
PS Non-Standard Database Systems
Summer term 2018

Overview

Daniel Kocher

March 21, 2018

�is document gives a brief overview on three categories of non-standard database systems
(DBS) in the context of this class. For each category, we provide you with a motivation, a
discussion about the key properties, a list of commonly used implementations (proprietary as
well as open-source), and recommendation(s) for your project. For your convenience we also
recap some relevant terms (e.g., ACID, OLTP, . . . ).

Terminology

OLTP Online transaction processing. OLTP systems are highly optimized to process (1)
short queries (operating only on a small portion of the database) and (2) small transac-
tions (inserting/updating few tuples per relation). OLTP typically includes insertions,
updates, and deletions. �e main focus of OLTP systems is on low response time and
high throughput (in terms of transactions per second). Databases in OLTP systems are
highly normalized [5].
OLAP Online analytical processing. OLAP systems analyze complex data (usually from
a data warehouse). Typically, queries in an OLAP system may run for a long time (as
opposed to queries in OLTP systems) and the number of transactions is usually low. Fur-
thermore, typical OLAP queries are read-only and touch a large portion of the database
(e.g., scan tables, large joins). �e main focus of OLAP systems is on low response times.
Databases in OLAP systems are o�en de-normalized intentionally [5].
ACID Traditional relational database systems guarantee ACID properties:

– Atomicity
All or no operation(s) of a transaction are re�ected in the database.

– Consistency
Isolated execution of a transaction preserves consistency of the database.

– Isolation
Concurrently executed transactions must be unaware of one another and they must
not see results of other concurrently executed transactions.

1



– Durability
A�er successful completion of a transaction, the changes it has made to the database
persist even in case of a system failure.

BASE Replication-based distributed database systems o�en trade consistency for avail-
ability. �ey are said to satisfy the BASE properties which are looser than the ACID
guarantees [10]:

– Basically available
�e database is available almost all the time (in terms of the CAP theorem). E.g.,
updates are allowed even if the network is partitioned.

– So� state
Due to network partitioning, replicas may have di�erent states. �us, the state of
the database may not be precisely de�ned at all times.

– Eventually consistent
Consistency will be established across all replicas once a network partitioning is
resolved.

CAP �eCAP theorem states that it is impossible to guarantee all three desirable prop-
erties at the same time in a distributed database system that replicates data to multiple
nodes in a cluster [5]. �e three desirable properties are

– Consistency
All nodes have the same copy of a replicated data item visible for various transac-
tions (reads/writes).

– Availability
Every read/write operation on a certain data item is either processed successfully
or results in an error message (requested operation is not completed).

– Partition tolerance
Even if the network is partitioned into two or more partitions (communication of
nodes only possible within a partition), the system continues to operate.

SQL SQL is a powerful declarative language to formulate queries in relational database
systems that support complex queries like joins.
Vertical scalability Expand the capacity (e.g., main memory) of individual nodes in a
distributed system without interrupting the system [5].
Horizontal scalability Increase/Decrease the number of nodes in a distributed system
without interrupting the system [5].
Sharding In a distributed envinronment, a relation is split into subrelations (subsets
of rows) and the subrelations are distributed horizontally on many nodes [5].

NoSQL Database Systems

NoSQL is also commonly referred to as Not only SQL and represents a class of non-relational
database systems that emerged to meet new requirements: they focus on high availability and
high scalability. Typically, NoSQL database systems are designed to operate in a distributed
environment and one of their main goals is horizontal scalability. �ey operate on a non-
relational data model and are schemaless (as opposed to relational databases). Some NoSQL
database systems support SQL, some o�er a custom programmatic/query interface.
To achieve high availability and high scalability, NoSQL database systems usually trade guar-
antees/capabilities with respect to typical relational database systems [5]:

2



Drop of ACID Guarantees NoSQL database systems are only guaranteed to be even-
tually consistent, meaning that, eventually, updates are propagated to other nodes. More-
over, consistency guarantees for reads are limited [1]. With respect to the CAP theorem,
NoSQL database systems usually favor availability and partition tolerance over consis-
tency to achieve the desired performance and scalability. �ey are said to require the
BASE properties.
Limited�ery Language Capabilities As opposed to SQL, NoSQL database systems
typically provide a limited set of operations, o�en referred to asCRUD operations: Create,
Read, Update, and Delete. However, for most applications that use a NoSQL database
systems, this restricted set of operations is su�cient.

Amongst the most popular types of NoSQL database systems are the following types:

Key-Value Stores As the name suggests, a key-value store stores key-value pairs. In other
words, a key-value store can be viewed as large, distributed hash table (like std::unordered map
in C++, dict in Python3, or Map in Java). Hence, a key is required to be unique and data items
are accessed by specifying the key. Basically, the value associated with a key can be anything
and does not have to satisfy some schema (like it is the case in relational databases). Key-value
stores typically support insertion/deletion of key-value pairs as well as accessing values by
specifying a key. More complex operations need to be implemented by the application [12].
Examples include Amazon DynamoDB 1, Riak 2, and Redis 3.

(Wide) Column Stores Traditional relational database systems store their data items (tu-
ples) row-wise, i.e., rows are stored on disk consecutively. Contrary, column stores use a colum-
nar data representation on disk, i.e., columns are stored on disk one a�er another. Logically, the
data is still viewed as table just as in relational database systems. For some query workloads,
storing a relation column-wise may be bene�cial in terms of performance. However, it is im-
portant to notice that this is not the case for every query workload. Wide column stores (also
referred to as extensible record stores) introduce the notion of column families. Column families
are sets of columns that are expected to be accessed simultaneously. �is concept adds a third
dimension for accessing data (in addition to row and column). Typically, data in a column fam-
ily is stored consecutively on disk [12]. Google’s BigTable [2] is the most popular wide column
stores.
Examples include Google BigTable 4, Apache HBase 5, and Apache Cassandra 6.

Document Stores Document stores are somewhat similar to key-value stores as documents
are associated with and accessed by specifying a unique key. Typical document formats are
XML and JSON and a document has to following the corresponding speci�cation. �erefore,
document stores are said to store semi-structured data [12].
Examples include MongoDB 7 and Apache CouchDB 8.

1https://aws.amazon.com/dynamodb/
2http://basho.com/products/riak-kv/
3https://redis.io/
4https://cloud.google.com/bigtable/
5https://hbase.apache.org/
6https://cassandra.apache.org/
7https://www.mongodb.com/
8https://couchdb.apache.org/

3

https://aws.amazon.com/dynamodb/
http://basho.com/products/riak-kv/
https://redis.io/
https://cloud.google.com/bigtable/
https://hbase.apache.org/
https://cassandra.apache.org/
https://www.mongodb.com/
https://couchdb.apache.org/


Graph Stores In graph stores, the underlying data model is tailored to represent data items
and semantically meaningful links between them. Data (typically key-value pairs) may be
stored alongside both, nodes and links. Due to their data model, graph stores o�er good per-
formance when data items need to be traversed through their links [8, 12].
Examples include Neo4J 9 and Apache TinkerPop 10.

Recommendation Generally speaking, you can choose any type of NoSQL system. Regard-
ing speci�c implementations, we recommend to use

• Riak or Redis (key-value stores),
• Apache HBase (column stores),
• MongoDB or CouchDB (document stores), and
• Neo4J (graph stores)

for your project.

NewSQL Database Systems

NewSQL database systems a�empt to provide NoSQL-like performance and scalability while
preserving the ACID guarantees and o�ering a query language that is as powerful as SQL.
�e main driving force for NewSQL systems are new requirements of OLTP read-write work-
loads [11]:

• Much higher OLTP throughput
• Real-time analytics

Another motivation for NewSQL database systems is the fact that some applications cannot
give up strong transactional and consistency guarantees. Nevertheless, they should perform
and scale horizontally as well as NoSQL database systems do. Hence, NewSQL database sys-
tems are required to support a large number of concurrent transactions. According to [7],
NewSQL database systems can be categorized into three main classes:

NewArchitectures New database systems built from scratch without relying on any legacy
codebase. Typically, they operate in a shared-nothing environment and provide important fea-
tures such as multi-node concurrency control, fault tolerance through replication, distributed
query processing, and a tailored storage engine. A tailored storage engine allows the systems
to optimize the network tra�c: the query, rather than the data, is sent. In other words, the
query travels to the data on which it operates.
Examples include Google Spanner [3], HyPer [6], SAP Hana [9], CockroachDB 11, H-Store 12,
MemSQL 13, NuoDB 14, and VoltDB 15.

Transparent ShardingMiddleware �e database is divided into shards, and the shards are
distributed across many nodes in the cluster. Each node runs the same database systems. A
(centralized) middleware coordinates queries, transactions, replication, and partitioning. �e
communication between nodes and middleware is done via an additional layer on top of the
9https://neo4j.com/
10https://tinkerpop.apache.org/
11https://www.cockroachlabs.com/
12http://hstore.cs.brown.edu
13https://www.memsql.com/
14https://www.nuodb.com
15https://www.voltdb.com

4

https://neo4j.com/
https://tinkerpop.apache.org/
https://www.cockroachlabs.com/
http://hstore.cs.brown.edu
https://www.memsql.com/
https://www.nuodb.com
https://www.voltdb.com


database system that is deployed on each node. Hence, for this class of NewSQL systems, the
underlying database system remains untouched. �is is considered the main advantage of this
class of NewSQL systems: it is possible to replace an existing single-node database system
without changing the application code. However, keep in mind that most of the single-node
database systems operate disk-based. However, scalability and performancemay still be limited
compared to new architectures (since new architectures o�en exploit new technologies).
Examples include AgilData 16 and MariaDB MaxScale 17.

Database-as-a-Service Essentially, NewSQL databases o�ered by some cloud computing
providers.
Examples include Amazon Aurora 18 and ClearDB 19.

Recommendation For NewSQL systems, we recommend new architecture systems. Cur-
rently, there are not many open-source/freely-available implementations of NewSQL database
systems. For your project, we recommend to use CockroachDB or H-Store.

Large-Scale Processing Frameworks

Lots of enterprises collect large amounts of data (Big Data). �erefore, new large-scale pro-
cessing frameworks had to be developed that are able to handle this amount of data. Such
processing framework operate in a distributed environment (a cluster) and provide a conve-
nient way of processing distributed data, i.e., users of such processing frameworks need li�le
knowledge about the underlying architecture. �e MapReduce paradigm [4] is one example of
such an abstraction.
Large-scale processing framework are usually classi�ed into 2 categories.

BatchProcessing Frameworks Batch processing frameworks operate on a large (but bounded),
static dataset, a so-called batch. Such systems will only return the result of their computation
once the entire batch was processed. In other words, batch processing is stateful. Aggregations
such as computing the average are typical operations that �t batch processing. Consequently,
pure batch processing systems are not applicable for highly interactive application scenario.
An example of a batch processing framework is Apache’s Hadoop 20.

Stream Processing Frameworks Stream processing frameworks operate on an unbounded
number of independent data items. In true stream processing frameworks, the data items
stream into the system one a�er another, and operations are de�ned on individual data items
rather than on the dataset as a whole (as in batch processing). �e results of the operations
are available immediately a�er processing a data item. Generally speaking, true stream pro-
cessing is stateless. In contrast, there also exist so-called micro-batch processing frameworks
that are still considered stream processing frameworks but data is processed in small batches of
data items. Consequently, micro-batch processing systems also maintain a micro-state. Stream
processing is well-suited for applications having (near) real-time requirements.

16http://www.agildata.com/
17https://mariadb.com/products/technology/maxscale
18https://aws.amazon.com/rds/aurora/
19http://w2.cleardb.net/
20https://hadoop.apache.org/

5

http://www.agildata.com/
https://mariadb.com/products/technology/maxscale
https://aws.amazon.com/rds/aurora/
http://w2.cleardb.net/
https://hadoop.apache.org/


Examples include Apache Storm 21 and Apache Samza 22.

Hybrid Frameworks �ere also exist hybrid processing systems that are capable of han-
dling both, batches of data and streamed data.
Examples include Apache Spark 23 and Apache Flink 24.

Recommendation We consider Apache Spark and Apache Flink to be the best choices in
both cases, batch and stream processing.

References

[1] R. Ca�ell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec., 39(4):12–27, May 2011.
[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for Structured Data. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation, OSDI
’06, pages 205–218, Berkeley, CA, USA, 2006. USENIX Association.

[3] J. C. Corbe�, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. �inlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s Globally-distributed Database. In Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pages 251–264, Berkeley, CA, USA, 2012. USENIX Association.

[4] J. Dean and S. Ghemawat. MapReduce: Simpli�ed Data Processing on Large Clusters. In
Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implemen-
tation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[5] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Pearson, 7th edition,
2015.

[6] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP amp;OLAP Main Memory Database
System Based on Virtual Memory Snapshots. In 2011 IEEE 27th International Conference
on Data Engineering, pages 195–206, April 2011.

[7] A. Pavlo and M. Asle�. What’s Really New with NewSQL? SIGMOD Rec., 45(2):45–55,
Sept. 2016.

[8] E. Redmond and J. R. Wilson. Seven Databases in Seven Weeks: A Guide to Modern
Databases and the NoSQL Movement. Pragmatic Bookshelf, 2012.

[9] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd. E�cient Transaction
Processing in SAP HANA Database: �e End of a Column Store Myth. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD ’12,
pages 731–742, New York, NY, USA, 2012. ACM.

[10] A. Silberschatz, H. Korth, and S. Sudarshan. Database Systems Concepts. McGraw-Hill,
Inc., New York, NY, USA, 5 edition, 2006.

[11] M. Stonebraker. New Opportunities for New SQL. Commun. ACM, 55(11):10–11, Nov.
2012.

21https://storm.apache.org/
22https://samza.apache.org/
23https://spark.apache.org/
24https://flink.apache.org/

6

https://storm.apache.org/
https://samza.apache.org/
https://spark.apache.org/
https://flink.apache.org/


[12] L. Wiese. Advanced Data Management for SQL, NoSQL, Cloud and Distributed Databases.
DeGruyter, 2015.

7


