Advanced Databases

Concurrency Control

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at
Department of Computer Sciences
University of Salzburg

[\ database
research group
http://dbresearch.uni-salzburg.at

WS 2018/19

Version 16. Januar 2019

Adapted from slides for textbook “Database System Concepts”

by Silberschatz, Korth, Sudarshan
http://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html
Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 1/68

Lock-Based Protocols

Outline

QOutline

@ Lock-Based Protocols

© Timestamp-Based Protocols
© Validation-Based Protocols
© Multiversion Schemes

© Insert and Delete Operations

@ Concurrency in Index Structures

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19

Lock-Based Protocols

Lock-Based Protocols/1

© Lock-Based Protocols

Augsten (Univ. Salzburg)

@ A lock is a mechanism to control concurrent access to a data item
@ Data items can be locked in two modes:

@ exclusive (X) mode. Data item can be both read as well as written.
X-lock is requested using lock-X instruction.

@ shared (S) mode. Data item can only be read. S-lock is requested using
lock-S instruction.

@ Lock requests are made to the concurrency-control manager by the
programmer. Transaction can proceed only after request is granted.

ADB - Concurrency Control WS 2018/19 3/68

ADB - Concurrency Control WS 2018/19 4/68

Augsten (Univ. Salzburg)

Lock-Based Protocols Lock-Based Protocols

‘ Lock-Based Protocols/?2 ‘ Lock-Based Protocols/3

@ Example of a transaction performing locking:

@ Lock-compatibility matrix

T2: lock-S(A)

S X read(A)
S | true | false unlock(A)
X | false | false lock-S(B)

read(B)
@ A transaction may be granted a lock on an item if the requested lock unlock(B)

is compatible with locks already held on the item by other transactions display(A + B)

Any number of transactions can hold shared locks on an item, @ Locking as above is not sufficient to guarantee serializability — if A

and B get updated in-between the read of A and B, the displayed
sum would be wrong.

e But if any transaction holds an exclusive on the item no other
transaction may hold any lock on the item.
o If a lock cannot be granted, the requesting transaction is made to
wait till all incompatible locks held by other transactions have been
released. The lock is then granted.

@ A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks. Locking protocols restrict the set of
possible schedules.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 5/68 Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 6/68
Lock-Based Protocols ‘ Lock-Based Protocols ‘
‘ The Two-Phase Locking Protocol/1 ‘ The Two-Phase Locking Protocol /2

@ This protocol ensures conflict-serializable schedules.
@ Phase 1: Growing Phase @ There can be conflict serializable schedules that cannot be obtained if
o Transaction may obtain locks two-phase locking is used.
o Transaction may not release locks @ However, in the absence of extra information (e.g., ordering of access
@ Phase 2: Shrinking Phase to data), two-phase locking is needed for conflict serializability in the
o Transaction may release locks following sense:
o Transaction may not obtain locks e Given a transaction T; that does not follow two-phase locking, we can
o The protocol assures serializability. It can be shown that the find a transaction T; that uses two-phase locking, and a schedule for

. L T; and T; that is not conflict serializable.
transactions can be serialized in the order of their lock points (i.e., ' J

the point where a transaction acquired its final lock).

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 7/68 Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 8/68

Lock-Based Protocols

Lock-Based Protocols

Automatic Acquisition of Locks/1

‘ Lock Conversions

@ Two-phase locking with lock conversions:
o First Phase:
@ can acquire a lock-S on item
@ can acquire a lock-X on item
@ can acquire a lock-S to a lock-X (upgrade)
e Second Phase:

@ can release a lock-S on item
@ can release a lock-X on item
@ can acquire a lock-X to a lock-S (downgrade)

@ This protocol assures serializability. But still relies on the programmer
to insert the various locking instructions.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 9/68

Lock-Based Protocols

Automatic Acquisition of Locks/2

e write(D) is processed as:
if T; has a lock-X on D then
write(D)
else begin
if necessary wait until no other transaction has any lock on D
if T; has a lock-S on D then
upgrade lock on D to lock-X
else
grant T; a lock-X on D
end if
write(D)
end
end if

@ All locks are released after commit or abort

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 11/68

@ A transaction Ti issues the standard read/write instruction, without
explicit locking calls.

@ The operation read(D) is processed as:

if T; has a lock on D then
read(D)
else begin
if necessary wait until no other
transaction has a lock-X on D
grant T; a lock-S on D
read(D)
end
end if

ADB - Concurrency Control WS 2018/19 10/68

Augsten (Univ. Salzburg)

Lock-Based Protocols

‘ Deadlocks/1

o Consider the partial schedule

T3 T

lock-x(B)

read(B)

B:=B-50

write(B)
lock-s(A)
read(A)
lock-s(B)

lock-x(A)

@ Neither T3 nor T4 can make progress — executing lock-S(B) causes
T4 to wait for T3 to release its lock on B, while executing lock-X(A)
causes T3 to wait for Ty to release its lock on A.

@ Such a situation is called a deadlock.

e To handle a deadlock one of T3 or T4 must be rolled back and its locks
released.

ADB - Concurrency Control WS 2018/19 12/68

Augsten (Univ. Salzburg)

Lock-Based Protocols

Deadlocks/?2

Lock-Based Protocols

Deadlocks/3

Two-phase locking does not ensure freedom from deadlocks.

In addition to deadlocks, there is a possibility of starvation.

Starvation occurs if the concurrency control manager is badly
designed. For example:

o A transaction may be waiting for an X-lock on an item, while a
sequence of other transactions request and are granted an S-lock on
the same item.

e The same transaction is repeatedly rolled back due to deadlocks.

@ Concurrency control manager can be designed to prevent starvation.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 13 /68

Lock-Based Protocols

Implementation of Locking

@ A lock manager can be implemented as a separate process to which
transactions send lock and unlock requests

@ The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of
a deadlock)

@ The requesting transaction waits until its request is answered

@ The lock manager maintains a data-structure called a lock table to
record granted locks and pending requests

@ The lock table is usually implemented as an in-memory hash table
indexed on the name of the data item being locked

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 15/68

@ The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

@ When a deadlock occurs there is a possibility of cascading rollbacks.

@ Cascading roll-back is possible under two-phase locking. To avoid
this, follow a modified protocol called strict two-phase locking — a
transaction must hold all its exclusive locks till it commits/aborts.

@ Rigorous two-phase locking is even stricter. Here, all locks are held till

commit/abort. In this protocol transactions can be serialized in the
order in which they commit.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 14 /68

Lock-Based Protocols

Lock Table
- i 123
L] o B @ Dark blue rectangles indicate granted locks;
723 Dﬂ T8 T2 light blue indicate waiting requests
] o Lock table also records the type of lock
— granted or requested
L 1912
Ll @ New request is added to the end of the
— queue of requests for the data item, and
] 723 granted if it is compatible with all earlier
] locks
3 @ Unlock requests result in the request being
] deleted, and later requests are checked to
L I see if they can now be granted
— Dn TD23 o If transaction aborts, all waiting or granted
requests of the transaction are deleted
; o lock manager may keep a list of locks held
L 144 by each transaction, to implement this
- [granted efficiently
L Dwaiting

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 16 /68

Lock-Based Protocols

‘ Deadlock Handling

@ System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

@ Deadlock prevention protocols ensure that the system will never enter
into a deadlock state. Some prevention strategies:
o Require that each transaction locks all its data items before it begins
execution (predeclaration).
o Impose partial ordering of all data items and require that a transaction
can lock data items only in the order specified by the partial order.

WS 2018/19 17/68

Augsten (Univ. Salzburg)

ADB - Concurrency Control

Lock-Based Protocols

‘ Deadlock prevention/2

@ Both in wait-die and in wound-wait schemes, a rolled back
transactions is restarted with its original timestamp. Older
transactions thus have precedence over newer ones, and starvation is
hence avoided.

@ Timeout-Based Schemes:

e a transaction waits for a lock only for a specified amount of time. If the
lock has not been granted within that time, the transaction is rolled
back and restarted,

e Thus, deadlocks are not possible

e simple to implement; but starvation is possible. Also difficult to
determine good value of the timeout interval.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 19/68

Lock-Based Protocols

More Deadlock Prevention Strategies/1

@ Following schemes use transaction timestamps for the sake of
deadlock prevention alone.
@ wait-die scheme — non-preemptive

e older transaction may wait for younger one to release data item (older
means smaller timestamp). Younger transactions never wait for older
ones; they are rolled back instead.

e a transaction may die several times before acquiring needed data item

@ wound-wait scheme — preemptive

e older transaction wounds (forces rollback) younger transaction instead
of waiting for it. Younger transactions may wait for older ones.
e may be fewer rollbacks than wait-die scheme.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 18 /68

Lock-Based Protocols

Deadlock Detection/1

@ Deadlocks can be described as a wait-for graph, which consists of a
pair G = (V,E),
o V is a set of vertices (all the transactions in the system)
o E is a set of edges; each element is an ordered pair T; — T;.
o If T; — Tjisin E, then there is a directed edge from T; to T},
implying that T; is waiting for T; to release a data item.

@ When T; requests a data item currently being held by T}, then the
edge T; — T; is inserted in the wait-for graph. This edge is removed
only when T; is no longer holding a data item needed by T;.

@ The system is in a deadlock state if and only if the wait-for graph has
a cycle. Must invoke a deadlock-detection algorithm periodically to
look for cycles.

ADB — Concurrency Control

WS 2018/19 20/68

Augsten (Univ. Salzburg)

Lock-Based Protocols

Lock-Based Protocols

Deadlock Recovery

Deadlock Detection /2

() —(=)

Wait-for graph without a cycle Wait-for graph with a cycle

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 21/68

Lock-Based Protocols

Multiple Granularity

@ Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger
ones.

@ Can be represented graphically as a tree.

@ When a transaction locks a node in the tree explicitly, it implicitly
locks all the node’s descendents in the same mode.

e Granularity of locking (level in tree where locking is done):

o fine granularity (lower in tree): high concurrency, high locking overhead
e coarse granularity (higher in tree): low locking overhead, low
concurrency

ADB - Concurrency Control WS 2018/19 23 /68

Augsten (Univ. Salzburg)

@ When deadlock is detected:
e Some transaction will have to rolled back (made a victim) to break
deadlock. Select that transaction as victim that will incur minimum

cost.
e Rollback — determine how far to roll back transaction

o Total rollback: Abort the transaction and then restart it.
o More effective to roll back transaction only as far as necessary to break
deadlock.
e Starvation happens if same transaction is always chosen as victim.
Include the number of rollbacks in the cost factor to avoid starvation.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 22/68

Lock-Based Protocols

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are

database
area

file
record

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 24 /68

Lock-Based Protocols

‘ Intention Lock Modes

@ In addition to S and X lock modes, there are three additional lock
modes with multiple granularity:

o intention-shared (IS): indicates explicit locking at a lower level of the
tree but only with shared locks.

o intention-exclusive (IX): indicates explicit locking at a lower level with
exclusive or shared locks

o shared and intention-exclusive (SIX): the subtree rooted by that node is
locked explicitly in shared mode and explicit locking is being done at a
lower level with exclusive-mode locks.

@ intention locks allow a higher level node to be locked in S or X mode
without having to check all descendent nodes.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 25 /68

Lock-Based Protocols

Multiple Granularity Locking Scheme

@ Transaction T; can lock a node Q, using the following rules:

The lock compatibility matrix must be observed.

The root of the tree must be locked first, and may be locked in any

mode.

A node @ can be locked by T; in S or IS mode only if the parent of @

is currently locked by T; in either [X or IS mode.

A node @ can be locked by T; in X, SIX, or IX mode only if the

parent of @ is currently locked by T; in either /X or SIX mode.

T; can lock a node only if it has not previously unlocked any node

(that is, T; is two-phase).

@ T7; can unlock a node Q only if none of the children of @ are currently
locked by T;.

@ Observe that locks are acquired in root-to-leaf order, whereas they are
released in leaf-to-root order.

© 6 0 66

@ Lock granularity escalation: in case there are too many locks at a
particular level, switch to higher granularity S or X lock

Augsten (Univ. Salzburg) ADB - Concurrency Control

Lock-Based Protocols

Compatibility Matrix with Intention Lock Modes

@ The compatibility matrix for all lock modes is:

IS IX S SIX X
IS | true | true | true | true | false
IX | true | true | false | false | false
S true | false | true | false | false

SIX | true | false | false | false | false
X | false | false | false | false | false

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 26 /68

Timestamp-Based Protocols

‘ QOutline

© Timestamp-Based Protocols

WS 2018/19 27/68

Augsten (Univ. Salzburg)

ADB - Concurrency Control WS 2018/19 28 /68

Timestamp-Based Protocols

‘ Timestamp-Based Protocols/1

@ Each transaction is issued a timestamp when it enters the system. If
an old transaction T; has time-stamp TS(T;), a new transaction T; is
assigned time-stamp TS(T;) such that TS(T;) < TS(T;).

@ The protocol manages concurrent execution such that the
time-stamps determine the serializability order.

@ In order to assure such behavior, the protocol maintains for each data
Q two timestamp values:

o W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.

o R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 29 /68

Timestamp-Based Protocols

Timestamp-Based Protocols/3

@ Suppose that transaction Ti issues write(Q).

@ If TS(T;) < R-timestamp(Q@), then the value of Q that T; is producing
was needed previously, and the system assumed that that value would
never be produced.

o Hence, the write(Q) operation is rejected, and T; is rolled back.

Q@ If TS(T;) < W-timestamp(Q), then T; is attempting to write an
obsolete value of Q.

@ Hence, this write(Q) operation is rejected, and T; is rolled back.

@ Otherwise, the write(Q) operation is executed, and W-timestamp(Q)
is set to TS(T;).

ADB - Concurrency Control WS 2018/19 31/68

Augsten (Univ. Salzburg)

Timestamp-Based Protocols

Timestamp-Based Protocols/2

@ The timestamp ordering protocol ensures that any conflicting read
and write operations are executed in timestamp order.

@ Suppose a transaction T; issues a read(Q)
@ |If TS(T;) < W-timestamp(Q), then T; needs to read a value of Q
that was already overwritten.
@ Hence, the read operation is rejected, and T; is rolled back.
@ If TS(T;) > W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(T;)).

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 30/68

Timestamp-Based Protocols

Example Use of the Protocol

A partial schedule for several data items for transactions with timestamps
1,2,3,4,5

Ty T T3 Ta Ts
read(X)
read(Y)
read(Y)
write(Y')
write(Z)
read(Z)
read(Z)
abort
read(X)
read(W)
write(W)
abort
write(Y')
write(Z)

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19

Timestamp-Based Protocols

Timestamp-Based Protocols

Correctness of Timestamp-Ordering Protocol

@ The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form:

transaction transaction

with smaller with larger
timestamp timestamp

@ Timestamp protocol ensures freedom from deadlock as no transaction
ever waits.

@ But the schedule may not be cascade-free, and may not even be
recoverable.

ADB - Concurrency Control WS 2018/19 33/68

Augsten (Univ. Salzburg)

Timestamp-Based Protocols

Thomas' Write Rule

o Modified version of the timestamp-ordering protocol in which obsolete
write operations may be ignored under certain circumstances.
o T; attempts to write data item Q:
o if TS(T;) < W-timestamp(Q), then T; is attempting to write an
obsolete value of @
o rather than rolling back T; (as the timestamp ordering protocol would
do), this write operation can be ignored
@ Otherwise this protocol is the same as the timestamp ordering
protocol.
@ Thomas' Write Rule allows greater potential concurrency.

o Allows view-serializable schedules that are not conflict serializable.
o Any view-serializable schedule that is not conflict serializable has
so-called blind writes (write(Q) without preceding read(Q))

ADB - Concurrency Control WS 2018/19 35/68

Augsten (Univ. Salzburg)

Timestamp-Ordering: Recoverability and Cascadeless

Read rule: If j > i, then T; is allowed to read a value written by T;.
@ Therefore, timestamp-ordering protocol allows:
e non-recoverable schedules: T; reads value of uncommitted T;; T;
commits before T;
o cascading rollbacks: T; reads value of uncommitted T;; when T; aborts
then also T; must abort
Solution 1:
e writes are all performed at the end of the transaction
e the writes form an atomic action: no transaction can read any of the

written values during write
e a transaction that aborts is restarted with a new timestamp

@ Solution 2: Limited form of locking: wait for data to be committed
before reading it

@ Solution 3: Use commit dependencies to ensure recoverability

ADB - Concurrency Control WS 2018/19 34 /68

Augsten (Univ. Salzburg)

Validation-Based Protocols

QOutline

© Validation-Based Protocols

ADB - Concurrency Control WS 2018/19 36 /68

Augsten (Univ. Salzburg)

Validation-Based Protocols

Validation-Based Protocol/1

@ Execution of transaction T; is done in three phases.

@ Read and execution phase: Transaction T; writes only to temporary
local variables

@ Validation phase: Transaction T; performs a "validation test” to
determine if local variables can be written without violating
serializability.

@ Write phase: If T; is validated, the updates are applied to the database;
otherwise, T; is rolled back.

@ The three phases of concurrently executing transactions can be
interleaved, but each transaction must go through the three phases in
that order.

e Assume for simplicity that the validation and write phase occur
together, atomically and serially,
i.e., only one transaction executes validation/write at a time.

@ Also called optimistic concurrency control since transaction executes
fully in the hope that all will go well during validation

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 37/68

Validation-Based Protocols

Schedule Produced by Validation

@ Example of schedule produced using validation

Tas T26

read(B)
read(B)
B:=B-50
read(A)
A:=A+50

read(A)

< validate >

display(A+ B)
< validate >
write(B)
write(A)

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 39/68

Validation-Based Protocols

Validation Test for Transaction T;

o If for all T; with TS(T;) < TS(T;) either one of the following
condition holds:
o finish(T;) < start(T;)
o start(T;) < finish(T;) < validation(T;) and the set of data items
written by T; does not intersect with the set of data items read by T;
then validation succeeds and T; can be committed. Otherwise,
validation fails and T; is aborted.
@ Justification: Either the first condition is satisfied, and there is no
overlapping execution, or the second condition is satisfied and
o the writes of T; do not affect reads of T; since they occur after T; has
finished its reads
o the writes of T; do not affect reads of T; since T; does not read any
item written by T;

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 38/68

Multiversion Schemes

QOutline

@ Multiversion Schemes

ADB - Concurrency Control WS 2018/19 40 /68

Augsten (Univ. Salzburg)

Multiversion Schemes

Multiversion Schemes

@ Multiversion schemes keep old versions of data item to increase
concurrency.
o Multiversion Timestamp Ordering
o Multiversion Two-Phase Locking
@ Each successful write results in the creation of a new version of the
data item written.

@ Use timestamps to label versions.

e When a read(Q) operation is issued, select an appropriate version of
Q based on the timestamp of the transaction, and return the value of
the selected version.

@ reads never have to wait as an appropriate version is returned
immediately.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 41 /68

Multiversion Schemes

Multiversion Timestamp Ordering/2

@ Suppose that transaction T; issues a read(Q) or write(Q) operation.
Let Qx denote the version of Q whose write timestamp is the largest
write timestamp less than or equal to TS(T;).

@ |If transaction T; issues a read(Q), then the value returned is the
content of version Q.
@ |If transaction T; issues a write(Q)
@ if TS(T;) < R-timestamp(Qx), then transaction T; is rolled back.
@ if TS(T;) = W-timestamp(Qx), the contents of Qx are overwritten
© else a new version of @ is created.

@ Observe that

o Reads always succeed

o A write by T; is rejected if some other transaction T; that (in the
serialization order defined by the timestamp values) should read T;'s
write, has already read a version created by a transaction older than T;.

@ Protocol guarantees serializability

ADB - Concurrency Control WS 2018/19 43 /68

Augsten (Univ. Salzburg)

Multiversion Schemes

Multiversion Timestamp Ordering/1

@ Each data item @ has a sequence of versions < Q1, @2, ..., Qm >.

Each version Q, contains three data fields:
o Content — the value of version Q.
o W-timestamp(Q) — timestamp of the transaction that created
(wrote) version Qx
o R-timestamp(Q) — largest timestamp of a transaction that
successfully read version Qx

@ When a transaction T; creates a new version Qx of @, Qx's
W-timestamp and R-timestamp are initialized to TS(T;).

@ R-timestamp of Qi is updated whenever a transaction T; reads Q,
and TS(Tj) > R-timestamp(Q).

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 42 /68

Multiversion Schemes

‘ Multiversion Two-Phase Locking/1

o Differentiates between read-only transactions and update transactions
@ Update transactions acquire read and write locks, and hold all locks
up to the end of the transaction. That is, update transactions follow
rigorous two-phase locking.
e Each successful write results in the creation of a new version of the
data item written.
e Each version of a data item has a single timestamp whose value is
obtained from a counter ts-counter that is incremented during commit
processing.

@ Read-only transactions are assigned a timestamp by reading the

current value of ts-counter before they start execution; they follow the
multiversion timestamp-ordering protocol for performing reads.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 44 /68

Multiversion Schemes

Multiversion Two-Phase Locking/2

@ When an update transaction wants to read a data item:
e it obtains a shared lock on it, and reads the latest version.
When it wants to write an item

o it obtains X lock on; it then creates a new version of the item and sets
this version's timestamp to oo.

When update transaction T; completes, commit processing occurs:

o T; sets timestamp on the versions it has created to ts-counter + 1
o T; increments ts-counter by 1

Read-only transactions that start after T; increments ts-counter will
see the values updated by T;.

Read-only transactions that start before T; increments the ts-counter
will see the value before the updates by T;.

Only serializable schedules are produced.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 45 /68

Multiversion Schemes

MVCC: Implementation Issues

@ Creation of multiple versions increases storage overhead
o Extra tuples
o Extra space in each tuple for storing version information

@ Versions can, however, be garbage collected

e E.g. if Q has two versions Qs and Qg, and the oldest active transaction
has timestamp > 9, than Qs will never be required again

Augsten (Univ. Salzburg)

ADB - Concurrency Control WS 2018/19 47 /68

Multiversion Schemes

Multiversion Two-Phase Locking Example

T1 T, T3 T4
begin
write(A)
begin
read(A)
begin
read(A)
read(B)
commit
write(A)
read(A)
begin
read(A)
commit

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 46 /68

Multiversion Schemes

Snapshot Isolation/1

@ Motivation: Decision support queries that read large amounts of data
have concurrency conflicts with OLTP transactions that update a few
rows

e Poor performance results

@ Solution 1: Give logical “snapshot” of database state to read only
transactions, read-write transactions use normal locking
e Multiversion 2-phase locking
o Works well, but how does system know a transaction is read only?

@ Solution 2: Give snapshot of database state to every transaction,
updates alone use 2-phase locking to guard against concurrent
updates

e Problem: variety of anomalies such as lost update can result
o Partial solution: snapshot isolation level (next slide)
o Proposed by Berenson et al, SIGMOD 1995

o Variants implemented in many database systems (e.g. Oracle,
PostgreSQL, SQL Server 2005)

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 48 /68

Multiversion Schemes

Multiversion Schemes

Snapshot Read

Snapshot Isolation /2

@ A transaction T7 executing
with Snapshot Isolation
o takes snapshot of committed
data at start

o always reads/modifies data e L
in its own snapshot Commit <
tart
e updates of concurrent R(X) =0
. .. R(Y) =1
transactions are not visible WK =72)
W(Z :=3)
to T]' Commit
@ writes of Tl Complete When Concurrent updates not visible R(Z)—=0
. . Own updates are visible R(Y)—1
It commits Not first-committer of X W(X :=3)
. . . . Commit-Req
° FIrSt_Commltter_Wlns rU|e' Serialization error, T is rolled back Abort

o Commits only if no other
concurrent transaction
has already written data
that Ti intends to write.

Augsten (Univ. Salzburg)

Multiversion Schemes

Snapshot Write: First Committer Wins

ADB - Concurrency Control WS 2018/19 49 /68

@ Concurrent updates invisible to snapshot read
e Xp =100, Yo =0

T1 deposits 50 in Y T, withdraws 50 from X

I’l()<07 100)

I’l(Yo, 0)
I’g(Yo7 0)
I’g()(o7 100)
W2()<27 50)

W1(Y17 50)

r1(Xp, 100) (update by T not seen)
r1(Y1,50) (can see its own updates)

(Yo, 0) (update by T; not seen)

e X, =50, Y1 =50

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19

Multiversion Schemes

Benefits of Snapshot Isolation

T deposits 50 in X | T, withdraws 50 from X
rl(Xo, 100)
I’Q(Xo, 100)
wa (X2, 50)
wi (X1, 150)
commity
commit, (Serialization Error T is rolled back)

@ Variant: " First-updater-wins”
o Check for concurrent updates when write occurs by locking item
@ But lock should be held till all concurrent transactions have finished

o (Oracle uses this plus some extra features)
o Differs only in when abort occurs, otherwise equivalent

Augsten (Univ. Salzburg)

ADB - Concurrency Control WS 2018/19 51 /68

@ Reading is never blocked,

e and also doesn't block other transactions’ activities
@ Performance similar to Read Committed
@ Avoids the usual anomalies

o No dirty read

e No lost update

e No non-repeatable read

o Predicate based selects are repeatable (no phantoms)
@ Problems with snapshot isolation

e Snapshot isolation does not always give serializable executions
o Serializable: among two concurrent transactions, one sees the effects of
the other
@ In snapshot isolation: neither sees the effects of the other

o Result: Integrity constraints can be violated

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 52 /68

Multiversion Schemes

Multiversion Schemes

Snapshot Isolation/3

o E.g. of problem with snapshot isolation
o Tl:x:=y
e T2:y:=x
o Initially x =3 and y = 17
o Serial execution: x =77, y =77
o if both transactions start at the same time, with snapshot isolation:
x =77, y=77

o Called skew write
@ Skew also occurs with inserts
o E.g
e Find max order number among all orders
o Create a new order with ordernumber = previousmax + 1

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 53 /68

Multiversion Schemes

Snapshot Isolation in Oracle and PostgreSQL/1

Snapshot Isolation Anomalies

@ Snapshot isolation breaks serializability when transactions modify
different items, each based on a previous state of the item the other
modified

e Not very common in practice
o E.g., the TPC-C benchmark runs correctly under snapshot isolation
@ when transactions conflict due to modifying different data, there is
usually also a shared item they both modify too (like a total quantity)
so S| will abort one of them

e But does occur
@ Application developers should be careful about write skew
@ Snapshot isolation can also cause a read-only transaction anomaly,

where read-only transaction may see an inconsistent state even if
updaters are serializable

e We omit details

@ Using snapshots to verify primary/foreign key integrity can lead to
inconsistency

o Integrity constraint checking usually done outside of snapshot

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 54 /68

Multiversion Schemes

@ Warning: Snapshot isolation used when isolation level is set to
serializable, by Oracle, and PostgreSQL versions prior to 9.1

o PostgreSQL's implementation of snapshot isolation (versions prior to
9.1) described in Section 26.4.1.3
o Oracle implements "first updater wins" rule (variant of “first
committer wins")
@ concurrent writer check is done at time of write, not at commit time
@ Allows transactions to be rolled back earlier
o Oracle and PostgreSQL < 9.1 do not support true serializable execution
o PostgreSQL 9.1 introduced new protocol called " Serializable Snapshot
Isolation” (SSI)
@ Which guarantees true serializabilty including handling predicate reads
(coming up)

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 55 /68

Snapshot Isolation in Oracle and PostgreSQL/2

o Can sidestep snapshot isolation for specific queries by using select ..
for update in Oracle and PostgreSQL
e Eg.,
@ select max (orderno) from orders for update
@ read value into local variable maxorder
@ insert into orders (maxorder + 1, ...)
o Select for update (SFU) treats all data read by the query as if it were
also updated, preventing concurrent updates
e Does not always ensure serializability since phantom phenomena can
occur (coming up)

@ In PostgreSQL versions < 9.1, SFU locks the data item, but releases
locks when the transaction completes, even if other concurrent
transactions are active

e Not quite same as SFU in Oracle, which keeps locks until all
e concurrent transactions have completed

Augsten (Univ. Salzburg)

ADB - Concurrency Control WS 2018/19 56 /68

Insert and Delete Operations

Outline

Insert and Delete Operations

Insert and Delete Operations/1

© Insert and Delete Operations

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 57 /68

Insert and Delete Operations

Insert and Delete Operations/2

@ The transaction scanning the relation is reading information that
indicates what tuples the relation contains, while a transaction
inserting a tuple updates the same information.

e The conflict should be detected, e.g. by locking the information.

@ One solution:

e Associate a data item with the relation, to represent the information
about what tuples the relation contains.

o Transactions scanning the relation acquire a shared lock in the data
item,

e Transactions inserting or deleting a tuple acquire an exclusive lock on
the data item. (Note: locks on the data item do not conflict with locks
on individual tuples.)

@ Above protocol provides very low concurrency for insertions/deletions.

@ Index locking protocols provide higher concurrency while preventing
the phantom phenomenon, by requiring locks on certain index
buckets.

o If two-phase locking is used:
e A delete operation may be performed only if the transaction deleting
the tuple has an exclusive lock on the tuple to be deleted.
e A transaction that inserts a new tuple into the database is given an
X-mode lock on the tuple

@ Insertions and deletions can lead to the phantom phenomenon.

e A transaction that scans a relation
o (e.g., find sum of balances of all accounts in Perryridge) and a
transaction that inserts a tuple in the relation
o (e.g., insert a new account at Perryridge) (conceptually) conflict in
spite of not accessing any tuple in common.
e If only tuple locks are used, non-serializable schedules can result

o E.g. the scan transaction does not see the new account, but reads
some other tuple written by the update transaction

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 58 /68

Insert and Delete Operations

Index Locking Protocol

@ Index locking protocol:
o Every relation must have at least one index.
e A transaction can access tuples only after finding them through one or
more indices on the relation
e A transaction T; that performs a lookup must lock all the index leaf
nodes that it accesses, in S-mode
o Even if the leaf node does not contain any tuple satisfying the index
lookup (e.g. for a range query, no tuple in a leaf is in the range)
e A transaction T; that inserts, updates or deletes a tuple t; in a relation
r
@ must update all indices to r
@ must obtain exclusive locks on all index leaf nodes affected by the
insert/update/delete

e The rules of the two-phase locking protocol must be observed

o Guarantees that phantom phenomenon won't occur

ADB — Concurrency Control WS 2018/19 60 /68

ADB - Concurrency Control WS 2018/19 59 /68

Augsten (Univ. Salzburg)

Augsten (Univ. Salzburg)

Insert and Delete Operations

Concurrency in Index Structures

QOutline

Next-Key Locking

@ Index-locking protocol to prevent phantoms required locking entire
leaf
o Can result in poor concurrency if there are many inserts
@ Alternative: for an index lookup

o Lock all values that satisfy index lookup (match lookup value, or fall in
lookup range)

o Also lock next key value in index

o Lock mode: S for lookups, X for insert/delete/update

@ Ensures that range queries will conflict with inserts/deletes/updates
o Regardless of which happens first, as long as both are concurrent

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 61 /68

Concurrency in Index Structures

Concurrency in Index Structures/1

@ Indices are unlike other database items in that their only job is to help
in accessing data.
@ Index-structures are typically accessed very often, much more than
other database items.
e Treating index-structures like other database items, e.g. by 2-phase
locking of index nodes can lead to low concurrency.
@ There are several index concurrency protocols where locks on internal
nodes are released early, and not in a two-phase fashion.
o It is acceptable to have nonserializable concurrent access to an index as
long as the accuracy of the index is maintained.
o In particular, the exact values read in an internal node of a B*-tree are
irrelevant so long as we land up in the correct leaf node.

ADB - Concurrency Control WS 2018/19 63 /68

Augsten (Univ. Salzburg)

@ Concurrency in Index Structures

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 62 /68

Concurrency in Index Structures

Concurrency in Index Structures/2

e Crabbing protocol for B+-trees. During search/insertion/deletion:
o First lock the root node in shared mode.
o After locking all required children of a node in shared mode, release the
lock on the node.
o During insertion/deletion, upgrade leaf node locks to exclusive mode.
e When splitting or coalescing requires changes to a parent, lock the
parent in exclusive mode.
@ The crabbing protocol can cause excessive deadlocks
o Searches coming down the tree deadlock with updates going up the tree
e Can abort and restart search, without affecting transaction
@ B-link tree protocol:
e Intuition: release lock on parent before acquiring lock on child
o Deal with changes that may have happened between lock release and
acquire.
o Requires forward links between sibling nodes in B+-tree (in addition to
the forward links between leaves that exist anyways).

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 64 /68

Concurrency in Index Structures

Weak Levels of Consistency

Concurrency in Index Structures

Weak Levels of Consistency in SQL

@ Degree-two consistency: differs from two-phase locking in that S-locks
may be released at any time, and locks may be acquired at any time
o X-locks must be held till end of transaction
o Serializability is not guaranteed, programmer must ensure that no
erroneous database state will occur

o Cursor stability:
o For reads, each tuple is locked, read, and lock is immediately released
o X-locks are held till end of transaction
e Special case of degree-two consistency

Augsten (Univ. Salzburg)

Concurrency in Index Structures

Transactions across User Interaction/1

@ Many applications need transaction support across user interactions

e Can't use locking
e Don't want to reserve database connection per user

@ Application level concurrency control
e Each tuple has a version number
o Transaction notes version number when reading tuple
o select r.balance, r.version into :A, :version
from r where acctld = 23
o When writing tuple, check that current version number is same as the
version when tuple was read
o update r set r.balance = r.balance + :deposit
where acctld = 23 and r.version = :version

Augsten (Univ. Salzburg)

ADB - Concurrency Control WS 2018/19 65 /68

ADB - Concurrency Control WS 2018/19 67 /68

@ SQL allows non-serializable executions

e Serializable: is the default
o Repeatable read: allows only committed records to be read, and
repeating a read should return the same value (so read locks should be
retained)
@ However, the phantom phenomenon need not be prevented
@ T1 may see some records inserted by T», but may not see others
inserted by T»
e Read committed: same as degree two consistency, but most systems
implement it as cursor-stability
e Read uncommitted: allows even uncommitted data to be read
@ In many database systems, read committed is the default consistency
level
e has to be explicitly changed to serializable when required

@ set isolation level serializable

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2018/19 66 /68

Concurrency in Index Structures

Transactions across User Interaction /2

@ Equivalent to optimistic concurrency control without validating read

set
@ Used internally in Hibernate ORM system, and manually in many
applications

@ Version numbering can also be used to support first committer wins
check of snapshot isolation
e Unlike snapshot isolation, reads are not guaranteed to be from a single
snapshot

ADB — Concurrency Control WS 2018/19 63 /68

Augsten (Univ. Salzburg)

