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I/O Parallelism

Introduction

Parallel machines are becoming quite common and affordable

Prices of microprocessors, memory, and disks have dropped sharply
Recent desktop computers feature multiple processors and this trend is
projected to accelerate

Databases are growing increasingly large

large volumes of transaction data are collected and stored for later
analysis.
multimedia objects like images are increasingly stored in databases

Large-scale parallel database systems increasingly used for:

storing large volumes of data
processing time-consuming decision-support queries
providing high throughput for transaction processing
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I/O Parallelism

Parallelism in Databases

Data can be partitioned across multiple disks for parallel I/O.

Individual relational operations (e.g., sort, join, aggregation) can be
executed in parallel

each processor can work independently on its own data partition

Queries are expressed in high level language (SQL, translated to
relational algebra)

makes parallelization easier

Different queries can be run in parallel with each other. Concurrency
control takes care of conflicts.

Thus, databases naturally lend themselves to parallelism.
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I/O Parallelism

I/O Parallelism/1

Reduce the time required to retrieve relations from disk by
partitioning the relations on multiple disks.

Horizontal partitioning — tuples of a relation are divided among
many disks such that each tuple resides on one disk.

Partitioning techniques (number of disks = n):
Round-robin:

Send the I th tuple inserted in the relation to disk i modn.

Hash partitioning:

Choose one or more attributes as the partitioning attributes.
Choose hash function h with range 0 . . . n − 1
Let i denote result of hash function h applied to the partitioning
attribute value of a tuple. Send tuple to disk i .
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I/O Parallelism

I/O Parallelism/2

Range partitioning

Choose an attribute as the partitioning attribute.
A partitioning vector [v0, v1, . . . , vn−2] is chosen.
Partitioning: Let v be the partitioning attribute value of a tuple. Tuples
such that vi ≤ vi+1 go to disk i + 1. Tuples with v < v0 go to disk 0
and tuples with v ≥ vn−2 go to disk n − 1.
Example: with a partitioning vector [5, 11], a tuple with partitioning
attribute value of 2 will go to disk 0, a tuple with value 8 will go to
disk 1, while a tuple with value 20 will go to disk 2.
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I/O Parallelism

Comparison of Partitioning Techniques/1

Evaluate how well partitioning techniques support the following types
of data access:

1. Scanning the entire relation.
2. Locating a tuple associatively — point queries.

E.g., r .A = 25.

3. Locating all tuples such that the value of a given attribute lies within a
specified range — range queries.

E.g., 10 ≤ r .A < 25.
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I/O Parallelism

Comparison of Partitioning Techniques/2

Round robin:

Advantages

Best suited for sequential scan of entire relation on each query.
All disks have almost an equal number of tuples; retrieval work is thus
well balanced between disks.

Range queries are difficult to process

No clustering — tuples are scattered across all disks
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I/O Parallelism

Comparison of Partitioning Techniques/3

Hash partitioning:

Good for sequential access

Assuming hash function is good, and partitioning attributes form a key,
tuples will be equally distributed between disks
Retrieval work is then well balanced between disks.

Good for point queries on partitioning attribute

Can lookup single disk, leaving others available for answering other
queries.

No clustering, so difficult to answer range queries
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I/O Parallelism

Comparison of Partitioning Techniques/4

Range partitioning:

Provides data clustering by partitioning attribute value.

Good for sequential access

Good for point queries on partitioning attribute: only one disk needs
to be accessed.

For range queries on partitioning attribute, one to a few disks may
need to be accessed

Remaining disks are available for other queries.
Good if result tuples are from one to a few blocks.
If many blocks are to be fetched, they may still fetched from one to a
few disks: potential parallelism in disk access is wasted.
Example: partition by order date, then tuples with recent order dates
will be accessed more frequently, leading to so-called execution skew
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I/O Parallelism

Partitioning a Relation across Disks

If a relation contains only a few tuples which will fit into a single disk
block, then assign the relation to a single disk.

Large relations are preferably partitioned across all the available disks.

If a relation consists of m disk blocks and there are n disks available
in the system, then the relation should be allocated min(m, n) disks.
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I/O Parallelism

Handling of Data Skew

Distribution of tuples to disks may be skewed: some disks have many
tuples, while others have fewer tuples.

Skew limits speedup. Example:

relation with 1000 tuples is partitioned to 100 disks (10 tuples/disk)
expected speedup for scan: ×100
skew: one disk has 40 tuples ⇒ max. speedup is ×25

Types of skew:
Attribute-value skew:

Some values appear in the partitioning attributes of many tuples; all
the tuples with the same value for the partitioning attribute end up in
the same partition.
Can occur with range-partitioning and hash-partitioning.

Partition skew:

With range-partitioning, badly chosen partition vector may assign too
many tuples to some partitions and too few to others.
Less likely with hash-partitioning if a good hash-function is chosen.
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I/O Parallelism

Handling Skew using Histograms

Balanced partitioning vector can be constructed from histogram in a
relatively straightforward fashion

Assume uniform distribution within each range of the histogram

Histogram can be constructed by scanning relation, or sampling
(blocks containing) tuples of the relation
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I/O Parallelism

Handling Skew Using Virtual Processor Partitioning

Skew in range partitioning can be handled elegantly using virtual
processor partitioning:

create a large number of partitions (say 10 to 20 times the number of
processors)
Assign virtual processors to partitions either in round-robin fashion or
based on estimated cost of processing each virtual partition

Basic idea:

If any normal partition would have been skewed, it is very likely the
skew is spread over a number of virtual partitions
Skewed virtual partitions get spread across a number of processors, so
work gets distributed evenly!
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Interquery Parallelism

Interquery Parallelism

Queries/transactions execute in parallel with one another.

Increases transaction throughput; used primarily to scale up a
transaction processing system to support a larger number of
transactions per second.

Easiest form of parallelism to support, particularly in a shared-memory
parallel database, because even sequential database systems support
concurrent processing.

More complicated to implement on shared-disk or shared-nothing
architectures

Locking and logging must be coordinated by passing messages between
processors.
Data in a local buffer may have been updated at another processor.
Cache-coherency has to be maintained — reads and writes of data in
buffer must find latest version of data.
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Interquery Parallelism

Cache Coherency Protocol

Example of a cache coherency protocol for shared-disk systems:

Before reading/writing to a page, the page must be locked in
shared/exclusive mode.
On locking a page, the page must be read from disk
Before unlocking a page, the page must be written to disk if it was
modified.

More complex protocols with fewer disk reads/writes exist.

Cache coherency protocols for shared-nothing systems are similar.
Each database page is assigned a home processor. Requests to fetch
the page or write it to disk are sent to the home processor.
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Intraquery Parallelism

Intraquery Parallelism

Execution of a single query in parallel on multiple processors/disks;
important for speeding up long-running queries.

Two complementary forms of intraquery parallelism:

Intraoperation Parallelism — parallelize the execution of each
individual operation in the query.
Interoperation Parallelism — execute the different operations in a
query expression in parallel.

Intraoperation parallelism scales better with increasing parallelism
because the number of tuples processed by each operation is typically
more than the number of operations in a query.
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Intraquery Parallelism Intraoperation Parallelism

Parallel Processing of Relational Operations

Our discussion of parallel algorithms assumes:

read-only queries
shared-nothing architecture
n processors, P0, . . . , Pn−1, and n disks D0, . . . , Dn−1, where disk Di

is associated with processor Pi .

If processor has multiple disks: simulate a single disk Di .

Shared-nothing architectures can be efficiently simulated on
shared-memory and shared-disk systems.

Algorithms for shared-nothing systems can thus be run on
shared-memory and shared-disk systems.
However, some optimizations may be possible.
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Intraquery Parallelism Intraoperation Parallelism

Parallel Sort/1

Range-Partitioning Sort

Choose processors P0, . . . , Pm−1, where m ≤ n to do sorting.

Create range-partition vector with m ranges, on the sorting attributes

Redistribute the relation using range partitioning

all tuples that lie in the i th range are sent to processor Pi

Pi stores the tuples it received temporarily on disk Di

this step requires I/O and communication overhead

Each processor Pi sorts its partition of the relation locally.

Each processors executes same operation (sort) in parallel with other
processors, without any interaction with the others (data parallelism).

Final merge operation is trivial: range-partitioning ensures that, for
0 ≤ i < j < m, the key values in processor Pi are all less than the key
values in Pj .
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Intraquery Parallelism Intraoperation Parallelism

Parallel Sort/2

Parallel External Sort-Merge

Assume the relation has already been partitioned among disks
D0, . . . , Dn−1 (in whatever manner).

Each processor Pi locally sorts the data on disk Di .

Sorted runs of processors are merged to get the final sorted output.

Parallelize the merging of sorted runs as follows:

The sorted partitions at each processor Pi are range-partitioned across
the processors P0, . . . , Pm−1.
Each processor Pi performs a merge on the streams as they are
received, to get a single sorted run.
The sorted runs on processors P0, . . . , Pm−1 are concatenated to get
the final result.
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Intraquery Parallelism Intraoperation Parallelism

Parallel Join

The join operation requires pairs of tuples to be tested to see if they
satisfy the join condition, and if they do, the pair is added to the join
output.

Parallel join algorithms attempt to split the pairs to be tested over
several processors. Each processor then computes part of the join
locally.

In a final step, the results from each processor can be collected
together to produce the final result.
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Intraquery Parallelism Intraoperation Parallelism

Partitioned Join/1

For equi-joins and natural joins, it is possible to partition the two
input relations across the processors, and compute the join locally at
each processor.

Let r and s be the input relations, and we want to compute
r ./r .A=s.B s.

r and s each are partitioned into n partitions, denoted
r0, r1, . . . , rn−1 and s0, s1, . . . , sn−1.

Can use either range partitioning or hash partitioning.

r and s must be partitioned on their join attributes (r .A and s.B),
using the same range-partitioning vector or hash function.

Partitions ri and si are sent to processor Pi ,

Each processor Pi locally computes ri ./ri .A=si .B si . Any of the
standard join methods can be used.
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Intraquery Parallelism Intraoperation Parallelism

Partitioned Join/2
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Intraquery Parallelism Intraoperation Parallelism

Partitioned Parallel Hash-Join/1

Parallelizing partitioned hash join:

Assume s is smaller than r and therefore s is chosen as the build
relation.

A hash function h1 takes the join attribute value of each tuple in s
and maps this tuple to one of the n processors.

Each processor Pi reads the tuples of s that are on its disk Di , and
sends each tuple to the appropriate processor based on hash function
h1. Let si denote the tuples of relation s that are sent to processor Pi .

As tuples of relation s are received at the destination processors, they
are partitioned further using another hash function, h2, which is used
to compute the hash-join locally.
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Intraquery Parallelism Intraoperation Parallelism

Partitioned Parallel Hash-Join/2

Once the tuples of s have been distributed, the larger relation r is
redistributed across the m processors using the hash function h1

Let ri denote the tuples of relation r that are sent to processor Pi .

As the r tuples are received at the destination processors, they are
repartitioned using the function h2

(just as the probe relation is partitioned in the sequential hash-join
algorithm).

Each processor Pi executes the build and probe phases of the
hash-join algorithm on the local partitions ri and si to produce a
partition of the final result of the hash-join.

Note: Hash-join optimizations can be applied to the parallel case

e.g., the hybrid hash-join algorithm can be used to cache some of the
incoming tuples in memory and avoid the cost of writing them and
reading them back in.
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Intraquery Parallelism Intraoperation Parallelism

Fragment-and-Replicate Join/1

Partitioning not possible for some join conditions

E.g., non-equijoin conditions, such as r .A > s.B.

For joins were partitioning is not applicable, parallelization can be
accomplished by fragment and replicate technique

Special case – asymmetric fragment-and-replicate:

One of the relations, say r , is partitioned; any partitioning technique
can be used.
The other relation, s, is replicated across all the processors.
Processor Pi then locally computes the join of ri with all of s using any
join technique.
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Intraquery Parallelism Intraoperation Parallelism

Parallel Nested-Loop Join

Assume that

relation s is much smaller than relation r
r is stored by partitioning (partitioning technique irrelevant)
there is an index on a join attribute of relation r at each of the
partitions of relation r .

Use asymmetric fragment-and-replicate, with relation s being
replicated, and using the existing partitioning of relation r .

Each processor Pj where a partition of relation s is stored reads the
tuples of relation s stored in Dj , and replicates the tuples to every
other processor Pi .

At the end of this phase, relation s is replicated at all sites that store
tuples of relation r .

Each processor Pi performs an indexed nested-loop join of relation s
with the i th partition of relation r .

Augsten (Univ. Salzburg) NSDB – Parallel Databases SS 2017/18 30 / 47



Intraquery Parallelism Intraoperation Parallelism

Fragment-and-Replicate Join/2
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Intraquery Parallelism Intraoperation Parallelism

Fragment-and-Replicate Join/3

General case: reduces the sizes of the relations at each processor.

r is partitioned into n partitions r0, r1, . . . , rn−1; s is partitioned into
m partitions, s0, s1, . . . , sm−1.
Any partitioning technique may be used.
There must be at least m ∗ n processors.
Label the processors as
P0,0, P0,1, . . . , P0,m−1, P1,0, . . . , Pn−1,m−1.
Pi,j computes the join of ri with sj . In order to do so, ri is replicated to
Pi,0, Pi,1, . . . , Pi,m−1, while si is replicated to P0,i , P1,i , . . . , Pn−1,i

Any join technique can be used at each processor Pi,j .
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Intraquery Parallelism Intraoperation Parallelism

Fragment-and-Replicate Join/4

Both versions of fragment-and-replicate work with any join condition,
since every tuple in r can be tested with every tuple in s.

Usually has a higher cost than partitioning, since one of the relations
(for asymmetric fragment-and-replicate) or both relations (for general
fragment-and-replicate) have to be replicated.

Sometimes asymmetric fragment-and-replicate is preferable even
though partitioning could be used.
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Intraquery Parallelism Intraoperation Parallelism

Other Relational Operations/1

Selection σθ(r)

If θ is of the form ai = v , where ai is an attribute and v a value.

If r is partitioned on ai the selection is performed at a single processor.

If θ is of the form l ≤ ai ≤ u (i.e., θ is a range selection) and the
relation has been range-partitioned on ai

Selection is performed at each processor whose partition overlaps with
the specified range of values.

In all other cases: the selection is performed in parallel at all the
processors.
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Intraquery Parallelism Intraoperation Parallelism

Other Relational Operations/2

Duplicate elimination
Perform by using either of the parallel sort techniques

eliminate duplicates as soon as they are found during sorting.

Can also partition the tuples (using either range- or hash-partitioning)
and perform duplicate elimination locally at each processor.

Projection

Projection without duplicate elimination can be performed as tuples are
read in from disk in parallel.
If duplicate elimination is required, any of the above duplicate
elimination techniques can be used.
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Intraquery Parallelism Intraoperation Parallelism

Grouping/Aggregation

Partition the relation on the grouping attributes and then compute
the aggregate values locally at each processor.

Can reduce cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning.

Consider the sum aggregation operation:
Perform aggregation operation at each processor Pi on those tuples
stored on disk Di

results in tuples with partial sums at each processor.

Result of the local aggregation is partitioned on the grouping
attributes, and the aggregation performed again at each processor Pi

to get the final result.

Fewer tuples need to be sent to other processors during partitioning.
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Intraquery Parallelism Intraoperation Parallelism

Cost of Parallel Evaluation of Operations

If there is no skew in the partitioning, and there is no overhead due to
the parallel evaluation, expected speedup will be n

If skew and overheads are also to be taken into account, the time
taken by a parallel operation can be estimated as

Tpart + Tasm + max(T0, T1, . . . , Tn−1)

Tpart is the time for partitioning the relations
Tasm is the time for assembling the results
Ti is the time taken for the operation at processor Pi

this needs to be estimated taking into account the skew, and the time
wasted in contentions.
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Intraquery Parallelism Interoperation Parallelism

Interoperator Parallelism

Two types of interoperation parallelism:

pipelined parallelism
independent parallelism
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Intraquery Parallelism Interoperation Parallelism

Pipelined Parallelism

Example: Consider a join of four relations

r1 ./ r2 ./ r3 ./ r4

Set up a pipeline that computes the three joins in parallel

Let P1 be assigned the computation of temp1 = r1 ./ r2
And P2 be assigned the computation of temp2 = temp1 ./ r3
And P3 be assigned the computation of temp2 ./ r4

Each operation can execute in parallel sending result tuples to the
next operation even while it is computing further results

Requires pipelineable (non-blocking) join evaluation algorithm (e.g.,
indexed nested loops join)
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Intraquery Parallelism Interoperation Parallelism

Factors Limiting Utility of Pipeline Parallelism

Pipeline parallelism is useful since it avoids writing intermediate
results to disk

Useful with small number of processors, but does not scale up well
with more processors. One reason is that pipeline chains do not attain
sufficient length.

Cannot pipeline operators which do not produce output until all
inputs have been accessed (e.g., aggregate and sort)

Little speedup is obtained for the frequent cases of execution skew in
which one operator’s execution cost is much higher than the others.

Advantage: avoids writing intermediate results to disk
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Intraquery Parallelism Interoperation Parallelism

Independent Parallelism

Example: Consider a join of four relations

r1 ./ r2 ./ r3 ./ r4

Independent parallelism:

Let P1 be assigned the computation of temp1 = r1 ./ r2
And P2 be assigned the computation of temp2 = r3 ./ r4
And P3 be assigned the computation of temp1 ./ temp2
P1 and P2 can work independently in parallel
P3 has to wait for input from P1 and P2

Can pipeline output of P1 and P2 to P3, combining independent
parallelism and pipelined parallelism

Does not provide a high degree of parallelism

useful with a lower degree of parallelism.
less useful in a highly parallel system.
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Query Optimization and System Design
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Query Optimization and System Design

Query Optimization/1

Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.

Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.

When scheduling execution tree in parallel system, must decide:
How to parallelize each operation and how many processors to use for
it.
What operations to pipeline, what operations to execute independently
in parallel, and what operations to execute sequentially, one after the
other.

Determining the amount of resources to allocate for each operation is
a problem.

E.g., allocating more processors than optimal can result in high
communication overhead.

Long pipelines should be avoided as the final operation may wait a lot
for inputs, while holding precious resources
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Query Optimization and System Design

Query Optimization/2

Use heuristics: Number of parallel evaluation plans much larger than
number of sequential evaluation plans.

Heuristic 1: No pipelining, only intra-operation parallelism:

Parallelize every operation on all processors
Use standard optimization technique, but with new cost model

Heuristic 2: First choose most efficient sequential plan and then
choose how best to parallelize the operations in that plan.

Volcano parallel database popularized the exchange-operator model
exchange operator is introduced into query plans to partition and
distribute tuples
each operation works independently on local data on each processor, in
parallel with other copies of the operation

Choosing a good physical storage organization (partitioning
technique) is important to speed up queries.
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Query Optimization and System Design

Design of Parallel Systems/1

Some issues in the design of parallel systems:

Parallel loading of data from external sources is needed in order to
handle large volumes of incoming data.

Resilience to failure of some processors or disks.

Probability of some disk or processor failing is higher in a parallel
system.
Operation (perhaps with degraded performance) should be possible in
spite of failure.
Redundancy achieved by storing extra copy of every data item at
another processor.
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Query Optimization and System Design

Design of Parallel Systems/2

On-line reorganization of data and schema changes must be
supported.

For example, index construction on terabyte databases can take hours
or days even on a parallel system.

Need to allow other processing (insertions/deletions/updates) to be
performed on relation even as index is being constructed.

Basic idea: index construction tracks changes and “catches up” on
changes at the end.

Also need support for on-line repartitioning and schema changes
(executed concurrently with other processing).
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Query Optimization and System Design

Examples of Parallel Database Systems

Teradata (1979), appliance, still large market share

IBM Netezza (1999), appliance

Microsoft DATAllegro / Parallel Data Warehouse (2003), appliance

Greenplum (2005), Pivotal, open source

Vertica Analytic Database (2005) commodity hardware

Oracle Exadata (2008), appliance

SAP Hana (2010), main memory, appliance
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