
Advanced Databases
Recovery System

Nikolaus Augsten
nikolaus.augsten@sbg.ac.at

Department of Computer Sciences
University of Salzburg

http://dbresearch.uni-salzburg.at

WS 2018/19
Version 16. Januar 2019

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 1 / 76

Outline

1 Failure Classification

2 Storage Structure

3 Log-Based Recovery

4 Recovery Algorithm

5 Recovery with Early Lock Release and Logical Undo

6 ARIES

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 2 / 76

Failure Classification

Outline

1 Failure Classification

2 Storage Structure

3 Log-Based Recovery

4 Recovery Algorithm

5 Recovery with Early Lock Release and Logical Undo

6 ARIES

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 3 / 76

Failure Classification

Failure Classification

Transaction failure:

Logical errors: transaction cannot complete due to some internal error
condition
System errors: the database system must terminate an active
transaction due to an error condition (e.g., deadlock)

System crash: a power failure or other hardware or software failure
causes the system to crash.

Fail-stop assumption: non-volatile storage contents are assumed to not
be corrupted as result of a system crash

Database systems have numerous integrity checks to prevent corruption
of disk data

Disk failure: a head crash or similar disk failure destroys all or part of
disk storage

Destruction is assumed to be detectable: disk drives use checksums to
detect failures

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 4 / 76

Failure Classification

Recovery Algorithms

Consider transaction Ti that transfers $50 from account A to account
B

Two updates: subtract 50 from A and add 50 to B

Transaction Ti requires updates to A and B to be output to the
database.

A failure may occur after one of these modifications have been made
but before both of them are made.
Modifying the database without ensuring that the transaction will
commit may leave the database in an inconsistent state
Not modifying the database may result in lost updates if failure occurs
just after transaction commits

Recovery algorithms have two parts
1. Actions taken during normal transaction processing to ensure enough

information exists to recover from failures
2. Actions taken after a failure to recover the database contents to a

state that ensures atomicity, consistency and durability

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 5 / 76

Storage Structure

Outline

1 Failure Classification

2 Storage Structure

3 Log-Based Recovery

4 Recovery Algorithm

5 Recovery with Early Lock Release and Logical Undo

6 ARIES

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 6 / 76

Storage Structure

Storage Structure

Volatile storage:

does not survive system crashes
examples: main memory, cache memory

Nonvolatile storage:

survives system crashes
examples: disk, tape, flash memory, non-volatile (battery backed up)
RAM
but may still fail, losing data

Stable storage:

a mythical form of storage that survives all failures
approximated by maintaining multiple copies on distinct nonvolatile
media

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 7 / 76

Storage Structure

Stable-Storage Implementation/1

Maintain multiple copies of each block on separate disks

copies can be at remote sites to protect against disasters such as fire or
flooding.

Failure during data transfer can still result in inconsistent copies.
Block transfer can result in

Successful completion
Partial failure: destination block has incorrect information
Total failure: destination block was never updated

Protecting storage media from failure during data transfer (one
solution):

Execute output operation as follows (assuming two copies of each
block):

1. Write the information onto the first physical block.
2. When the first write successfully completes, write the same information

onto the second physical block.
3. The output is completed only after the second write successfully

completes.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 8 / 76

Storage Structure

Stable-Storage Implementation/2

Protecting storage media from failure during data transfer (cont.):

Copies of a block may differ due to failure during output operation.
To recover from failure:

1. First find inconsistent blocks:
Expensive solution:

Compare the two copies of every disk block.

Better solution:

Record in-progress disk writes on non-volatile storage (Non-volatile
RAM or special area of disk).
Use this information during recovery to find blocks that may be
inconsistent, and only compare copies of these.
Used in hardware RAID systems

2. If either copy of an inconsistent block is detected to have an error (bad
checksum), overwrite it by the other copy. If both have no error, but
are different, overwrite the second block by the first block.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 9 / 76

Storage Structure

Data Access/1

Physical blocks are those blocks residing on the disk.

System buffer blocks are the blocks residing temporarily in main
memory.

Block movements between disk and main memory are initiated
through the following two operations:

input(B) transfers the physical block B to main memory.
output(B) transfers the buffer block B to the disk, and replaces the
appropriate physical block there.

We assume, for simplicity, that each data item fits in, and is stored
inside, a single block.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 10 / 76

Storage Structure

Data Access/2

Each transaction Ti has its private work-area in which local copies of
all data items accessed and updated by it are kept.

Ti ’s local copy of a data item X is denoted by xi .
BX denotes block containing X

Transferring data items between system buffer blocks and its private
work-area done by:

read(X) assigns the value of data item X to the local variable xi
write(X) assigns the value of local variable xi to data item X in the
buffer block.

Transactions

must perform read(X) before accessing X for the first time
(subsequent reads can be from local copy)
can execute write(X) at any time before the transaction commits

Note that output(BX) need not immediately follow write(X). System
can perform the output operation when it seems fit.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 11 / 76

Storage Structure

Data Access/2

A

B

X

Y

buffer

Buffer Block A

Buffer Block B

x1

y1

work area of T1

diskmemory

input(A)

output(B)

read(X)

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 12 / 76

Log-Based Recovery

Outline

1 Failure Classification

2 Storage Structure

3 Log-Based Recovery

4 Recovery Algorithm

5 Recovery with Early Lock Release and Logical Undo

6 ARIES

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 13 / 76

Log-Based Recovery

Recovery and Atomicity

To ensure atomicity despite failures, we first output information
describing the modifications to stable storage without modifying the
database itself.

We study log-based recovery mechanisms in detail

we first present key concepts,
then present the actual recovery algorithm

Less used alternative: shadow-copy and shadow-paging

For now we assume serial execution of transactions and extend to the
case of concurrent transactions later.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 14 / 76

Log-Based Recovery

Log-Based Recovery

A log is kept on stable storage.

The log is a sequence of log records, which maintains information
about update activities on the database.

When transaction Ti starts, it registers itself by writing a record
< Ti start > to the log

Before Ti executes write(X), a log record < Ti , X , V1, V2 > is
written, where V1 is the value of X before the write (the old value),
and V2 is the value to be written to X (the new value).

When Ti finishes it last statement, the log record < Ti commit > is
written.

Two approaches using logs

Immediate database modification
Deferred database modification

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 15 / 76

Log-Based Recovery

Database Modification

The immediate-modification scheme allows updates of an
uncommitted transaction to be made to the buffer, or the disk itself,
before the transaction commits

Update log record must be written before a database item is written

we assume that the log record is output directly to stable storage
will see later that how to postpone log record output to some extent

Output of updated blocks to disk storage can take place at any time
before or after transaction commit

Order in which blocks are output can be different from the order in
which they are written.

The deferred-modification scheme performs updates to buffer/disk
only at the time of transaction commit

simplifies some aspects of recovery
but has overhead of storing local copy

We cover here only the immediate-modification scheme

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 16 / 76

Log-Based Recovery

Transaction Commit

A transaction is said to have committed when its commit log record is
output to stable storage

all previous log records of the transaction must have been output
already

Writes performed by a transaction may still be in the buffer when the
transaction commits, and may be output later

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 17 / 76

Log-Based Recovery

Immediate Database Modification Example

Log Write Output

< T0, start >
< T0, A, 1000, 950 >
< T0, B, 2000, 2050 >

A = 950
B = 2050

< T0, commit >
< T1, start >
< T1, C , 700, 600 >

C = 600
BB , BC

< T1, commit >
BA

Note: BX denotes block containing X .

BC output before T1 commits

BA output after T0 commits

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 18 / 76

Log-Based Recovery

Undo and Redo Operations/1

Undo of log record < Ti , X , V1, V2 > writes the old value V1 to X

Redo of log record < Ti , X , V1, V2 > writes the new value V2 to X

Undo and Redo of Transactions
undo(Ti) restores the value of all data items updated by Ti to their
old values, going backwards from the last log record for Ti

Each time a data item X is restored to its old value V a special log
record (called redo-only) < Ti , X , V > is written out
When undo of a transaction is complete, a log record < Ti abort > is
written out (to indicate that the undo was completed)

redo(Ti) sets the value of all data items updated by Ti to the new
values, going forward from the first log record for Ti

No logging is done in this case

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 19 / 76

Log-Based Recovery

Undo and Redo Operations/2

The undo and redo operations are used in several different
circumstances:

The undo is used for transaction rollback during normal operation
(when a transaction must abort due to some logical error).
The undo and redo operations are used during recovery from failure.

We need to deal with the case where during recovery from failure
another failure occurs prior to the system having fully recovered.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 20 / 76

Log-Based Recovery

Transaction rollback (during normal operation)

Let Ti be the transaction to be rolled back

Scan log backwards from the end, and for each log record of Ti of the
form < Ti , Xj , V1, V2 >

perform the undo by writing V1 to Xj ,
write a redo-only log record < Ti , Xj , V1 >
(also called compensation log record)

Once the record < Ti start > is found stop the scan and write the
log record < Ti abort >

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 21 / 76

Log-Based Recovery

Undo and Redo on Recovering from Failure

When recovering after failure:
Transaction Ti needs to be undone if the log

contains the record < Ti start >,
but does not contain either the record < Ti commit > or
< Ti abort >.

Transaction Ti needs to be redone if the log

contains the records < Ti start >
and contains the record < Ti commit > or < Ti abort >

Repeating history:

Recovery redoes all the original actions including the steps that
restored old values (redo-only log records).
It may seem strange to redo transaction Ti if the record < Ti abort >
record is in the log. To see why this works, note that if < Ti abort >
is in the log, so are the redo-only records written by the undo
operation. Thus, the end result will be to undo Ti ’s modifications in
this case. This slight redundancy simplifies the recovery algorithm and
enables faster overall recovery time.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 22 / 76

Log-Based Recovery

Immediate Modification Recovery Example

Below we show the log as it appears at three instances of time.

< T0, start > < T0, start > < T0, start >
< T0, A, 1000, 950 > < T0, A, 1000, 950 > < T0, A, 1000, 950 >
< T0, B, 2000, 2050 > < T0, B, 2000, 2050 > < T0, B, 2000, 2050 >

< T0, commit > < T0, commit >
< T1, start > < T1, start >
< T1, C , 700, 600 > < T1, C , 700, 600 >

< T1, commit >
(a) (b) (c)

Recovery actions in each case above are:

(a) undo(T0): B is restored to 2000 and A to 1000, and log records
< T0, B, 2000 >, < T0, A, 1000 >, < T0, abort > are written out

(b) redo(T0) and undo(T1): A and B are set to 950 and 2050 and C
is restored to 700. Log records < T1, C , 700 >, < T1, abort > are
written out.

(c) redo(T0) and redo(T1): A and B are set to 950 and 2050,
respectively. Then C is set to 600.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 23 / 76

Log-Based Recovery

Checkpoints/1

Redoing/undoing all transactions recorded in the log can be very slow

Processing the entire log is time-consuming if the system has run for a
long time
We might unnecessarily redo transactions which have already output
their updates to the database.

Streamline recovery procedure by periodically performing
checkpointing

All updates are stopped while doing checkpointing
1. Output all log records currently residing in main memory onto stable

storage.
2. Output all modified buffer blocks to the disk.
3. Write a log record < checkpoint L > onto stable storage where L is a

list of all transactions active at the time of checkpoint.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 24 / 76

Log-Based Recovery

Checkpoints/2

During recovery we need to consider only the most recent transaction
Ti that started before the checkpoint, and transactions that started
after Ti .

Scan backwards from end of log to find the most recent
< checkpoint L > record
Only transactions that are in L or started after the checkpoint need to
be redone or undone
Transactions that committed or aborted before the checkpoint already
have all their updates output to stable storage.

Some earlier part of the log may be needed for undo operations

Continue scanning backwards till a record < Ti start > is found for
every transaction Ti in L.
Parts of log prior to earliest < Ti start > record above are not needed
for recovery, and can be erased whenever desired.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 25 / 76

Log-Based Recovery

Example of Checkpoints

Tc Tf

checkpoint system failure

T1

T2

T3

T4

T1 can be ignored (updates already output to disk due to checkpoint)

T2 and T3 redone.

T4 undone

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 26 / 76

Log-Based Recovery

Recovery Schemes

So far:

We covered key concepts
We assumed serial execution of transactions

Now:

We discuss concurrency control issues
We present the components of the basic recovery algorithm

Later:

We present extensions to allow more concurrency

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 27 / 76

Log-Based Recovery

Concurrency Control and Recovery

With concurrent transactions, all transactions share a single disk
buffer and a single log

A buffer block can have data items updated by one or more
transactions

We assume that if a transaction Ti has modified an item, no other
transaction can modify the same item until Ti has committed or
aborted

i.e. the updates of uncommitted transactions should not be visible to
other transactions

Otherwise how do we perform undo if T1 updates A, then T2 updates
A and commits, and finally T1 has to abort?

Can be ensured by obtaining exclusive locks on updated items and
holding the locks till end of transaction (strict two-phase locking)

Log records of different transactions may be interspersed in the log.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 28 / 76

Recovery Algorithm

Outline

1 Failure Classification

2 Storage Structure

3 Log-Based Recovery

4 Recovery Algorithm

5 Recovery with Early Lock Release and Logical Undo

6 ARIES

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 29 / 76

Recovery Algorithm

Recovery Algorithm/1

Logging (during normal operation):

< Ti start > at transaction start
< Ti , Xj , V1, V2 > for each update, and
< Ti commit > at transaction end

Transaction rollback (during normal operation)

Let Ti be the transaction to be rolled back
Scan log backwards from the end, and for each log record of Ti of the
form < Ti , Xj , V1, V2 >

perform the undo by writing V1 to Xj ,
write a log record < Ti , Xj , V1 > — such log records are called
compensation log records

Once the record < Ti start > is found stop the scan and write the log
record < Ti abort >

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 30 / 76

Recovery Algorithm

Recovery Algorithm/2

Recovery from failure: Two phases

Redo phase: replay updates of all transactions, whether they
committed, aborted, or are incomplete
Undo phase: undo all incomplete transactions

Redo phase:
1. Find last < checkpoint L > record, and set undo-list to L.
2. Scan forward from above < checkpoint L > record

1. Whenever a record < Ti , Xj , V1, V2 > or < Ti , Xj ,V2 > is found,
redo it by writing V2 to Xj

2. Whenever a log record < Ti start > is found, add Ti to undo-list
3. Whenever a log record < Ti commit > or < Ti abort > is found,

remove Ti from undo-list

After redo: database is in the same state as at time of crash

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 31 / 76

Recovery Algorithm

Recovery Algorithm/2

Undo phase: Scan log backwards from end
1. Whenever a log record < Ti , Xj , V1, V2 > is found where Ti is in

undo-list perform same actions as for transaction rollback:
1. perform undo by writing V1 to Xj .
2. write a log record < Ti , Xj , V1 >

2. Whenever a log record < Ti start > is found where Ti is in undo-list,
1. Write a log record < Ti abort >
2. Remove Ti from undo-list

3. Stop when undo-list is empty
1. i.e., < Ti start > has been found for every transaction in undo-list

After undo phase completes, normal transaction processing can
commence

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 32 / 76

Recovery Algorithm

Example of Recovery

older

newer

Log records

added during

recovery

End of log

at crash!

Beginning of log
< T0 start >
< T0, B, 2000, 2050 >
< T1 start >
< checkpoint {T0, T1} >
< T1, C , 700, 600 >
< T1 commit >
< T2 start >
< T2, A, 500, 400 >
< T0, B, 2000 >
< T0 abort >

< T2, A, 500 >
< T2 abort >

T0 rollback

(during normal

operation) begins

T0 rollback

complete

T2 is incomplete

at crash

T2 rolled back

in undo pass

Undo Pass

Start log records

found for all

transactions

in undo list

Undo list: T2

Redo Pass

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 33 / 76

Recovery Algorithm

Log Record Buffering/1

Log record buffering: log records are buffered in main memory, instead
of of being output directly to stable storage.

Log records are output to stable storage when a block of log records in
the buffer is full, or a log force operation is executed.

Log force is performed to commit a transaction by forcing all its log
records (including the commit record) to stable storage.

Several log records can thus be output using a single output
operation, reducing the I/O cost.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 34 / 76

Recovery Algorithm

Log Record Buffering/2

The rules below must be followed if log records are buffered:

Log records are output to stable storage in the order in which they are
created.
Transaction Ti enters the commit state only when the log record
< Ti commit > has been output to stable storage.
Before a block of data in main memory is output to the database, all
log records pertaining to data in that block must have been output to
stable storage.

This rule is called the write-ahead logging or WAL rule
Strictly speaking WAL only requires undo information to be output

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 35 / 76

Recovery Algorithm

Database Buffering/1

Database maintains an in-memory buffer of data blocks

When a new block is needed, if buffer is full an existing block needs to
be removed from buffer
If the block chosen for removal has been updated, it must be output to
disk

The recovery algorithm supports the no-force policy: i.e., updated
blocks need not be written to disk when transaction commits

force policy: requires updated blocks to be written at commit

More expensive commit

The recovery algorithm supports the steal policy: i.e., blocks
containing updates of uncommitted transactions can be written to
disk, even before the transaction commits

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 36 / 76

Recovery Algorithm

Database Buffering/2

A

B

X ,Y

Z

buffer

Buffer Block A

Buffer Block B

x1

z1

work area of T1

y2

work area of T2

diskmemory

input(A)

output(B)

write(X)

read(Z)

write(Y)

Both T1 and T2 write a data item (X resp. Y) on block A

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 37 / 76

Recovery Algorithm

Database Buffering/3

If a block with uncommitted updates is output to disk, log records
with undo information for the updates are output to the log on stable
storage first

(Write ahead logging)

No updates should be in progress on a block when it is output to
disk. Can be ensured as follows.

Before writing a data item, transaction acquires exclusive lock on block
containing the data item
Lock can be released once the write is completed.

Such locks held for short duration are called latches.

To output a block to disk
1. First acquire an exclusive latch on the block

1. Ensures no update can be in progress on the block

2. Then perform a log flush
3. Then output the block to disk
4. Finally release the latch on the block

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 38 / 76

Recovery Algorithm

Buffer Management/1

Database buffer can be implemented either

in an area of real main-memory reserved for the database, or
in virtual memory

Implementing buffer in reserved main-memory has drawbacks:

Memory is partitioned before-hand between database buffer and
applications, limiting flexibility.
Needs may change, and although operating system knows best how
memory should be divided up at any time, it cannot change the
partitioning of memory.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 39 / 76

Recovery Algorithm

Buffer Management/2

Database buffers are generally implemented in virtual memory in spite
of some drawbacks:

When operating system needs to evict a page that has been modified,
the page is written to swap space on disk.
When database decides to write buffer page to disk, buffer page may
be in swap space, and may have to be read from swap space on disk
and output to the database on disk, resulting in extra I/O!

Known as dual paging problem.

Ideally when OS needs to evict a page from the buffer, it should pass
control to database, which in turn should

1. Output the page to database instead of to swap space (making sure to
output log records first), if it is modified

2. Release the page from the buffer, for the OS to use

Dual paging can thus be avoided, but common operating systems do
not support such functionality.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 40 / 76

Recovery Algorithm

Fuzzy Checkpointing/1

To avoid long interruption of normal processing during checkpointing,
allow updates to happen during checkpointing

Fuzzy checkpointing is done as follows:
1. Temporarily stop all updates by transactions
2. Write a < checkpoint L > log record and force log to stable storage
3. Note list M of modified buffer blocks
4. Now permit transactions to proceed with their actions
5. Output to disk all modified buffer blocks in list M

blocks should not be updated while being output
follow WAL: all log records pertaining to a block must be output before
the block is output

6. Store a pointer to the checkpoint record in a fixed position
last checkpoint on disk

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 41 / 76

Recovery Algorithm

Fuzzy Checkpointing/2

When recovering using a fuzzy checkpoint, start scan from the
checkpoint record pointed to by last checkpoint

Log records before last checkpoint have their updates reflected in
database on disk, and need not be redone.
Incomplete checkpoints, where system had crashed while performing
checkpoint, are handled safely

last checkpoint . . .
checkpoint L

. . .

checkpoint L
. . .

Log

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 42 / 76

Recovery Algorithm

Disk Crash

What happens if the disk crashes and the data on it is gone?

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 43 / 76

Recovery Algorithm

Failure with Loss of Nonvolatile Storage

So far we assumed no loss of non-volatile storage

Technique similar to checkpointing used to deal with loss of
non-volatile storage

Periodically dump the entire content of the database to stable storage
No transaction may be active during the dump procedure; a procedure
similar to checkpointing must take place

Output all log records currently residing in main memory onto stable
storage.
Output all buffer blocks onto the disk.
Copy the contents of the database to stable storage.
Output a record < dump > to log on stable storage.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 44 / 76

Recovery Algorithm

Failure with Loss of Nonvolatile Storage

To recover from disk failure

restore database from most recent dump.
Consult the log and redo all transactions that committed after the
dump

Can be extended to allow transactions to be active during dump;
known as fuzzy dump or online dump

Similar to fuzzy checkpointing

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 45 / 76

Recovery with Early Lock Release and Logical Undo

Outline

1 Failure Classification

2 Storage Structure

3 Log-Based Recovery

4 Recovery Algorithm

5 Recovery with Early Lock Release and Logical Undo

6 ARIES

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 46 / 76

Recovery with Early Lock Release and Logical Undo

Recovery with Early Lock Release

Support for high-concurrency locking techniques, such as those used
for B+-tree concurrency control, which release locks early

Supports “logical undo”

Recovery based on “repeating history”, whereby recovery executes
exactly the same actions as normal processing

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 47 / 76

Recovery with Early Lock Release and Logical Undo

Logical Undo Logging

Operations like B+-tree insertions and deletions release locks early.

They cannot be undone by restoring old values (physical undo), since
once a lock is released, other transactions may have updated the
B+-tree.
Instead, insertions (resp. deletions) are undone by executing a deletion
(resp. insertion) operation (known as logical undo).

For such operations, undo log records should contain the undo
operation to be executed

Such logging is called logical undo logging, in contrast to physical undo
logging

Operations are called logical operations

Other examples:

delete of tuple, to undo insert of tuple (allows early lock release on
space allocation information)
subtract amount deposited, to undo deposit (allows early lock release
on bank balance)

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 48 / 76

Recovery with Early Lock Release and Logical Undo

Physical Redo

Redo information is logged physically (that is, new value for each
write) even for operations with logical undo

Logical redo is very complicated since database state on disk may not
be “operation consistent” when recovery starts
Physical redo logging does not conflict with early lock release

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 49 / 76

Recovery with Early Lock Release and Logical Undo

Operation Logging/1

Operation logging is done as follows:
1. When operation starts, log < Ti , Oj , operation-begin >. Here Oj is a

unique identifier of the operation instance.
2. While operation is executing, normal log records with physical redo and

physical undo information are logged.
3. When operation completes, < Ti , Oj , operation-end , U > is logged,

where U contains information needed to perform a logical undo.

Example: insert of (key , record-id) pair (K5, RID7) into index I9

< T1, O1, operation-begin >
. . .
< T1, X , 10, K5
< T1, Y , 45, RID7



 Physical redo of steps in insert

< T1, O1, operation-end , (delete I9, K5, RID7) >

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 50 / 76

Recovery with Early Lock Release and Logical Undo

Operation Logging/2

If crash/rollback occurs before operation completes:

the operation-end log record is not found, and
the physical undo information is used to undo operation.

If crash/rollback occurs after the operation completes:

the operation-end log record is found, and in this case
logical undo is performed using U; the physical undo information for
the operation is ignored.

Redo of operation (after crash) still uses physical redo information.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 51 / 76

Recovery with Early Lock Release and Logical Undo

Transaction Rollback with Logical Undo/1

Rollback of transaction Ti is done as follows:

Scan the log backwards
1. If a log record < Ti , X , V1, V2 > is found, perform the undo and log

a < Ti , X , V1 >.
2. If a < Ti , Oj , operation-end , U > record is found

Rollback the operation logically using the undo information U.
Updates performed during roll back are logged just like during normal
operation execution.
At the end of the operation rollback, instead of logging an
operation-end record, generate a record < Ti , Oj , operation-abort >.
Skip all preceding log records for Ti until the record
< Ti , Oj , operation-begin > is found

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 52 / 76

Recovery with Early Lock Release and Logical Undo

Transaction Rollback with Logical Undo/2

Transaction rollback, scanning the log backwards (cont.):
3. If a redo-only record is found ignore it
4. If a < Ti , Oj , operation-abort > record is found:

skip all preceding log records for Ti until the record
< Ti , Oj , operation-begin > is found.

5. Stop the scan when the record < Ti , start > is found
6. Add a < Ti , abort > record to the log

Some points to note:

Cases 3 and 4 above can occur only if the database crashes while a
transaction is being rolled back.

Skipping of log records as in case 4 is important to prevent multiple
rollback of the same operation.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 53 / 76

Recovery with Early Lock Release and Logical Undo

Transaction Rollback with Logical Undo

Transaction rollback during normal operation

older

newer

T0 decides

to abort

Beginning of log
< T0 start >
< T0, B, 2000, 2050 >
< T0, O1, operation-begin >
< T0, C , 700, 600 >
< T0, O1, operation-end , (C ,+100) >
< T1 start >
< T1, O2, operation-begin >
< T1, C , 600, 400 >
< T1, O2, operation-end , (C ,+200) >

< T0, C , 400, 500 >
< T0, operation-abort >
< T0, B, 2000 >
< T0 abort >
< T1 commit >

If T0 aborts before ope-

ration O1 ends, undo of

update to C will be physical

T0 has complete operation

O1 on C , release lower-level

lock; physical undo cannot

be done anymore, logical

undo will add 100 to C

T1 can update C since T0 has

released lower-level lock on C

T1 release lower-level lock on C

Logical undo of

O1 adds 100 to C

O1 undo complete

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 54 / 76

Recovery with Early Lock Release and Logical Undo

Failure Recovery with Logical Undo

older

newer

Records

added

during

recovery

End of log

at crash!

Beginning of log
< T0 start >
< T0, B, 2000, 2050 >
< T0 commit >
< T1 start >
< T1, B, 2050, 2100 >
< T1, O4, operation-begin >
< checkpoint {T1} >
< T1, C , 700, 400 >
< T1, O4, operation-end , (C ,+300) >
< T2 start >
< T2, O5, operation-begin >
< T2, C , 400, 300 >

< T2, C , 400 >
< T2 abort >
< T1, C , 400, 700 >
< T1, O4, operation-abort >
< T1, B, 2050 >
< T1 abort >

Update of C was part of O5,

undone physically during recovery

since O5 did not complete

Logical undo of O4 adds 300 to C

Undo Pass

Start log records

found for all

transactions

in undo list

Undo list: T1, T2

Redo Pass

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 55 / 76

Recovery with Early Lock Release and Logical Undo

Transaction Rollback: Another Example

Example with a complete and an incomplete operation

< T1 start >
< T1, O1, operation-begin >
. . .
< T1, X , 10, K5 >
< T1, Y , 45, RID7 >
< T1, O1, operation-end , (delete I9, K5, RID7) >
< T1, O2, operation-begin >
< T1, Z , 45, 70 >

← T1 Rollback begins here
< T1, Z , 45 > ← redo-only log record during physical undo (of incomplete O2)
< T1, Y , . . . , · · · > ← Normal redo records for logical undo of O1

. . .
< T1, O1, operation-abort > ← What if crash occurred immediately after this?
< T1 abort >

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 56 / 76

Recovery with Early Lock Release and Logical Undo

Recovery Algorithm with Logical Undo/1

Basically same as earlier algorithm, except for changes described earlier for
transaction rollback

1. (Redo phase): Scan log forward from last < checkpoint L > record
till end of log

1. Repeat history by physically redoing all updates of all transactions,
2. Create an undo-list during the scan as follows

undo-list is set to L initially
Whenever < Ti start > is found Ti is added to undo-list
Whenever < Ti commit > or < Ti abort > is found, Ti is deleted from
undo-list

This brings database to state as of crash, with committed as well as
uncommitted transactions having been redone.
Now undo-list contains transactions that are incomplete, that is, have
neither committed nor been fully rolled back.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 57 / 76

Recovery with Early Lock Release and Logical Undo

Recovery Algorithm with Logical Undo/2

Recovery from system crash (cont.)
2. (Undo phase): Scan log backwards, performing undo on log records of

transactions found in undo-list.
Log records of transactions being rolled back are processed as
described earlier, as they are found

Single shared scan for all transactions being undone

When < Ti start > is found for a transaction Ti in undo-list, write a
< Ti abort > log record.
Stop scan when < Ti start > records have been found for all Ti in
undo-list

This undoes the effects of incomplete transactions (those with neither
commit nor abort log records). Recovery is now complete.

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 58 / 76

ARIES

Outline

1 Failure Classification

2 Storage Structure

3 Log-Based Recovery

4 Recovery Algorithm

5 Recovery with Early Lock Release and Logical Undo

6 ARIES

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 59 / 76

ARIES

ARIES

ARIES is a state of the art recovery method

Incorporates numerous optimizations to reduce overheads during
normal processing and to speed up recovery
The recovery algorithm we studied earlier is modeled after ARIES, but
greatly simplified by removing optimizations

Unlike the recovery algorithm described earlier, ARIES
1. Uses log sequence number (LSN) to identify log records

Stores LSNs in pages to identify what updates have already been
applied to a database page

2. Physiological redo
3. Dirty page table to avoid unnecessary redos during recovery
4. Fuzzy checkpointing that only records information about dirty pages,

and does not require dirty pages to be written out at checkpoint time

More coming up on each of the above . . .

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 60 / 76

ARIES

ARIES Optimizations: Physiological redo

Affected page is physically identified, action within page can be
logical

Used to reduce logging overheads

e.g. when a record is deleted and all other records have to be moved to
fill hole
- Physiological redo can log just the record deletion
- Physical redo would require logging of old and new values for much of
the page

Requires page to be output to disk atomically

Easy to achieve with hardware RAID, also supported by some disk
systems
Incomplete page output can be detected by checksum techniques,
- But extra actions are required for recovery
- Treated as a media failure

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 61 / 76

ARIES

ARIES Data Structures

ARIES uses several data structures
Log sequence number (LSN) identifies each log record

Must be sequentially increasing
Typically an offset from beginning of log file to allow fast access (Easily
extended to handle multiple log files)

Page LSN
Log records of several different types
Dirty page table

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 62 / 76

ARIES

ARIES Data Structures: Log Record

Each log record contains LSN of previous log record of the same
transaction

LSN TransID PrevLSN RedoInfo UndoInfo

LSN in log record may be implicit

Special redo-only log record called compensation log record (CLR)
used to log actions taken during recovery that never need to be
undone

Serves the role of operation-abort log records used in earlier recovery
algorithm
Has a field UndoNextLSN to note next (earlier) record to be undone

Records in between would have already been undone
Required to avoid repeated undo of already undone actions

LSN TransID UndoNextLSN RedoInfo

1 2 3 4 4′ 3′ 2′ 1′

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 63 / 76

ARIES

ARIES Data Structures: DirtyPage Table

List of pages in the buffer that have been updated

Contains, for each such page

PageLSN of the page
RecLSN is an LSN such that log records before this LSN have already
been applied to the page version on disk

Set to current end of log when a page is inserted into dirty page table
(just before being updated)
Recorded in checkpoints, helps to minimize redo work

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 64 / 76

ARIES

ARIES Data Structures

Database Buffer

Page 4894

7567

Page 9923

2345

Page 7200

7565

Dirty Page Table

PageID

4894

7200

PageLSN

7567

7565

RecLSN

7564

7565

Log Buffer
(PrevLSN and UndNextLSN fields not shown)

7567: < T145, 4894.1, 40, 60 >

7566: < T143 commit >

Stable data

Page 4894

4566

Page 7200

4404

Page 9923

2345

Stable log

7565: < T143, 7200.2, 60, 80 >

7564: < T145, 4894.1, 20, 40 >

7563: < T145 begin >

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 65 / 76

ARIES

ARIES Data Structures: Checkpoint Log

Checkpoint log record
Contains:

DirtyPageTable and list of active transactions
For each active transaction, LastLSN, the LSN of the last log record
written by the transaction

Fixed position on disk notes LSN of last completed checkpoint log
record

Dirty pages are not written out at checkpoint time

Instead, they are flushed out continuously, in the background

Checkpoint is thus very low overhead

can be done frequently

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 66 / 76

ARIES

ARIES Recovery Algorithm

ARIES recovery involves three passes

Analysis pass: Determines

Which transactions to undo
Which pages were dirty (disk version not up to date) at time of crash
RedoLSN: LSN from which redo should start

Redo pass:
Repeats history, redoing all actions from RedoLSN

RecLSN and PageLSNs are used to avoid redoing actions already
reflected on page

Undo pass
Rolls back all incomplete transactions

Transactions whose abort was complete earlier are not undone
Key idea: no need to undo these transactions: earlier undo actions were
logged, and are redone as required

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 67 / 76

ARIES

Aries Recovery: 3 Passes

Analysis, redo and undo passes

Analysis determines where redo should start

Undo has to go back till start of earliest incomplete transaction

Log

Last checkpoint End of Log

Time

Analysis pass

Redo pass

Undo pass

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 68 / 76

ARIES

ARIES Recovery: Analysis/1

Analysis pass

Starts from last complete checkpoint log record

Reads DirtyPageTable from log record
Sets RedoLSN = min of RecLSNs of all pages in DirtyPageTable

In case no pages are dirty, RedoLSN = checkpoint record’s LSN

Sets undo-list = list of transactions in checkpoint log record
Reads LSN of last log record for each transaction in undo-list from
checkpoint log record

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 69 / 76

ARIES

ARIES Recovery: Analysis/2

Scans forward from checkpoint

If any log record found for transaction not in undo-list, adds
transaction to undo-list
Whenever an update log record is found

If page is not in DirtyPageTable, it is added with RecLSN set to LSN of
the update log record

If transaction end log record found, delete transaction from undo-list
Keeps track of last log record for each transaction in undo-list

May be needed for later undo

At end of analysis pass:

RedoLSN determines where to start redo pass
RecLSN for each page in DirtyPageTable used to minimize redo work
All transactions in undo-list need to be rolled back

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 70 / 76

ARIES

ARIES Redo Pass

Redo Pass: Repeats history by replaying every action not already reflected
in the page on disk, as follows:

Scans forward from RedoLSN. Whenever an update log record is
found:

1. If the page is not in DirtyPageTable or the LSN of the log record is less
than the RecLSN of the page in DirtyPageTable, then skip the log
record

2. Otherwise fetch the page from disk. If the PageLSN of the page fetched
from disk is less than the LSN of the log record, redo the log record

NOTE: if either test is negative the effects of the log record have
already appeared on the page. First test avoids even fetching the page
from disk!

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 71 / 76

ARIES

ARIES Undo Actions

When an undo is performed for an update log record
Generate a CLR containing the undo action performed (actions
performed during undo are logged physicaly or physiologically).

CLR for record n noted as n′ in figure below

Set UndoNextLSN of the CLR to the PrevLSN value of the update log
record

Arrows indicate UndoNextLSN value

ARIES supports partial rollback
Used e.g. to handle deadlocks by rolling back just enough to release
reqd. locks
Figure indicates forward actions after partial rollbacks

records 3 and 4 initially, later 5 and 6, then full rollback

1 2 3 4 4′ 3′ 5 6 6′ 5′ 2′ 1′

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 72 / 76

ARIES

ARIES: Undo Pass

Undo pass: Performs backward scan on log undoing all transaction in
undo-list

Backward scan optimized by skipping unneeded log records as follows:

Next LSN to be undone for each transaction set to LSN of last log
record for transaction found by analysis pass.
At each step pick largest of these LSNs to undo, skip back to it and
undo it
After undoing a log record

For ordinary log records, set next LSN to be undone for transaction to
PrevLSN noted in the log record
For compensation log records (CLRs) set next LSN to be undo to
UndoNextLSN noted in the log record
All intervening records are skipped since they would have been undone
already

Undos performed as described earlier

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 73 / 76

ARIES

Recovery Actions in ARIES

7571: < T146 commit >

End of log at crash

7570: < T146, 2390.4, 50, 90 >

7569: < T146 begin >

7568: checkpoint

Txn

T145

lastLSN

7567

PageID

4894

7200

PageLSN

7567

7565

RecLSN

7564

7565

7567: < T145, 4894.1, 40, 60 >

7566: < T143 commit >

7565: < T143, 7200.2, 60 >

7564: < T145, 4894.1, 20, 40 >

7563: < T145, begin >

7562: < T143, 7200.2, 60, 80 >

PrevLSN
pointers

CLR

UndoNextLSN

Analysis
pass

Redo
pass

Undo
pass

newer

older

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 74 / 76

ARIES

Other ARIES Features/1

Recovery Independence
Pages can be recovered independently of others

E.g. if some disk pages fail they can be recovered from a backup while
other pages are being used

Savepoints:
Transactions can record savepoints and roll back to a savepoint

Useful for complex transactions
Also used to rollback just enough to release locks on deadlock

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 75 / 76

ARIES

Other ARIES Features/2

Fine-grained locking:
Index concurrency algorithms that permit tuple level locking on indices
can be used

These require logical undo, rather than physical undo, as in earlier
recovery algorithm

Recovery optimizations: For example:

Dirty page table can be used to prefetch pages during redo
Out of order redo is possible:

redo can be postponed on a page being fetched from disk, and
performed when page is fetched.
Meanwhile other log records can continue to be processed

Augsten (Univ. Salzburg) ADB – Recovery System WS 2018/19 76 / 76

