

Heterogeneous Distributed Databases

Advantages

- Preservation of investment in existing
 - hardware
 - system software
 - applications
- Local autonomy and administrative control
- Allows use of special-purpose DBMSs
- Step towards a unified homogeneous DBMS
- Full integration into a homogeneous DBMS faces
 - Technical difficulties and cost of conversion
 - Organizational/political difficulties
 - Organizations do not want to give up control on their data
 - Local databases wish to retain a great deal of autonomy

NSDB – Heterogeneous Distributed Database

Heterogeneous Distributed Databases

Unified View of Data

- Agreement on a common data model
 - Typically the relational model
- Agreement on a common conceptual schema
 - Different names for same relation/attribute
 - Same relation/attribute name means different things
- Agreement on a single representation of shared data
 - E.g. data types, precision,
 - Character sets
 - ASCII vs EBCDIC
 - Sort order variations
- Agreement on units of measure
- Variations in names
 - E.g. Köln vs Cologne, Mumbai vs Bombay

Heterogeneous Distributed Databases

Augsten (Univ. Salzburg) NSDB – Heterogeneous Distributed Database

SS 2017/18 6 / 33

Heterogeneous Distributed Databases

Query Processing

Augsten (Univ. Salzburg)

- Several issues in query processing in a heterogeneous database
- Schema translation
 - Write a wrapper for each data source to translate data to a global schema
 - Wrappers must also translate updates on global schema to updates on local schema
- Limited query capabilities
 - Some data sources allow only restricted forms of selections
 - E.g. web forms, flat file data sources
 - Queries have to be broken up and processed partly at the source and partly at a different site
- Removal of duplicate information when sites have overlapping information
 - Decide which sites to execute query
- Global query optimization

Augsten (Univ. Salzburg)

SS 2017/18 7 / 33

Mediator Systems

- Mediator systems are systems that integrate multiple heterogeneous data sources by providing an integrated global view, and providing query facilities on global view
 - Unlike full fledged multidatabase systems, mediators generally do not bother about transaction processing
 - But the terms mediator and multidatabase are sometimes used interchangeably
 - The term virtual database is also used to refer to mediator/multidatabase systems

5 / 33

SS 2017/18

Heterogeneous Distributed Databases

Transaction Management in Multidatabases

• Local transactions are executed by each local DBMS, outside of the MDBS system control.

- Global transactions are executed under multidatabase control.
- Local autonomy local DBMSs cannot communicate directly to synchronize global transaction execution and the multidatabase has no control over local transaction execution.
 - local concurrency control scheme needed to ensure that DBMS's schedule is serializable
 - in case of locking, DBMS must be able to guard against local deadlocks.

NSDB – Heterogeneous Distributed Database

Cloud Databases

• need additional mechanisms to ensure global serializability

Heterogeneous Distributed Databases

Local vs. Global Serializability

- The guarantee of local serializability is not sufficient to ensure global serializability.
 - As an illustration, consider two global transactions T_1 and T_2 , each of which accesses and updates two data items, A and B, located at sites S_1 and S_2 respectively.
 - It is possible to have a situation where, at site S_1 , T_2 follows T_1 , whereas, at S_2 , T_1 follows T_2 , resulting in a nonserializable global schedule.
- If the local systems permit control of locking behavior and all systems follow two-phase locking
 - the multidatabase system can ensure that global transactions lock in a two-phase manner
 - the lock points of conflicting transactions would then define their global serialization order.

NSDB – Heterogeneous Distributed Database

Data Storage on the Cloud

Augsten (Univ. Salzburg)

• Need to store and retrieve massive amounts of data

Cloud Databases

- Traditional parallel databases not designed to scale to 1000's of nodes (and expensive)
- Initial needs did not include full database functionality
 - Store and retrieve data items by key value is minimum functionality
 - Key-value stores
- Several implementations
 - Bigtable from Google,
 - HBase, an open source clone of Bigtable
 - Dynamo, which is a key-value storage system from Amazon
 - Cassandra, from Facebook
 - Sherpa/PNUTS from Yahoo!

2 Cloud Databases

O Directory Systems

Augsten (Univ. Salzburg)

1 Heterogeneous Distributed Databases

Outline

SS 2017/18 11 / 33

SS 2017/18

9 / 33

SS 2017/18

10 / 33

Cloud Databases	Cloud Databases
Key Value Stores	Data Representation/1
 Key-value stores support <i>put(key, value)</i>: used to store values with an associated key, <i>get(key)</i>: which retrieves the stored value associated with the specified key. Some systems such as Bigtable additionally provide range queries on key values Multiple versions of data may be stored, by adding a timestamp to the key 	 Records in many big data applications need to have a flexible schema Not all records have same structure Some attributes may have complex substructure XML and JSON data representation formats widely used
Augsten (Univ. Salzburg) NSDB - Heterogeneous Distributed Database SS 2017/18 13 / 33 Cloud Databases Data Representation/2	Augsten (Univ. Salzburg) NSDB - Heterogeneous Distributed Database SS 2017/18 14 / 33 Cloud Databases Partitioning and Retrieving Data/1
<pre>• An example of a JSON object is:</pre>	 Key-value stores partition data into relatively small units (hundreds of megabytes). These partitions are often called tablets (a tablet is a fragment of a table) Partitioning of data into tablets is dynamic: as data are inserted, if a tablet grows too big, it is broken into smaller parts if the load (get/put operations) on a tablet is excessive, the tablet may be broken into smaller tablets, which can be distributed across two or more sites to share the load. the number of tablets is much larger than the number of sites similar to virtual partitioning in parallel databases
Augsten (Univ Salzburg) NSDR – Heterogeneous Distributed Database SS 2017/18 15 / 33	Augsten (Univ Salzburg) NSDB – Heterogeneous Distributed Database SS 2017/18 16 / 33

Cloud Databases

Partitioning and Retrieving Data/2

- Each get/put request must be routed to the correct site
- Tablet controller tracks the partitioning function and tablet-to-site mapping

NSDB – Heterogeneous Distributed Database

Directory Systems

- map a get() request to one or more tablets,
- Tablet mapping function to track which site responsible for which tablet

Cloud Databases

Partitioning and Retrieving Data/2

1 Heterogeneous Distributed Databases

Augsten (Univ. Salzburg)

2 Cloud Databases

O Directory Systems

Outline

NSDB – Heterogeneous Distributed Database

SS 2017/18 19 / 33

SS 2017/18

17 / 33

Augsten (Univ. Salzburg)

Directory Access Protocols

- Most commonly used directory access protocol:
 - LDAP (Lightweight Directory Access Protocol)

Directory Systems

- Simplified from earlier X.500 protocol
- Question: Why not use database protocols like ODBC/JDBC?

• Answer:

- Simplified protocols for a limited type of data access, evolved parallel to ODBC/JDBC
- Provide a nice hierarchical naming mechanism similar to file system directories
 - Data can be partitioned amongst multiple servers for different parts of the hierarchy, yet give a single view to user
 - E.g. different servers for Bell Labs Murray Hill and Bell Labs Bangalore
- Provide a nice hierarchical naming mechanism similar to file system directories

Augsten (Univ. Salzburg)

NSDB – Heterogeneous Distributed Database

LDAP Data Model/1

- LDAP directories store entries
 - Entries are similar to objects
- Each entry must have unique distinguished name (DN)

Directory Systems

- DN made up of a sequence of relative distinguished names (RDNs)
- E.g. of a DN
 - cn=Silberschatz, ou=Bell Labs, o=Lucent, c=USA
 - Standard RDNs (can be specified as part of schema)
 - cn: common name ou: organizational unit
 - o: organization c: country
 - Similar to paths in a file system but written in reverse direction

LDAP: Lightweight Directory Access Protocol

- LDAP Data Model
- Data Manipulation
- Distributed Directory Trees

Directory Systems

Augsten (Univ. Salzburg)

- Entries can have attributes
 - Attributes are multi-valued by default
 - LDAP has several built-in types
 - Binary, string, time types
 - Tel: telephone number PostalAddress: postal address

NSDB – Heterogeneous Distributed Database

- LDAP allows definition of object classes
 - Object classes specify attribute names and types
 - Can use inheritance to define object classes
 - Entry can be specified to be of one or more object classes
 - No need to have single most-specific type

SS 2017/18 21 / 33

SS 2017/18

22 / 33

LDAP Data Model/3

- Entries organized into a directory information tree according to their DNs
 - Leaf level usually represent specific objects

Directory Systems

- Internal node entries represent objects such as organizational units, organizations or countries
- Children of a node inherit the DN of the parent, and add on RDNs
 - E.g. internal node with DN c=USA
 - $\bullet\,$ Children nodes have DN starting with c=USA and further RDNs such as o or ou
 - DN of an entry can be generated by traversing path from root
- Children of a node inherit the DN of the parent, and add on RDNs
 - Entries can thus have more than one DN

Directory Systems

• E.g. person in more than one organizational unit

LDAP Data Manipulation

- Unlike SQL, LDAP does not define DDL or DML
- Instead, it defines a network protocol for DDL and DML

Directory Systems

- Users use an API or vendor specific front ends
- LDAP also defines a file format
 - LDAP Data Interchange Format (LDIF)
- Querying mechanism is very simple: only selection & projection

NSDB – Heterogeneous Distributed Database

Augsten (Univ. Salzburg)

NSDB – Heterogeneous Distributed Database

LDAP Queries

- LDAP query must specify
 - Base: a node in the DIT from where search is to start
 - A search condition
 - Boolean combination of conditions on attributes of entries
 - Equality, wild-cards and approximate equality supported
 - A scope
 - Just the base, the base and its children, or the entire subtree from the base
 - Attributes to be returned
 - Limits on number of results and on resource consumption
 - May also specify whether to automatically dereference aliases
- LDAP URLs are one way of specifying query
- LDAP API is another alternative

LDAP URLs

Augsten (Univ. Salzburg)

• First part of URL specifis server and DN of base

Directory Systems

- Idap:://aura.research.bell-labs.com/o=Lucent,c=USA
- Optional further parts separated by ? symbol
 - Idap:://aura.research.bell-labs.com/o=Lucent,c=USA??sub?cn=Korth
 - Optional parts specify
 - 1. attributes to return (empty means all)
 - 2. Scope (sub indicates entire subtree)
 - 3. Search condition (cn=Korth)

SS 2017/18 25 / 33

SS 2017/18 26 / 33

Directory Systems	Directory Systems
C Code using LDAP API/1	C Code using LDAP API/2
<pre>1 #include <stdio.h> 2 #include <ldap.h> 3 4 main() { 5 LDAP *ld; 6 LDAPMessage *res, *entry; 7 char *dn, *attr, *attrList[] = {"telephoneNumber", NULL}; 8 BerElement *ptr; 9 int vals, i; 10 11 // Open a connection to server 12 ld = ldap_open("aura.research.bell-labs.com", LDAP_PORT); 13 14 ldap_simple_bind(ld, "avi", "avi-passwd"); 15 16 actual query (next slide) 17 18 ldap_unbind(ld); 19 } </ldap.h></stdio.h></pre>	<pre>1 ldap_search_s(ld, "o=Lucent, c=USA", LDAP_SCOPE_SUBTREE, 2</pre>
Augsten (Univ. Salzburg) NSDB – Heterogeneous Distributed Database SS 2017/18 29 / 33	Augsten (Univ. Salzburg) NSDB - Heterogeneous Distributed Database SS 2017/18 30 / 33
Directory Systems	Directory Systems
LDAP API	Distributed Directory Trees/1
 LDAP API also has functions to create, update and delete entries Each function call behaves as a separate transaction LDAP does not support atomicity of updates 	 Organizational information may be split into multiple directory information trees Suffix of a DIT gives RDN to be tagged onto to all entries to get an overall DN E.g. two DITs, one with suffix o=Lucent, c=USA and another with suffix o=Lucent, c=India Organizations often split up DITs based on geographical location or by organizational structure Many LDAP implementations support replication (master-slave or multi-master replication) of DITs (not part of LDAP 3 standard)
Augsten (Univ. Salzburg) NSDB – Heterogeneous Distributed Database SS 2017/18 31 / 33	Augsten (Univ. Salzburg) NSDB - Heterogeneous Distributed Database SS 2017/18 32 / 33

Distributed Directory Trees/2

• A node in a DIT may be a referral to a node in another DIT

Directory Systems

- E.g. Ou=Bell Labs may have a separate DIT, and DIT for o=Lucent may have a leaf with ou=Bell Labs containing a referral to the Bell Labs DIT
- Referalls are the key to integrating a distributed collection of directories
- When a server gets a query reaching a referral node, it may either
 - Forward query to referred DIT and return answer to client, or

NSDB – Heterogeneous Distributed Database

• Give referral back to client, which transparently sends query to referred DIT (without user intervention)

SS 2017/18 33 / 33