Similarity Search The String Edit Distance

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at Department of Computer Sciences University of Salzburg

WS 2018/19

Version October 9, 2018

Outline

- String Edit Distance
 - Motivation and Definition
 - Brute Force Algorithm
 - Dynamic Programming Algorithm
 - Edit Distance Variants

Outline

- String Edit Distance
 - Motivation and Definition
 - Brute Force Algorithm
 - Dynamic Programming Algorithm
 - Edit Distance Variants

Motivation

- How different are
 - hello and hello?
 - hello and hallo?
 - hello and hell?
 - hello and shell?

What is a String Distance Function?

Definition (String Distance Function)

Given a finite alphabet Σ , a *string distance function*, δ_s , maps each pair of strings $(x, y) \in \Sigma^* \times \Sigma^*$ to a positive real number (including zero).

$$\delta_s: \Sigma^* \times \Sigma^* \to \mathbb{R}_0^+$$

• Σ^* is the set of all strings over Σ , including the empty string ε .

The String Edit Distance

Definition (String Edit Distance)

The *string edit distance* between two strings, ed(x, y), is the minimum number of character insertions, deletions and replacements that transforms x to y.

- Example:
 - hello→hallo: replace e by a
 - hello→hell: delete o
 - hello→shell: delete o, insert s
- Also called *Levenshtein distance*.¹

Augsten (Univ. Salzburg)

¹Levenshtein introduced this distance for signal processing in 1965 [Lev65].

Outline

- String Edit Distance
 - Motivation and Definition
 - Brute Force Algorithm
 - Dynamic Programming Algorithm
 - Edit Distance Variants

Gap Representation

- Gap representation of the string transformation $x \to y$: Place string x above string y
 - with a gap in x for every insertion,
 - with a gap in y for every deletion,
 - with different characters in x and y for every replacement.
- Any sequence of edit operations can be represented with gaps.
- Example:

- insert s
- replace a by e
- delete o

Deriving the Recursive Formula

• Example:

- Given: Gap representation, gap(x, y), of the shortest edit distance between two strings x and y, such that gap(x, y) = ed(x, y).
- Claim:
 - If we remove the last column,
 - then the remaining columns represent the shortest edit distance, gap(x', y') = ed(x', y'), between the remaining substrings, x' and y'.
- Proof (by contradiction):
 - Last column contributes with c = 0 or c = 1 to gap(x, y), thus gap(x, y) = gap(x', y') + c.
 - If we assume $\operatorname{ed}(x',y') < \operatorname{gap}(x',y')$, then we could find a new gap representation $\operatorname{gap}^*(x',y') = \operatorname{ed}(x',y') < \operatorname{gap}(x',y')$ such that $\operatorname{gap}^*(x,y) = \operatorname{gap}^*(x',y') + c < \operatorname{gap}(x',y') + c = \operatorname{ed}(x,y)$.

Deriving the Recursive Formula

• Example:

```
hallo
shell
```

- Notation:
 - x[1...i] is the substring of the first i characters of $x(x[1...0] = \varepsilon)$
 - x[i] is the *i*-th character of x
- Recursive Formula:

$$\begin{array}{rcl} \operatorname{ed}(\varepsilon,\varepsilon) &=& 0 \\ \operatorname{ed}(x[1..i],\varepsilon] &=& i \\ \operatorname{ed}(\varepsilon,y[1..j]) &=& j \\ \operatorname{ed}(x[1..i],y[1..j]) &=& \min(\operatorname{ed}(x[1..i-1],y[1..j-1])+c, \\ && \operatorname{ed}(x[1..i-1],y[1..j])+1, \\ && \operatorname{ed}(x[1..i],y[1..j-1])+1) \end{array}$$

where c = 0 if x[i] = y[j], otherwise c = 1.

Brute Force Algorithm

ed-bf(x, y)

```
\begin{split} m &= |x|, \ n = |y| \\ \text{if } m &= 0 \text{ then return } n \\ \text{if } n &= 0 \text{ then return } m \\ \text{if } x[m] &= y[n] \text{ then } c = 0 \text{ else } c = 1 \\ \text{return } \min(\text{ed-bf}(x,y[1\dots n-1])+1, \\ &= \text{ed-bf}(x[1\dots m-1],y)+1, \\ &= \text{ed-bf}(x[1\dots m-1],y[1\dots n-1])+c) \end{split}
```

Brute Force Algorithm

Recursion tree for ed-bf(ab, xb):

- Exponential runtime in string length :-(
- Observation: Subproblems are computed repeatedly (e.g. ed-bf(a, x) is computed 3 times)
- Approach: Reuse previously computed results!

Outline

- String Edit Distance
 - Motivation and Definition
 - Brute Force Algorithm
 - Dynamic Programming Algorithm
 - Edit Distance Variants

Dynamic Programming Algorithm

- Store distances between all prefixes of x and y
- Use matrix $C_{0..m,0..n}$ with

$$C_{i,j} = \operatorname{ed}(x[1 \dots i], y[1 \dots j])$$

where $x[1..0] = y[1..0] = \varepsilon$.

• Example:

Dynamic Programming Algorithm

ed-dyn(x, y)

```
C: array[0..|x|][0..|y|]
for i = 0 to |x| do C[i, 0] = i
for j = 1 to |y| do C[0,j] = j
for j = 1 to |y| do
   for i = 1 to |x| do
       if x[i] = y[j] then c = 0 else c = 1
       C[i,j] = \min(C[i-1,j-1] + c,
                    C[i-1,j]+1,
                    C[i, i-1]+1
```

Understanding the Solution

• Example:

- Solution 1: replace n by d and (second) o by n in x
- Solution 2: insert d after n and delete (first) o in x
- Solution 3: insert d after n and delete (second) o in x

Dynamic Programming Algorithm – Properties

- Complexity:
 - O(mn) time (nested for-loop)
 - O(mn) space (the $(m+1)\times(n+1)$ -matrix C)
- Improving space complexity (assume m < n):
 - we need only the previous column to compute the next column
 - we can forget all other columns
 - \Rightarrow O(m) space complexity

Dynamic Programming Algorithm

$ed-dyn^+(x,y)$

```
col_0: array[0..|x|]
col_1: array[0..|x|]
for i = 0 to |x| do col_0[i] = i
for j = 1 to |y| do
   col_1[0] = j
   for i = 1 to |x| do
        if x[i] = y[j] then c = 0 else c = 1
        col_1[i] = \min(col_0[i-1] + c,
                      col_1[i-1]+1,
                      col_0[i] + 1)
    col_0 = col1
```

Outline

- String Edit Distance
 - Motivation and Definition
 - Brute Force Algorithm
 - Dynamic Programming Algorithm
 - Edit Distance Variants

Distance Metric

Definition (Distance Metric)

A distance function δ is a *distance metric* if and only if for any x, y, z the following hold:

- $\delta(x,y) = 0 \Leftrightarrow x = y$ (identity)
- $\delta(x, y) = \delta(y, x)$ (symmetric)
- $\delta(x,y) + \delta(y,z) \ge \delta(x,z)$ (triangle inequality)

Examples:

- the Euclidean distance is a metric
- d(a,b) = a b is not a metric (not symmetric)

Introducing Weights

• Look at the edit operations as a set of rules with a cost:

$$lpha(arepsilon,b) = \omega_{ins}$$
 (insert)
 $lpha(a,arepsilon) = egin{cases} \omega_{rep} & \text{if } a
eq b \\ 0 & \text{if } a = b \end{cases}$ (replace)

where $a, b \in \Sigma$, and $\omega_{ins}, \omega_{del}, \omega_{rep} \in \mathbb{R}_0^+$.

- Edit script: sequence of rules that transform x to y
- Edit distance: edit script with minimum cost (adding up costs of single rules)
- Example: so far we assumed $\omega_{ins} = \omega_{del} = \omega_{rep} = 1$.

Weighted Edit Distance

• Recursive formula with weights:

$$C_{0,0} = 0$$

$$C_{i,j} = \min(C_{i-1,j-1} + \alpha(x[i], y[j]), C_{i-1,j} + \alpha(x[i], \varepsilon), C_{i,j-1} + \alpha(\varepsilon, y[j]))$$

where $\alpha(a, a) = 0$ for all $a \in \Sigma$, and $C_{-1,j} = C_{i,-1} = \infty$.

• We can easily adapt the dynamic programming algorithm.

Variants of the Edit Distance

- Unit cost edit distance (what we did so far):
 - $\omega_{\textit{ins}} = \omega_{\textit{del}} = \omega_{\textit{rep}} = 1$
 - $0 \le ed(x, y) \le \max(|x|, |y|)$
 - distance metric
- Hamming distance [Ham50, SK83]:
 - called also "string matching with k mismatches"
 - allows only replacements
 - $\omega_{rep} = 1$, $\omega_{ins} = \omega_{del} = \infty$
 - $0 \le d(x,y) \le |x|$ if |x| = |y|, otherwise $d(x,y) = \infty$
 - distance metric
- Longest Common Subsequence (LCS) distance [NW70, AG87]:
 - allows only insertions and deletions
 - $\omega_{\textit{ins}} = \omega_{\textit{del}} = 1$, $\omega_{\textit{rep}} = \infty$
 - $0 \le d(x, y) \le |x| + |y|$
 - distance metric
 - LCS(x,y) = (|x| + |y| d(x,y))/2

Allowing Transposition

- Transpositions
 - switch two adjacent characters
 - can be simulated by delete and insert
 - typos are often transpositions
- New rule for transposition

$$\alpha(\mathsf{ab},\mathsf{ba}) = \omega_{\mathsf{trans}}$$

allows us to assign a weight different from $\omega_{\textit{ins}} + \omega_{\textit{del}}$

• Recursive formula that includes transposition:

$$C_{0,0} = 0$$

$$C_{i,j} = \min(C_{i-1,j-1} + \alpha(x[i], y[j]),$$

$$C_{i-1,j} + \alpha(x[i], \varepsilon),$$

$$C_{i,j-1} + \alpha(\varepsilon, y[j]),$$

$$C_{i-2,j-2} + \alpha(x[i-1]x[i], y[j-1]y[j]))$$

where $\alpha(ab,cd)=\infty$ if $a\neq d$ or $b\neq c$, $\alpha(a,a)=0$ for all $a\in \Sigma$, and $C_{-1,j}=C_{i,-1}=C_{-2,j}=C_{j,-2}=\infty$.

Example: Edit Distance with Transposition

• Example: Compute distance between x = meal and y = mael using the edit distance with transposition ($\omega_{ins} = \omega_{del} = \omega_{rep} = \omega_{trans} = 1$)

	ε	m	а	е	
ε	0	1 0 1 2 3	2	3	4
m	1	0	1	2	3
е	2	1	1	1	2
а	3	2	1	1	2
I	4	3	2	2	1

• The value in red results from the transposition of ea to ae.

Text Searching

- Goal:
 - search pattern p in text t (|p| < |t|)
 - allow *k* errors
 - match may start at any position of the text
- Difference to distance computation:
 - $C_{0,j}=0$ (instead of $C_{0,j}=j$, as text may start at any position)
 - result: all $C_{m,j} \leq k$ are endpoints of matches

Example: Text Searching

• Example:

	ε	S	u	r	g	е	r	У
$\overline{\varepsilon}$		0	0			0		
S	1	0	1	1	1	1	1	1
u	2	1	0	1	2	2	2	2
						2		
V	4					2		
е	5			2	2	1	2	3
У	6	5	4	3	3	2	2	2

• Solutions: 3 matching positions with $k \leq 2$ found.

Alberto Apostolico and Zvi Galill.

The longest common subsequence problem revisited.

Algorithmica, 2(1):315-336, March 1987.

Richard W. Hamming.

Error detecting and error correcting codes.

Bell System Technical Journal, 26(2):147-160, 1950.

Vladimir I. Levenshtein.

Binary codes capable of correcting spurious insertions and deletions of ones.

Problems of Information Transmission, 1:8–17, 1965.

Saul B. Needleman and Christian D. Wunsch.

A general method applicable to the search for similarities in the amino acid sequence of two proteins.

Journal of Molecular Biology, 48:443-453, 1970.

David Sankoff and Josef B. Kruskal, editors.

Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison.

Addison-Wesley, Reading, MA, 1983.