recursively partition a 2D plane into four quadrants
octree: quadtree version for three dimensional data

main memory indexes: T-tree, 2-3 tree, binary search tree

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

Index Tuning Data Structures

Key Length and Fanout

@ Key length is relevant in BT -trees: short keys are good!
e fanout is maximum number of key-pointer pairs that fit in node
e long keys result in small fanout
e small fanout results in more levels

30 /78

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

32/ 78

Index Tuning Data Structures

Key Length and Fanout — Example

@ Store 40M key-pointer pairs in leaf pages (page: 4kB, pointer: 4B)

o 6B key: fanout 400 = 3 block reads per accesses

level ‘ nodes ‘ key-pointer pairs

1 1 400
2 400 160,000
3 160,000 64,000,000
e 96B key: fanout 40 = 5 block reads per accesses
level ‘ nodes ‘ key-pointer pairs
1 1 40
2 40 1,600
3 1,600 64,000
4 64,000 2,560,000
5 2,560,000 102,400,000

o 6B key almost twice as fast as 968 key!

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 33 /78

Index Tuning Data Structures

Key Compression

@ Key compression: produce smaller keys

e reduces number of levels

o adds some CPU cost (ca. 30% per access)
o Key compression is useful if

o keys are long, for example, string keys
o data is static (few updates)
o CPU time is not an issue

@ Prefix compression: very popular

e non-leaf nodes only store prefix of key
e prefix is long enough to distinguish neighbors
e example: Cagliari, Casoria, Catanzaro — Cag, Cas, Cat

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 35 /78

Index Tuning Data Structures

Estimate Number of Levels

@ Page utilization:

o examples assumes 100% utilization
e typical utilization is 69% (if half-full nodes are merged)

@ Number of levels:

_ node size
fanout = Lkey—pointer sizeJ

number of levels = [10gtnout xutilization (1€2f key-pointer pairs)]

@ Previous example with utilization = 69%:

o 6B key: fanout = 400, levels = [3.11] = 4
o 96B key: fanout = 40, levels = [5.28] =6

Augsten (Univ. Salzburg) DBT - Index Tuning

SS 2017/18

Index Tuning Data Structures

Hash Index

Hashed key| values
0 R1R5

R3 R6 R9—>R14 R17 R2+>{R25 |

ke
—y’ Hash |~

2341 function 1

@ Hash function:
o maps keys to integers in range [0..n] (hash values)
e pseudo-randomizing: most keys are uniformly distributed over range
o similar keys usually have very different hash values!
e database chooses good hash function for you
@ Hash index:
e hash function is “root node” of index tree
e hash value is a bucket number
o bucket either contains records for search key
or pointer to overflow chain with records
o Key length:
o size of hash structure independent of key length
o key length slightly increases CPU time for hash function

Augsten (Univ. Salzburg) DBT — Index Tuning SS 2017/18

34 /78

36 /78

Index Tuning Data Structures Index Tuning Data Structures

Overflow Chains Bitmap Index

@ Index for data warehouses

@ Hash index without overflows: single disk access @ One bit vector per attribute value (e.g., two for gender)
e length of each bit vector is number of records
e bit i for vector "male” is set if key value in row i is “male”

o If bucket is full: overflow chain
o each overflow page requires additional disk access
o under-utilize hash space to avoid chains! e Works best if
o empirical utilization value: 50% e query predicates are on many attributes

o the individual predicates have weak selectivity (e.g., male/female)

@ Hash index with many overflows: reorganize
o all predicates together have strong selectivity (i.e., return few tuples)

o use special reorganize function

o or simply drop and add index @ Example: “Find females who have brown hair, blue eyes, wear glasses,
are between 50 and 60, work in computer industry, and live in
Bolzano”

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 37 /78 Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

Index Tuning Data Structures

Index Tuning Data Structures

Which Queries Are Supported? Which Queries Are Supported?

Hashed key| values

ki
® | Hash |1 0 |RIRS5

231 | function 1_|R3R6 RIR14 R17 R2t>{R25]

@ Hash index supports
e point: single disk access!
e multi-point: single disk access to first record
e grouping: grouped records have same hash value

@ BT-tree index supports
e point: traverse tree once to find page
e multi-point: traverse tree once to find page(s)
e range: traverse tree once to find one interval endpoint and follow

pointers between index nodes @ Hash index is useless for

e prefix: traverse tree once to find prefix and follow pointers between o range, prefix, extremal, ordering
index nodes e similar key values have dissimilar hash values
o extremal: traverse tree always to left/right (MIN/MAX) o thus similar keys are in different pages

o ordering: keys ordered by their value
e grouping: ordered keys save sorting

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 39 /78 Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

Index Tuning Data Structures

Experimental Setup

Index Tuning Data Structures

Experiment: Point Query

Employee(ssnum, name, hundreds ...)

1,000,000 records

ssnum is a key (point query)

hundreds has the same value for 100 employees (multipoint query)
point query: index on ssnum

multipoint and range query: index on hundreds

BTt-tree and hash indexes are clustered

bitmap index is never clustered

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 41 / 78

Index Tuning Data Structures

Point Queries

60
50
40
30
20

10 -

Throughput(queries/sec)

B-Tree hash index

Oracle 8i Enterprise Edition on Windows 2000.

@ BT-tree: search in B-+-tree requires additional disk accesses

@ Hash index: bucket address is computed without disk access; search
key is unique, i.e., bucket overflows are less likely

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 42 / 78

Index Tuning Data Structures

Experiment: Multi-point Query

Multipoint Queries

25

20 +
15 -
10 -
i N
o_

B-Tree Hash index Bitmap index

Throughput (queries/sec)

Setup: 100 records returned by each query

BT -tree: efficient since records are on consecutive pages

Hash index: all relevant records in one bucket, but bucket contains
also other records; in this experiment, the bucket was too small and
an overflow chain was created

Bitmap index: traverses entire bitmap to fetch a few records

. 2| | 0 D ige . - alelal |
Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 43 / 78

Experiment: Range Query

Range Queries

9 0.5

L

'g 0.4

]

E 0.3

H 0.2

L

" B B
o

£

= 0

B-Tree Hash index Bitmap index

e Bt-tree: efficient since records are on consecutive pages

@ Hash index, bitmap index: do not help

Oracle 8i Enterprise Edition on Windows 2000.

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 44 |/ 78

Index Tuning Composite Indexes

Outline

Index Tuning Composite Indexes

Composite Indexes

@ Index Tuning

@ Composite Indexes

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 45 / 78

Index Tuning Composite Indexes

Composite Indexes — Efficient for Prefix Queries

Index on more than one attribute (also “concatenated index”)

Example: Person(ssnum,lastname,firstname,age,address,...)

e composite index on (lastname,firstname)
@ phone books are organized like that!

Index can be dense or sparse.
Dense index on (A, B, C)

e one pointer is stored per record

e all pointers to records with the same A value are stored together

e within one A value, pointers to same B value stored together

e within one A and B value, pointers to same C value stored together

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 46 / 78

Index Tuning Composite Indexes

Composite Indexes — Skip Scan in Oracle

@ Example: composite index on (lastname,firstname)

SELECT * FROM Person
WHERE lastname=’Gates’ and firstname LIKE ’Ge),’
@ Composite index more efficient than two single-attribute indexes:
e many records may satisfy firstname LIKE °’Ge’
e condition on lastname and firstname together has stronger
selectivity
e two-index solution: results for indexes on lastname and firstname
must be intersected

@ Dense composite indexes can cover prefix query.

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 47) 78

@ Typically composite index on (lastname,firstname) not useful for
SELECT lastname FROM Person
WHERE firstname=’George’

@ Problem: Index covers query, but condition is not a prefix.

@ Solution: Index skip scan (implemented in Oracle)

composite index on (A, B)

scan each A value until you find required B values

then jump to start of next A value

partial index scan instead of full table scan!
especially useful if A can take few values (e.g., male/female)

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

Index Tuning Composite Indexes

Composite Indexes — Multicolumn Uniqueness

Index Tuning

Composite Indexes — Attribute Order Matters

Composite Indexes

@ Example: Order(supplier, part, quantity)
o supplier is not unique
@ part Is not unique
e but (supplier,part) is unique

o Efficient way to ensure uniqueness:

e create unique, composite index on (supplier,part)
o CREATE UNIQUE INDEX s_p ON Order(supplier,part)

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

Index Tuning Composite Indexes

Disadvantages of Composite Indexes

o Large key size:
o BT tree will have many layers
o key compression can help
o hash index: large keys no problem, but no range and prefix queries
supported
@ Expensive updates:
e in general, index must be updated when key attribute is updated
e composite index has many key attributes
e update required if any of the attributes is updated

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

49 /78

51 /78

Put attribute with more constraints first.

Example: Geographical Queries
o table: City(name,longitude,latitude,population)

SELECT name FROM city
WHERE population >= 10000 AND latitude = 22
AND longitude >= 5 AND longitude <= 15

Efficient: clustered composite index on (latitude,longitude)

e pointers to all result records are packed together

Inefficient: clustered composite index on (longitude, latitude)
e each longitude 5 to 15 has some pointers to latitude 22 records

General geographical queries should use a multi-dimensional index
(for example, an R-tree)

Augsten (Univ. Salzburg)

DBT — Index Tuning

SS 2017/18 50 /78

Index Tuning Indexes and Joins

‘ QOutline

© Index Tuning

@ Indexes and Joins

Augsten (Univ. Salzburg) DBT - Index Tuning

SS 2017/18 52/ 78

Index Tuning Indexes and Joins Index Tuning Indexes and Joins

Join Strategies — Running Example Join Strategies — Naive Nested Loop

) @ Naive nested loop join
@ Relations: R and S

o disk block size: 4kB
e R: n, = 5000 records, b, = 100 disk blocks, 0.4MB
e S: ny = 10000 records, by = 400 disk blocks, 1.6 MB

@ Running Example: R x S

o take each record of R (outer relation) and search through all records of
S (inner relation) for matches
o for each record of R, S is scanned

@ Example: Naive nested loop join

worst case: buffer can hold only one block of each relation

R is scanned once, S is scanned n, times

in total n,bs + b, = 2,000, 100 blocks must be read (= 8GB)!
note: worst case different if S is outer relation

best case: both relations fit into main memory

bs + b, = 500 block reads

o R is called the outer relation
o S is called the inner relation

Example from Silberschatz, Korth, Sudarashan. Database System Concepts. McGraw-Hill.

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 53 / 78 Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

Index Tuning Indexes and Joins Index Tuning Indexes and Joins

Join Strategies — Block Nested Loop Join Strategies — Indexed Nested Loop

@ Indexed nested loop join
@ Block nested loop join

o take each row of R and look up matches in S using index
e compare all rows of each block of R to all records in S o runtime is O(|R| x log|S|) (vs. O(|R| x |S|) of naive nested loop)
o for each block of R, S is scanned o efficient if index covers join (no data access in S)
o Example: (continued) o efficient if R has less records than S has pages: not all pages of S must
e worst case: buffer can hold only one block of each relation be read (e.g., foreign key join from small to large table)
e R is scanned once, S is scanned b, times @ Example: (continued)
o in total b,bs + b, = 40,100 blocks must be read (= 160MB) o Bt-tree index on S has 4 layers, thus max. ¢ = 5 disk accesses per
o best case: bs + b, = 500 block reads record of S

e in total b, + n,c = 25,100 blocks must be read (= 100MB)

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 55 /78 Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 56 / 78

Index Tuning Indexes and Joins

Join Strategies — Merge Join

Index Tuning Indexes and Joins

Join Strategies — Hash Join

@ Merge join (two clustered indexes)

e scan R and S in sorted order and merge
o each block of R and S is read once

@ No index on R and/or S

e if no index: sort and store relation with b(2[logy—_1(b/M)] + 1) + b
block transfers (M: free memory blocks)
o if non-clustered index present: index scan possible
e Example: (continued)
o best case: clustered indexes on R and S (M = 2 enough)
o b, + bs = 500 blocks must be read (2MB)
e worst case: no indexes, only M = 3 memory blocks
e sort and store R (1400 blocks) and S (7200 blocks) first:
join with 9100 (36 MB) block transfers in total
case M = 25 memory blocks: 2500 block transfers (10MB)

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 57 / 78

Index Tuning Indexes and Joins

Distinct Values and Join Selectivity

@ Join selectivity:
e number of retrieved pairs divided by cardinality of cross product
(IR » S|/IR x S])

o selectivity is low if join result is small

@ Distinct values refer to join attributes of one table
@ Performance decreases with number of distinct join values

o few distinct values in both tables usually means many matching records
many matching records: join result is large, join slow

hash join: large buckets (build bucket does not fit main memory)

index join: matching records on multiple disk pages

merge join: matching records do not fit in memory at the same time

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 59 / 78

@ Hash join (equality, no index):
o hash both tables into buckets using the same hash function
@ join pairs of corresponding buckets in main memory
e R is called probe input, S is called build input

@ Joining buckets in main memory:
e build hash index on one bucket from S (with new hash function)

e probe hash index with all tuples in corresponding bucket of R
e build bucket must fit main memory, probe bucket needs not
@ Example: (continued)
e assume that each probe bucket fits in main memory
e R and S are scanned to compute buckets, buckets are written to disk,
then buckets are read pairwise
o in total 3(b, + bs) = 1500 blocks are read/written (6 MB)
o default in SQLServer and DB2 UDB when no index present

SS 2017/18 58 /78

Augsten (Univ. Salzburg) DBT - Index Tuning

Index Tuning Indexes and Joins

‘ Foreign Keys

Foreign key: attribute R.A stores key of other table, S.B
Foreign key constraints: R.A must be subset of S.B

e insert in R checks whether foreign key exists in S

o deletion in S checks whether there is a record with that key in R
@ Index makes checking foreign key constraints efficient:

e index on R.A speeds up deletion from S

e index on S.B speeds up insertion into R
e some systems may create index on R.A and/or S.B by default

Foreign key join:
e each record of one table matches at most one record of the other table
e most frequent join in practice
e both hash and index nested loop join work well

SS 2017/18 60 / 78

Augsten (Univ. Salzburg) DBT - Index Tuning

Index Tuning Indexes and Joins

Indexes on Small Tables

@ Read query on small records:
e tables may fit on a single track on disk
o read query requires only one seek
o index not useful: seeks at least one index page and one table page
@ Table with large records (~page size):
o each record occupies a whole page
o for example, 200 records occupy 200 pages
o index useful for point queries (read 3 pages vs. 200)
@ Many inserts and deletions:
e index must be reorganized (locking!)
e lock conflicts near root since index is small
@ Update of single records:
e without index table must be scanned
e scanned records are locked
e scan (an thus lock contention) can be avoided with index

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 61 /78

Index Tuning Indexes and Joins

Experiment — Join with Few Matching Records

B Clustering (sort merge)
B Clustering (nested loop)

@ Nonclustering (hash join)

Response time

O No index (hash join)

Join with few matching records

@ non-clustered index is ignored, hash join used instead

SQL Server 7 on Windows 2000

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 63 / 78

Index Tuning Indexes and Joins

Update Queries on a Small Tables

Throughput (updates/sec)
(-]

no index index

@ Index avoids tables scan and thus lock contention.

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 62 /78

Index Tuning Indexes and Joins

Experiment — Join with Many Matching Records

J B Clustering (sort merge)

B Clustering (nested loop)

B Nonclustering (hash join)

Response time

O No index (hash join)

Join with many matching records

@ all joins slow since output size is large

@ hash join (no index) slow because buckets are very large

SQL Server 7 on Windows 2000

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 64 / 78

Index Tuning Index Tuning Examples

Outline

@ Index Tuning

@ Index Tuning Examples

Augsten (Univ. Salzburg) DBT - Index Tuning

Index Tuning Index Tuning Examples

Exercise 1 — Query for Student by Name

@ Student was created with non-clustering index on name.

o Query:
SELECT =*
FROM Student
WHERE name=’Bayer’

@ Problem: Query does not use index on name.

Augsten (Univ. Salzburg) DBT - Index Tuning

SS 2017/18

SS 2017/18

65/ 78

67 /78

Index Tuning Index Tuning Examples

Index Tuning Examples

@ The examples use the following tables:
o Employee(ssnum,name,dept,manager,salary)
e Student (ssnum,name,course,grade,stipend,evaluation)

SS 2017/18

DBT — Index Tuning

Augsten (Univ. Salzburg)

Index Tuning Index Tuning Examples

Exercise 2 — Query for Salary |

@ Non-clustering index on salary.
o Catalog statistics are up-to-date.
o Query:

SELECT =*

FROM Employee
WHERE salary/12 = 4000

@ Problem: Query is too slow.

SS 2017/18

DBT — Index Tuning

Augsten (Univ. Salzburg)

Index Tuning Index Tuning Examples Index Tuning Index Tuning Examples

Exercise 3 — Query for Salary Il Exercise 4 — Clustering Index and Overflows
@ Non-clustering index on salary.
o Catalog statistics are up-to-date. @ Clustering index on Student .ssnum
@ Query: @ Page size: 2kB
SELECT * @ Record size in Student table: 1KB (evaluation is a long text)
FROM Employee . .
WHERE salary = 48000 @ Problem: Overflow when new evaluations are added.
@ Problem: Query still does not use index. What could be the reason?
Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 69 / 78 Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 70 /78

Index Tuning Index Tuning Examples Index Tuning Index Tuning Examples

Exercise 5 — Non-clustering Index | Exercise 6 — Non-clustering Index |l

@ Employee table: @ Employee table:
e 30 employee records per page e 30 employee records per page
e each employee belongs to one of 50 departments (dept) o each employee belongs to one of 5000 departments (dept)
o the departments are of similar size e the departments are of similar size
@ Query: @ Query:
SELECT ssnum SELECT ssnum
FROM Employee FROM Employee
WHERE dept = ’IT’ WHERE dept = ’IT’
@ Problem: Does a non-clustering index on Employee.dept help? @ Problem: Does a non-clustering index on Employee.dept help?

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 71/ 78 Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 72 /78

Index Tuning Index Tuning Examples

‘ Exercise 7 — Statistical Analysis

@ Auditors run a statistical analysis on a copy of Employee.
@ Queries:

e count employees with a certain salary (frequent)

o find employees with maximum or minimum salary within a particular
department (frequent)

o find an employee by its social security number (rare)

@ Problem: Which indexes to create?

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 73/ 78

Index Tuning Index Tuning Examples

Exercise 9 — Purchasing Department

@ Purchasing department maintains table
Onorder (supplier,part,quantity,price).

@ The table is heavily used during the opening hours, but not over night.
@ Queries:

Q1: add a record, all fields specified (very frequent)

Q2: delete a record, supplier and part specified (very frequent)
Q3: find total quantity of a given part on order (frequent)

Q4: find the total value on order to a given supplier (rare)

@ Problem: Which indexes should be used?

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 75/ 78

Index Tuning Index Tuning Examples

Exercise 8 — Algebraic Expressions

@ Student stipends are monthly, employee salaries are yearly.
@ Query: Which employee is paid as much as which student?
@ There are two options to write the query:

SELECT =* SELECT =*
FROM Employee, Student FROM Employee, Student
WHERE salary = 12*stipend WHERE salary/12 = stipend

@ Index on a table with an algebraic expression not used.
@ Problem: Which query is better?

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

Index Tuning Index Tuning Examples

Exercise 10 — Point Query Too Slow

@ Employee has a clustering B"-tree index on ssnum.
@ Queries:

o retrieve employee by social security number (ssnum)
e update employee with a specific social security number

@ Problem: Throughput is still not enough.

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

Index Tuning Index Tuning Examples Index Tuning Index Tuning Examples

Exercise 11 — Historical Immigrants Database Exercise 12 — Flight Reservation System

o Digitalized database of US immigrants between 1800 and 1900: @ An airline manages 1000 flights and uses the tables:
e 17M records o Flight(flightID, seatID, passanger-name)
e each record has approx. 200 fields e Totals(flightID, number-of-passangers)

e.g., last name, first name, city of origin, ship taken, etc. @ Query: Each reservation

@ Queries retrieve immigrants: e adds a record to Flight
o by last name and at least one other attribute o increments Totals.number-of-passangers
e second attribute is often first name (most frequent) or year o Queries are separate transactions.

@ Problem: Efficiently serve 2M descendants of the immigrants. .. o Problem: Lock contention on Totals.

Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18 77/ 78 Augsten (Univ. Salzburg) DBT - Index Tuning SS 2017/18

