
Database Tuning
Concurrency Tuning

Nikolaus Augsten
nikolaus.augsten@sbg.ac.at

Department of Computer Sciences
University of Salzburg

http://dbresearch.uni-salzburg.at

SS 2017/18
Version March 7, 2018

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 1 / 74

Concurrency Tuning Introduction to Transactions

Outline

1 Concurrency Tuning
Introduction to Transactions
Lock Tuning
Weaken Isolation Guarantees
Transaction Chopping

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 2 / 74

Concurrency Tuning Introduction to Transactions

What is a Transaction?1

A transaction is a unit of program execution that accesses and
possibly updates various data items.

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

Two main issues:

1. concurrent execution of multiple transactions
2. failures of various kind (e.g., hardware failure, system crash)

1 Slides of section “Introduction to Transactions” are adapted from the slides “Database System
Concepts”, 6th Ed., Silberschatz, Korth, and Sudarshan

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 3 / 74

Concurrency Tuning Introduction to Transactions

ACID Properties

Database system must guarantee ACID for transactions:

Atomicity: either all operations of the transaction are executed or none
Consistency: execution of a transaction in isolation preserves the
consistency of the database
Isolation: although multiple transactions may execute concurrently,
each transaction must be unaware of the other concurrent transactions.
Durability: After a transaction completes successfully, changes to the
database persist even in case of system failure.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 4 / 74

Concurrency Tuning Introduction to Transactions

Atomicity

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

What if failure (hardware or software) after step 3?

money is lost
database is inconsistent

Atomicity:

either all operations or none
updates of partially executed transactions not reflected in database

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 5 / 74

Concurrency Tuning Introduction to Transactions

Consistency

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

Consistency in example: sum A + B must be unchanged

Consistency in general:

explicit integrity constraints (e.g., foreign key)
implicit integrity constraints (e.g., sum of all account balances of a
bank branch must be equal to branch balance)

Transaction:

must see consistent database
during transaction inconsistent state allowed
after completion database must be consistent again

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 6 / 74

Concurrency Tuning Introduction to Transactions

Isolation – Motivating Example

Example: transfer $50 from account A to account B

1. R(A)
2. A← A− 50
3. W (A)
4. R(B)
5. B ← B + 50
6. W (B)

Imagine second transaction T2:

T2 : R(A),R(B), print(A + B)
T2 is executed between steps 3 and 4
T2 sees an inconsistent database and gives wrong result

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 7 / 74

Concurrency Tuning Introduction to Transactions

Isolation

Trivial isolation: run transactions serially

Isolation for concurrent transactions: For every pair of transactions Ti

and Tj , it appears to Ti as if either Tj finished execution before Ti

started or Tj started execution after Ti finished.

Schedule:

specifies the chronological order of a sequence of instructions from
various transactions
equivalent schedules result in identical databases if they start with
identical databases

Serializable schedule:

equivalent to some serial schedule
serializable schedule of T1 and T2 is either equivalent to T1,T2 or
T2,T1

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 8 / 74

Concurrency Tuning Introduction to Transactions

Durability

When a transaction is done it commits.

Example: transaction commits too early

transaction writes A, then commits
A is written to the disk buffer
then system crashes
value of A is lost

Durability: After a transaction has committed, the changes to the
database persist even in case of system failure.

Commit only after all changes are permanent:

either written to log file or directly to database
database must recover in case of a crash

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 9 / 74

Concurrency Tuning Introduction to Transactions

Locks

A lock is a mechanism to control concurrency on a data item.

Two types of locks on a data item A:

exclusive – xL(A): data item A can be both read and written
shared – sL(A): data item A can only be read.

Lock request are made to concurrency control manager.

Transaction is blocked until lock is granted.

Unlock A – uL(A): release the lock on a data item A

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 10 / 74

Concurrency Tuning Introduction to Transactions

Lock Compatibility

Lock compatibility matrix:

T1 ↓ T2 → shared exclusive

shared true false

exclusive false false

T1 holds shared lock on A:

shared lock is granted to T2

exclusive lock is not granted to T2

T2 holds exclusive lock on A:

shared lock is not granted to T2

exclusive lock is not granted to T2

Shared locks can be shared by any number of transactions.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 11 / 74

Concurrency Tuning Introduction to Transactions

Locking Protocol

Example transaction T2 with locking:

1. sL(A), R(A), uL(A)
2. sL(B), R(B), uL(B)
3. print(A + B)

T2 uses locking, but is not serializable

A and/or B could be updated between steps 1 and 2
printed sum may be wrong

Locking protocol:

set of rules followed by all transactions while requesting/releasing locks
locking protocol restricts the set of possible schedules

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 12 / 74

Concurrency Tuning Introduction to Transactions

Pitfalls of Locking Protocols – Deadlock

Example: two concurrent money transfers

T1: R(A),A← A + 10,R(B),B ← B − 10,W (A),W (B)
T2: R(B),B ← B + 50,R(A),A← A− 50,W (A),W (B)
possible concurrent scenario with locks:
T1.xL(A),T1.R(A),T2.xL(B),T2.R(B),T2.xL(A),T1.xL(B), . . .
T1 and T2 block each other – no progress possible

Deadlock: situation when transactions block each other

Handling deadlocks:

one of the transactions must be rolled back (i.e., undone)
rolled back transaction releases locks

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 13 / 74

Concurrency Tuning Introduction to Transactions

Pitfalls of Locking Protocols – Starvation

Starvation: transaction continues to wait for lock

Examples:

the same transaction is repeatedly rolled back due to deadlocks
a transaction continues to wait for an exclusive lock on an item while a
sequence of other transactions are granted shared locks

Well-designed concurrency manager avoids starvation.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 14 / 74

Concurrency Tuning Introduction to Transactions

Two-Phase Locking

Protocol that guarantees serializability.

Phase 1: growing phase

transaction may obtain locks
transaction may not release locks

Phase 2: shrinking phase

transaction may release locks
transaction may not obtain locks

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 15 / 74

Concurrency Tuning Introduction to Transactions

Two-Phase Locking – Example

Example: two concurrent money transfers

T1: R(A),A← A + 10,R(B),B ← B − 10,W (A),W (B)
T2: R(A),A← A− 50,R(B),B ← B + 50,W (A),W (B)

Possible two-phase locking schedule:

1. T1 : xL(A), xL(B),R(A),R(B),W (A← A + 10), uL(A)
2. T2 : xL(A),R(A), xL(B) (wait)
3. T1 : W (B ← B − 10), uL(B)
4. T2 : R(B),W (A← A− 50),W (B ← B + 50), uL(A), uL(B)

Equivalent serial schedule: T1,T2

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 16 / 74

Concurrency Tuning Lock Tuning

Outline

1 Concurrency Tuning
Introduction to Transactions
Lock Tuning
Weaken Isolation Guarantees
Transaction Chopping

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 17 / 74

Concurrency Tuning Lock Tuning

Concurrency Tuning Goals

Performance goals:

reduce blocking (one transaction waits for another to release its locks)
avoid deadlocks and rollbacks

Correctness goals:

serializability: each transaction appears to execute in isolation
note: correctness of serial execution must be ensured by the
programmer!

Trade-off between performance and correctness!

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 18 / 74

Concurrency Tuning Lock Tuning

Ideal Transaction

Acquires few locks.

Favors shared locks over exclusive locks.

only exclusive locks create conflicts

Acquires locks with fine granularity.

granularities: table, page, row
reduces the scope of each conflict

Holds locks for a short time.

reduce waiting time

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 19 / 74

Concurrency Tuning Lock Tuning

Lock Tuning

1. Eliminate unnecessary locks

2. Control granularity of locking

3. Circumvent hot spots

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 20 / 74

Concurrency Tuning Lock Tuning

1. Eliminate Unnecessary Locks

Lock overhead:

memory: store lock control blocks
CPU: process lock requests

Locks not necessary if

only one transaction runs at a time, e.g., while loading the database
all transactions are read-only, e.g., decision support queries on archival
data

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 21 / 74

Concurrency Tuning Lock Tuning

2. Control Granularity of Locking

Locks can be defined at different granularities:

row-level locking (also: record-level locking)
page-level locking
table-level locking

Fine-grained locking (row-level):

good for short online-transactions
each transaction accesses only a few records

Coarse-grained locking (table-level):

avoid blocking long transactions
avoid deadlocks
reduced locking overhead

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 22 / 74

Concurrency Tuning Lock Tuning

Lock Escalation

Lock escalation: (SQL Server and DB2 UDB)

automatically upgrades row-level locks into table locks if number of
row-level locks reaches predefined threshold
lock escalation can lead to deadlock

Oracle does not implement lock escalation.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 23 / 74

Concurrency Tuning Lock Tuning

Granularity Tuning Parameters

1. Explicit control of the granularity:

within transaction: statement within transaction explicitly requests a
table-level lock, shared or exclusive (Oracle, DB2)
across transactions: lock granularity is defined for each table; all
transactions accessing this table use the same granularity (SQL Server)

2. Escalation point setting:

lock is escalated if number of row-level locks exceeds threshold
(escalation point)
escalation point can be set by database administrator
rule of thumb: high enough to prevent escalation for short online
transactions

3. Lock table size:

maximum overall number of locks can be limited
if the lock table is full, system will be forced to escalate

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 24 / 74

Concurrency Tuning Lock Tuning

Overhead of Table vs. Row Locking

Experimental setting:

accounts(number,branchnum,balance)

clustered index on account number
100,000 rows
SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
lock escalation switched off

Queries: (no concurrent transactions!)

100,000 updates (1 query)
example: update accounts set balance=balance*1.05

100,000 inserts (100,000 queries)
example: insert into accounts values(713,15,2296.12)

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 25 / 74

Concurrency Tuning Lock Tuning

Overhead of Table vs. Row Locking

0

0.2

0.4

0.6

0.8

1

update insert

Th
ro

ug
hp

ut
 ra

tio

(ro
w

lo
ck

in
g/

ta
bl

e l
oc

kin
g)

db2

sqlserver

oracle

Row locking (100k rows must be locked) should be more expensive
than table locking (1 table must be locked).
SQL Server, Oracle: recovery overhead (logging changes) hides
difference in locking overhead
DB2: low overhead due to logical logging of updates, difference in
locking overhead visible

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 26 / 74

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Experimental setting:

table with bank accounts
clustered index on account number
long transaction (summation of account balances)
multiple short transactions (debit/credit transfers)
parameter: number of concurrent transactions
SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
lock escalation switched off

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 27 / 74

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Serializability with row locking forces key range locks.

Key range locks are performed in clustered index.

SQL Server: Clustered index is sparse, thus whole pages are locked.

Row-level locking only slightly increases concurrency.

Table-locking prevents rollback for summation query.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 28 / 74

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Row locking slightly better than table locking.

DB2 automatically selects locking granularity if not forced manually.

index scan in this experiment leads to row-level locking
table scan would lead to table-level locking

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 29 / 74

Concurrency Tuning Lock Tuning

Experiment: Fine-Grained Locking

Oracle uses snapshot isolation: summation query not in conflict with
short transactions.

Table locking: short transactions must wait.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 30 / 74

Concurrency Tuning Lock Tuning

3. Circumvent Hot Spots

Hot spot: items that are

accessed by many transactions
updated at least by some transactions

Circumventing hot spots:

access hot spot as late as possible in transaction
(reduces waiting time for other transactions since locks are kept to the
end of a transaction1)
use partitioning, e.g., multiple free lists
use special database facilities, e.g., latch on counter

1In 2-phase locking, the locks need only be held till the end of the growing phase; if
the locks are held till the end of the transaction, the resulting schedule is cascadeless (in
addition to serializable), which is desirable.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 31 / 74

Concurrency Tuning Lock Tuning

Partitioning Example: Distributed Insertions

Insert contention: last table page is bottleneck

appending data to heap file (e.g., log files)
insert records with sequential keys into table with B+-tree

Solutions:

use clustered hash index
if only B+ tree available: use hashed insertion time as key
use row locking instead of page locking
if reads are always table scans: define many insertion points
(composite index on random integer (1..k) and key attribute)

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 32 / 74

Concurrency Tuning Lock Tuning

Experiment: Multiple Insertion Points and Page Locking

Sequential: clustered B+-tree index and key in insert order

Non-sequential: clustered B+-tree, key independent of insert order

Hashing: composite index on random integer (1..k) and key attribute

Page locking and sequential keys: insert contention!

SQL Server 7 on Windows 2000

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 33 / 74

Concurrency Tuning Lock Tuning

Experiment: Multiple Insertion Points and Row Locking

No insert contention with row locking.

SQL Server 7 on Windows 2000

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 34 / 74

Concurrency Tuning Lock Tuning

Partitioning Example: DDL Statements and Catalog

Catalog: information about tables, e.g., names, column widths

Data definition language (DDL) statements must access catalog

Catalog can become hot spot

Partition in time: avoid DDL statements during heavy system activity

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 35 / 74

Concurrency Tuning Lock Tuning

Partitioning Example: Free Lists

Lock contention on free list:

free list: list of unused database buffer pages
a thread that needs a free page locks the free list
during the lock no other thread can get a free page

Solution: Logical partitioning

create several free lists
each free list contains pointers to a portion of free pages
a thread that needs a free page randomly selects a list
with n free list the load per list is reduced by factor 1/n

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 36 / 74

Concurrency Tuning Lock Tuning

System Facilities: Latch on Counter

Example: concurrent inserts with unique identifier

identifier is created by a counter
2-phase locking: lock on counter is held until transaction ends
counter becomes hot spot

Databases allow to hold a latch on the counter.

latch: exclusive lock that is held only during access
eliminates bottleneck but may introduce gaps in counter values

Counter gaps with latches:

transaction T1 increments counter to i
transaction T2 increments counter to i + 1
if T1 aborts now, then no data item has identifier i

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 37 / 74

Concurrency Tuning Lock Tuning

Experiment: Latch vs. Lock on Counter

SQLServer

0 10 20 30 40 50

Number of concurrent insertion threads

T
h

ro
u

g
h

p
u

t
(s

ta
te

m
e
n

ts
/s

e
c
)

system

ad-hoc

System (=latch): use system facility for generating counter values
(“identity” in SQL Server)

Ad hoc (=lock): increment a counter value in an ancillary table

SQL Server 7 on Windows 2000

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 38 / 74

Concurrency Tuning Lock Tuning

Experiment: Latch vs. Lock on Counter

Oracle

0 10 20 30 40 50

Number of concurrent insertion threads

T
h

ro
u

g
h

p
u

t
(s

ta
te

m
en

ts
/s

ec
)

system

ad-hoc

System (=latch): use system facility for generating counter values
(“sequence” in Oracle)

Ad hoc (=lock): increment a counter value in an ancillary table

Oracle 8i EE on Windows 2000
Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 39 / 74

Concurrency Tuning Weaken Isolation Guarantees

Outline

1 Concurrency Tuning
Introduction to Transactions
Lock Tuning
Weaken Isolation Guarantees
Transaction Chopping

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 40 / 74

Concurrency Tuning Weaken Isolation Guarantees

Undesirable Phenomena of Concurrent Transactions

Dirty read
transaction reads data written by concurrent uncommitted transaction
problem: read may return a value that was never in the database
because the writing transaction aborted

Non-repeatable read
different reads on the same item within a single transaction give
different results (caused by other transactions)
e.g., concurrent transactions T1: x = R(A), y = R(A), z = y − x and
T2: W (A = 2 ∗ A), then z can be either zero or the initial value of A
(should be zero!)

Phantom read
repeating the same query later in the transaction gives a different set
of result tuples
other transactions can insert new tuples during a scan
e.g., “Q: get accounts with balance > 1000” gives two tuples the first
time, then a new account with balance > 1000 is inserted by an other
transaction; the second time Q gives three tuples

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 41 / 74

Concurrency Tuning Weaken Isolation Guarantees

Isolation Guarantees (SQL Standard)

Read uncommitted: dirty, non-repeatable, phantom

read locks released after read; write locks downgraded to read locks
after write, downgraded locks released according to 2-phase locking
reads may access uncommitted data
writes do not overwrite uncommitted data

Read committed: non-repeatable, phantom

read locks released after read, write locks according to (strict) 2-phase
locking
reads can access only committed data
cursor stability: in addition, read is repeatable within single SELECT

Repeatable read: phantom

(strict) 2-phase locking, but no range locks
phantom reads possible

Serializable:

none of the undesired phenomenas can happen
enforced by (strict) 2-phase locking with range locks

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 42 / 74

Concurrency Tuning Weaken Isolation Guarantees

Experiment: Read Commit vs. Serializable

Experimental setup:

T1: summation query: SELECT SUM(balance) FROM Accounts

T2: money transfers between accounts
row level locking

Parameter: number of concurrent threads

Measure:

percentage of correct answers (over multiple tries)
measure throughput

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 43 / 74

Concurrency Tuning Weaken Isolation Guarantees

Experiment: Read Commit vs. Serializable

SQLServer

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Concurrent update threads

R
at

io
 o

f c
or

re
ct

an

sw
er

s
read committed

serializable

Read committed allows sum of account balances after debit operation
has taken place but before corresponding credit operation is
performed – incorrect sum!

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 44 / 74

Concurrency Tuning Weaken Isolation Guarantees

Experiment: Read Commit vs. Serializable

SQLServer

0 2 4 6 8 10

Concurrent Update Threads

T
h

ro
u

g
h

p
u

t
(t

ra
n

s/
se

c)

read committed

serializable

Read committed: faster, but incorrect answers

Serializable: always correct, but lower throughput

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 45 / 74

Concurrency Tuning Weaken Isolation Guarantees

When To Weaken Isolation Guarantees?

Query does not need exact answer (e.g., statistical queries)

example: count all accounts with balance> $1000.
read committed is enough!

Transactions with human interaction

example: flight reservation system
price for serializability too high!

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 46 / 74

Concurrency Tuning Weaken Isolation Guarantees

Example: Flight Reservation System

Reservation involves three steps:

1. retrieve list of available seats
2. let customer decide
3. secure seat

Single transaction:

seats are locked while customer decides
all other customers are blocked!

Two transactions: (1) retrieve list, (2) secure seat

seat might already be taken when customer wants to secure it
more tolerable than blocking all other customers

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 47 / 74

Concurrency Tuning Weaken Isolation Guarantees

Snapshot Isolation for Long Reads – The Problem

Consider the following scenario in a bank:

read-only query Q: SELECT SUM(deposit) FROM Accounts

update transaction T : money transfer between customers A and B

2-Phase locking inefficient for long read-only queries:

read-only queries hold lock on all read items
in our example, T must wait for Q to finish (Q blocks T)
deadlocks might occur:
T .xL(A), Q.sL(B), Q.sL(A) - wait, T .xL(B) - wait

Read-committed may lead to incorrect results:

Before transactions: A = 50,B = 30
Q : sL(A),R(A) = 50, uL(A)
T : xL(A), xL(B),W (A← A + 20),W (B ← B − 20), uL(A), uL(B)
Q : sL(B),R(B) = 10, uL(B)
sum computed by Q for A + B is 60 (instead of 80)

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 48 / 74

Concurrency Tuning Weaken Isolation Guarantees

Snapshot Isolation for Long Reads

Snapshot isolation: correct read-only queries without locking

read-only query Q with snapshot isolation
remember old values of all data items that change after Q starts
Q sees the values of the data items when Q started

Example: bank scenario with snapshot isolation

Before transactions: A = 50,B = 30
Q : R(A) = 50
T : xL(A), xL(B),W (A← A + 20),W (B ← B − 20), uL(A), uL(B)
Q : R(B) = 30 (read old value)
sum computed by Q for A + B is 80 as it should be

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 49 / 74

Concurrency Tuning Weaken Isolation Guarantees

Concurrency in Oracle

“Read committed” in Oracle means:

non-repeatable and phantom reads are possible at the transaction level,
but not within a single SQL statement
update conflict: if row is already updated, wait for updating
transaction to commit, then update new row version (or ignore row if
deleted) – no rollback!
possibly inconsistent state: transaction sees updates of other
transaction only on the rows that itself updates

“Serializable” in Oracle means:

phenomena: none of the three undesired phenomena can happen
update conflict: if two transactions update the same item, the
transaction that updates it later must abort – rollback!
not serializable: snapshot isolation does not guarantee full serializability
(skew writes)

Similar in PostgreSQL.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 50 / 74

Concurrency Tuning Weaken Isolation Guarantees

Skew Writes: Snapshot Isolation Not Serializable

Example: A = 3,B = 17

T1 : A← B
T2 : B ← A

Serial execution:

order T1,T2: A = B = 17
order T2,T1: A = B = 3

Snapshot isolation:

T1 : R(B) = 17
T2 : R(A) = 3
T1 : W (A← 17)
T2 : W (B ← 3)
result: A = 17,B = 3 (different from serial execution)

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 51 / 74

Concurrency Tuning Weaken Isolation Guarantees

Snapshot Isolation

Advantages: (assuming “serializable” of Oracle)

readers do not block writers (as with locking)
writers do not block readers (as with locking)
writers block writers only if they update the same row
performance similar to read committed
no dirty, non-repeatable, or phantom reads

Disadvantages:

system must write and hold old versions of modified data
(only date modified between start and end of read-only transaction)
does not guarantee serializability for read/write transactions

Implementation example: Oracle 9i

no overhead: leverages before-image in rollback segment
expiration time of before-images configurable, “snapshot too old”
failure if this value is too small

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 52 / 74

Concurrency Tuning Weaken Isolation Guarantees

Serializable Snapshot Isolation – Workaround and Solution

Workarounds to get true serializability with snapshot isolation:

create additional data item that is updated by conflicting transactions
(e.g., maintain sum of A and B in our skew write example)
use exclusive locks for dangerous reads (e.g., use exclusive lock for
reading A and B in our skew write example)

Problem: requires static analysis of all involved transactions

Solution: serializable snapshot isolation2

conflicts are detected by the system
conflicting transactions are aborted
leads to more aborts, but keeps other advantages of snapshot isolation

PostgreSQL (starting with version 9.1)

REPEATABLE READ is snapshot isolation
SERIALIZABLE is serializable snapshot isolation

2Michael J. Cahill, Uwe Röhm, Alan David Fekete: Serializable isolation for snapshot
databases. SIGMOD Conference 2008: 729-738

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 53 / 74

Concurrency Tuning Weaken Isolation Guarantees

Snapshot Isolation – Summary

Considerable performance advantages since reads are never blocked
and do not block other transactions.

Not fully serializable, although no dirty, non-repeatable, or phantom
reads.

Serializable snapshot isolation: fully serializable at the cost of more
aborted transactions.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 54 / 74

Concurrency Tuning Weaken Isolation Guarantees

Experiment: Read Commit vs. Serializable

Oracle

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Concurrent update threads

R
at

io
 o

f c
or

re
ct

an

sw
er

s read committed

serializable

Summation query with concurrent transfers between bank accounts.

Oracle snapshot isolation: read-only summation query is not
disturbed by concurrent transfer queries

Summation (read-only) queries always give exact answer.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 55 / 74

Concurrency Tuning Weaken Isolation Guarantees

Experiment: Read Commit vs. Serializable

Oracle

0 2 4 6 8 10

Concurrent Update Threads

Th
ro

ug
hp

ut

(t
ra

ns
/s

ec
)

read committed

serializable

Both “read commit” and “serializable” use snapshot isolation.

“Serializable” rolls back transactions in case of write conflict.

Summation queries always give exact answer.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 56 / 74

Concurrency Tuning Transaction Chopping

Outline

1 Concurrency Tuning
Introduction to Transactions
Lock Tuning
Weaken Isolation Guarantees
Transaction Chopping

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 57 / 74

Concurrency Tuning Transaction Chopping

Chopping Long Transactions

Shorter transactions

request less locks (thus they are less likely to be blocked or block an
other transaction)
require other transactions to wait less for a lock
are better for logging

Transaction chopping:

split long transactions into short ones
don’t scarify correctness

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 58 / 74

Concurrency Tuning Transaction Chopping

Terminology

Transaction: sequence of disc accesses (read/write)

Piece of transaction: consecutive subsequence of database access.

example transaction T : R(A),R(B),W (A)
R(A) and R(A),R(B) are pieces of T
R(A),W (A) is not a piece of T (not consecutive)

Chopping: partitioning transaction it into pieces.

example transaction T : R(A),R(B),W (A)
T1 : R(A),R(B) and T2 : W (A) is a chopping of T

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 59 / 74

Concurrency Tuning Transaction Chopping

Split Long Transactions – Example 1

Bank with accounts and branches:

each account is assigned to exactly one branch
branch balance is sum of accounts in that branch
customers can take out cash during day

Transactions over night:

update transaction: reflect daily withdrawals in database
balance checks: customers ask for account balance (read-only)

Update transaction Tblob

updates all account balances to reflect daily withdrawals
updates the respective branch balances

Problem: balance checks are blocked by Tblob and take too long

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 60 / 74

Concurrency Tuning Transaction Chopping

Split Long Transactions – Example 1

Solution: split update transactions Tblob into many small transactions

Variant 1: each account update is one transaction which

updates one account
updates the respective branch balance

Variant 2: each account update consists of two transactions

T1 : update account
T2 : update branch balance

Note: isolation does not imply consistency

both variants maintain serializability (isolation)
variant 2: consistency (sum of accounts equal branch balance)
compromised if only one of T1 or T2 commits.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 61 / 74

Concurrency Tuning Transaction Chopping

Split Long Transactions – Example 2

Bank scenario as in Example 1.

Transactions:

update transaction: each transaction updates one account and the
respective branch balance (variant 1 in Example 1)
balance checks: customers ask for account balance (read-only)
consistency (T ′): compute account sum for each branch and compare
to branch balance

Splitting: T ′ can be split into transactions for each individual branch

Serializability maintained:

consistency checks on different branches share no data item
updates leave database in consistent state for T ′

Note: update transaction can not be further split (variant 2)!

Lessons learned:

sometimes transactions can be split without sacrificing serializability
adding new transaction to setting may invalidate all previous chopping

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 62 / 74

Concurrency Tuning Transaction Chopping

Formal Chopping Approach

Assumptions: when can the chopping be applied?

Execution rules: how must chopped transactions be executed?

Chopping graph: which chopping is correct?

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 63 / 74

Concurrency Tuning Transaction Chopping

Assumptions for Transaction Chopping

1. Transactions: All transactions that run in an interval are known.

2. Rollbacks: It is known where in the transaction rollbacks are called.

3. Failure: In case of failure it is possible to determine which transactions
completed and which did not.

4. Variables: The transaction code that modifies a program variable x
must be reentrant, i.e., if the transaction aborts due to a concurrency
conflict and then executes properly, x is left in a consistent state.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 64 / 74

Concurrency Tuning Transaction Chopping

Execution Rules

1. Execution order: The execution of pieces obeys the order given by the
transaction.

2. Lock conflict: If a piece is aborted due to a lock conflict, then it will be
resubmitted until it commits.

3. Rollback: If a piece is aborted due to a rollback, then no other piece for
that transaction will be executed.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 65 / 74

Concurrency Tuning Transaction Chopping

The Transaction Chopping Problem

Given: Set A = {T1,T2, . . . ,Tn} of (possibly) concurrent
transactions.

Goal: Find a chopping B of the transactions in A such that any
serializable execution of the transactions in B (following the execution
rules) is equivalent so some serial execution of the transaction in A.
Such a chopping is said to be correct.

Note: The “serializable” execution of B may be concurrent, following
a protocol for serializability.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 66 / 74

Concurrency Tuning Transaction Chopping

Chopping Graph

We represent a specific chopping of transactions as a graph.

Chopping graph: undirected graph with two types of edges.

nodes: each piece in the chopping is a node
C-edges: edge between any two conflicting pieces
S-edges: edge between any two sibling pieces

Conflicting pieces: two pieces p and p′ conflict iff

p and p′ are pieces of different original transactions
both p and p′ access a data item x and at least one modifies it

Sibling pieces: two pieces p and p′ are siblings iff

p and p′ are neighboring pieces of the same original transactions

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 67 / 74

Concurrency Tuning Transaction Chopping

Chopping Graph – Example

Notation: chopping of possibly concurrent transactions.

original transactions are denoted as T1,T2, . . .
chopping Ti results in pieces Ti1,Ti2, . . .

Example transactions: (T1 : R(x),R(y),W (y) is split into T11,T12)

T11 : R(x)
T12 : R(y),W (y)
T2 : R(x),W (x)
T3 : R(y),W (y)

Conflict edge between nodes

T11 and T2 (conflict on x)
T12 and T3 (conflict on y)

Sibling edge between nodes

T11 and T22 (same original transaction T1)

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 68 / 74

Concurrency Tuning Transaction Chopping

Rollback Safe

Motivation: Transaction T is chopped into T1 and T2.

T1 executes and commits
T2 contains a rollback statement and rolls back
T1 is already committed and will not roll back
in original transaction T rollback would also undo effect of piece T1!

A chopping of transaction T is rollback save if

T has no rollback statements or
all rollback statements are in the first piece of the chopping

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 69 / 74

Concurrency Tuning Transaction Chopping

Correct Chopping

Theorem (Correct Chopping)

A chopping is correct if it is rollback save and its chopping graph contains
no SC-cycles.

Chopping of previous example is correct (no SC-cycles, no rollbacks)

If a chopping is not correct, then any further chopping of any of the
transactions will not render it correct.

If two pieces of transaction T are in an SC-cycle as a result of
chopping T , then they will be in a cycle even if no other transactions
(different from T) are chopped.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 70 / 74

Concurrency Tuning Transaction Chopping

Private Chopping

Private chopping: Given transactions T1,T2, . . . ,Tn.
Ti1,Ti2, . . . ,Tik is a private chopping of Ti if

there is no SC-cycle in the graph with the nodes
{T1, . . . ,Ti1, . . . ,Tik , . . . ,Tn}
Ti is rollback save

Private chopping rule: The chopping that consists of
private(T1), private(T2), . . . , private(Tn) is correct.

Implication:

each transaction Ti can be chopped in isolation, resulting in private(Ti)
overall chopping is union of private choppings

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 71 / 74

Concurrency Tuning Transaction Chopping

Chopping Algorithm

1. Draw an S-edge between the R/W operations of a single transaction.

2. For each data item x produce a write list, i.e., a list of transactions that
write this data item.

3. For each R(x) or W (x) in all transactions:

(a) look up the conflicting transactions in the write list of x
(b) draw a C-edge to the respective conflicting operations

4. Remove all S-edges that are involved in an SC-cycle.

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 72 / 74

Concurrency Tuning Transaction Chopping

Chopping Algorithm – Example

Transactions: (Rx = R(x),Wx = W (x))

T1 : Rx ,Wx ,Ry ,Wy
T2 : Rx ,Wx
T3 : Ry ,Rz ,Wy

Write lists: x :T1,T2; y :T1,T3; z : ∅
C-edges:

T1: Rx − T2.Wx , Wx − T2.Wx , Ry − T3.Wy , Wy − T3.Wy
T2: Rx − T1.Wx (Wx − T1.Wx : see T1)
T3: Ry − T1.Wy (Wy − T1.Wy : see T1)

Remove S-edges: T1: Rx −Wx , Ry −Wy ; T2: Rx −Wx ;

T3: Ry − Rz ,Rz −Wy

Final chopping:

T11 : Rx ,Wx ; T12 : Ry ,Wy
T2 : Rx ,Wx
T3 : Ry ,Rz ,Wy

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 73 / 74

Concurrency Tuning Transaction Chopping

Reordering Transactions

Commutative operations:

changing the order does not change the semantics of the program
example: R(y),R(z),W (y ← y + z) and R(z),R(y),W (y ← y + z)
do the same thing

Transaction chopping:

changing the order of commutative operations may lead to better
chopping
responsibility of the programmer to verify that operations are
commutative!

Example: consider T3 : Ry ,Rz ,Wy of the previous example

assume T3 computes y + z and stores the sum in y
then Ry and Rz are commutative and can be swapped
T ′
3 : Rz ,Ry ,Wy can be chopped: T ′

31 : Rz , T ′
32 : Ry ,Wy

Augsten (Univ. Salzburg) DBT – Concurrency Tuning SS 2017/18 74 / 74

