
Similarity Search
The Binary Branch Distance

Nikolaus Augsten
nikolaus.augsten@sbg.ac.at

Department of Computer Sciences
University of Salzburg

http://dbresearch.uni-salzburg.at

WS 2018/19
Version January 9, 2019

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 1 / 28

Outline

1 Binary Branch Distance
Binary Representation of a Tree
Binary Branches
Lower Bound for the Edit Distance
Complexity

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 2 / 28

Binary Branch Distance Binary Representation of a Tree

Outline

1 Binary Branch Distance
Binary Representation of a Tree
Binary Branches
Lower Bound for the Edit Distance
Complexity

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 3 / 28

Binary Branch Distance Binary Representation of a Tree

Binary Tree

In a binary tree

each node has at most two children;
left child and right child are distinguished:
a node can have a right child without having a left child;

Notation: TB = (N,El ,Er)

TB denotes a binary tree
N are the nodes of the binary tree
El and Er are the edges to the left and right children, respectively

Full binary tree:

binary tree
each node has exactly zero or two children.

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 4 / 28

Binary Branch Distance Binary Representation of a Tree

Example: Binary Tree

Two different binary trees: TB = (N,El ,Er)

TB1 = ({a, b, c, d , e, f , g}, {(a, b), (b, c), (d , e), (e, f)}, {(a, d), (e, g)})
TB2 = ({a, b, c, d , e, f , g}, {(a, b), (b, c), (e, f)}, {(a, d), (d , e), (e, g)})

a

b

c

d

e

f g

a

b

c

d

e

f g

TB1 TB2

6=

A full binary tree:
a

b

c h

d

e

f g

i

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 5 / 28

Binary Branch Distance Binary Representation of a Tree

Binary Representation of a Tree

Binary tree transformation:
(i) link all neighboring siblings in a tree with edges
(ii) delete all parent-child edges except the edge to the first child

Transformation maintains

label information
structure information

Original tree can be reconstructed from the binary tree:

a left edge represents a parent-child relationships in the original tree
a right edges represents a right-sibling relationship in the original tree

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 6 / 28

Binary Branch Distance Binary Representation of a Tree

Example: Binary Tree Transformation

Represent tree T as a binary tree:

T

a

b

c d

b

c d

e

→ binary representation of T

a

b

c

d

b

c

d

e

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 7 / 28

Binary Branch Distance Binary Representation of a Tree

Normalized Binary Tree Representation

We extend the binary tree with null nodes ε as follows:

a null node for each missing left child of a non-null node
a null node for each missing right child of a non-null node

Note: Leaf nodes get two null-children.

The resulting normalized binary representation

is a full binary tree
all non-null nodes have two children
all leaves are null-nodes (and all null-nodes are leaves)

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 8 / 28

Binary Branch Distance Binary Representation of a Tree

Example: Normalized Binary Tree

Transforming T to the normalized binary tree B(T):

a

b

c d

b

c d

e

a

b

c

ε d

ε ε

b

c

ε d

ε ε

e

ε ε

ε

T B(T)→

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 9 / 28

Binary Branch Distance Binary Branches

Outline

1 Binary Branch Distance
Binary Representation of a Tree
Binary Branches
Lower Bound for the Edit Distance
Complexity

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 10 / 28

Binary Branch Distance Binary Branches

Binary Branch

A binary branch BiB(v) is

a subtree of the normalized binary tree B(T)
consisting of a non-null node v and its two children

Example:
BiB(a) = ({a, b, ε}, {(a, b)}, {(a, ε)})
BiB(d) = ({d , ε1, ε2}, {(d , ε1)}, {(d , ε2)}) 1

a

b

c

ε d

ε ε

b

c

ε d

ε1 ε2

e

ε ε

ε

1Although the two null nodes have identical labels (ε), they are different nodes. We
emphasize this by showing their IDs in subscript.

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 11 / 28

Binary Branch Distance Binary Branches

Binary Branches of Trees and Datasets

Binary branches can be serialized as strings:

BiB(v) = ({v, a, b}, {(v, a)}, {(v, b)})→ λ(v) ◦ λ(a) ◦ λ(b)
we can sort these strings (ε > λ(v) for all non-null nodes v)

Binary branch sets:

BiB(T) is the set of all binary branches of B(T)
BiB(S) =

⋃
T∈S BiB(T) is the set of all binary branches of dataset S

BiBsort(S) is the vector of sorted serialized strings of BiB(S)

Note:

nodes are unique in the tree, thus binary branches are unique
labels are not unique, thus the serialized binary branches are not unique

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 12 / 28

Binary Branch Distance Binary Branches

Example: Binary Branches of Trees and Datasets

a

b

c1

ε d3

ε ε

b

c4

ε d6

ε ε

e

ε ε

ε
a

b

c

ε d

ε b

e

ε ε

ε

c

ε d

ε e

ε ε

ε

T1 T2

BiB(c1) 6= BiB(c4):
BiB(c1) = ({c1, ε2, d3}, {(c1, ε2)}, {(c1, d3)})
BiB(c4) = ({c4, ε5, d6}, {(c4, ε5)}, {(c4, d6)})

Serialization of both, BiB(c1) and BiB(c2), is identical: ’cεd ’

Sorted vector of serialized strings of BiB(S), where S = {T1,T2}:
BiBsort(S) = (abε, bcb, bcc, bce, beε, cεd , dεb, dεe, dεε, eεε)

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 13 / 28

Binary Branch Distance Binary Branches

Binary Branch Vector

The binary branch vector BBV (T)

is a representation of the binary branch set BiB(T)

Construction of the binary branch vector BBV (T):

compute BiBsort(S) (serialize and sort BiB(S))
bi is the i-th serialized binary branch in sort order (bi = BiBsort(S)[i])
BBV (T)[i]) is the number of binary branches in B(T) that serialize to
bi

Note: BBV (T)[i] is zero if bi does not appear in BiB(T)

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 14 / 28

Binary Branch Distance Binary Branches

Example: Binary Branch Vectors

a

b

c

ε d

ε ε

b

c

ε d

ε ε

e

ε ε

ε
a

b

c

ε d

ε b

e

ε ε

ε

c

ε d

ε e

ε ε

ε

T1 T2

S = {T1,T2} is the data set
BiBsort(S) is the vector of sorted serialized strings of BiB(S)
BBV (Ti) is the binary branch vector of Ti

the vector of serialized strings and the binary branch vectors are:

BiBsort(S)
BBV (T1)
BBV (T2)

abε bcb bcc bce beε cεd dεb dεe dεε eεε

1 1 0 1 0 2 0 0 2 1

1 0 1 0 1 2 1 1 0 2
Augsten (Univ. Salzburg) Similarity Search WS 2018/19 15 / 28

Binary Branch Distance Lower Bound for the Edit Distance

Outline

1 Binary Branch Distance
Binary Representation of a Tree
Binary Branches
Lower Bound for the Edit Distance
Complexity

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 16 / 28

Binary Branch Distance Lower Bound for the Edit Distance

Binary Branch Distance [YKT05]

Definition (Binary Branch Distance)

Let BBV (T) = (b1, . . . , bk) and BBV (T′) = (b′1, . . . , b
′
k) be binary branch

vectors of trees T and T′, respectively. The binary branch distance of T
and T′ is

δB(T,T′) =
k∑

i=1

|bi − b′i |.

Intuition: We count the binary branches that do not match between
the two trees.

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 17 / 28

Binary Branch Distance Lower Bound for the Edit Distance

Example: Binary Branch Distance

We compute the binary branch distance between T1 and T2:

a

b

c d

b

c d

e

a

b

b d b

e

c d e

T1 T2

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 18 / 28

Binary Branch Distance Lower Bound for the Edit Distance

Example: Binary Branch Distance

The normalized binary tree representations are:

a

b

c

ε d

ε ε

b

c

ε d

ε ε

e

ε ε

ε
a

b

c

ε d

ε b

e

ε ε

ε

c

ε d

ε e

ε ε

ε

B (T1)
B (T2)

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 19 / 28

Binary Branch Distance Lower Bound for the Edit Distance

Example: Binary Branch Distance

The binary branch vectors of T1 and T2 are:

BiBsort(S)
BBV (T1)
BBV (T2)

abε bcb bcc bce beε cεd dεb dεe dεε eεε

1 1 0 1 0 2 0 0 2 1

1 0 1 0 1 2 1 1 0 2

The binary branch distance is

δB(T1,T2) =
∑10

i=1 |b1,i − b2,i |
= |1− 1|+ |1− 0|+ |0− 1|+ |1− 0|+ |0− 1|+
|2− 2|+ |0− 1|+ |0− 1|+ |2− 0|+ |1− 2|

= 9,

where b1,i and b2,i are the i-th dimension of the vectors BBV (T1)
and BBV (T2), respectively.

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 20 / 28

Binary Branch Distance Lower Bound for the Edit Distance

Lower Bound Theorem

Theorem (Lower Bound)

Let T and T′ be two trees. If the tree edit distance between T and T′ is
δt(T,T′), then the binary branch distance between them satisfies

δB(T,T′) ≤ 5× δt(T,T′).

Proof (Sketch — Full Proof in [YKT05]).

Each node v appears in at most two binary branches.

Rename: Renaming a node causes at most two binary branches in
each tree to mismatch. The sum is 4.

Similar rational for insert and its complementary operation delete (at
most 5 binary branches mismatch).

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 21 / 28

Binary Branch Distance Lower Bound for the Edit Distance

Proof Sketch: Illustration for Rename

transform T1 to T2: ren(c , x)
a

b c

e f

g

a

b x

e f

g

binary trees B(T1) and B(T2)
a

b

ε c

e

ε f

ε ε

g

ε ε

ε

a

b

ε x

e

ε f

ε ε

g

ε ε

ε

Two binary branches (bεc, ceg) exist only in B(T1)

Two binary branches (bεx , xeg) exist only in B(T2)

δt(T1,T2) = 1 (1 rename)

δB(T1,T2) = 4 (4 binary branches different)

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 22 / 28

Binary Branch Distance Lower Bound for the Edit Distance

Proof Sketch: Illustration for Insert

transform T1 to T2: ins(x , a, 2, 3)
a

b e f g

a

b x

e f

g

binary trees B(T1) and B(T2)
a

b

ε e

ε f

ε g

ε ε

ε

a

b

ε x

e

ε f

ε ε

g

ε ε

ε

Two binary branches (bεe, f εg) exist only in B(T1)

Tree binary branches (bεx , f εε, xeg) exist only in B(T2)

δt(T1,T2) = 1 (1 insertion)

δB(T1,T2) = 5 (5 binary branches different)

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 23 / 28

Binary Branch Distance Lower Bound for the Edit Distance

Proof Sketch

In general it can be shown that

Rename changes at most 4 binary branches
Insert changes at most 5 binary branches
Delete changes at most 5 binary branches

Each edit operation changes at most 5 binary branches, thus

δB(T,T′) ≤ 5× δt(T,T′).

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 24 / 28

Binary Branch Distance Complexity

Outline

1 Binary Branch Distance
Binary Representation of a Tree
Binary Branches
Lower Bound for the Edit Distance
Complexity

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 25 / 28

Binary Branch Distance Complexity

Complexity: Binary Branch Distance

Compute the distance between two trees of size O(n):
(S = {T1,T2}, n = max{|T1|, |T2|})
Construction of the binary branch vectors BBV (T1) and BBV (T2):

1. BiB(S) – compute the binary branches of T1 and T2:
O(n) time and space (traverse T1 and T2)

2. BiBsort(S) – sort serialized binary branches of BiB(S):
O(n log n) time and O(n) space

3. construct BBV (T1) and BBV (T2):
(a) traverse all binary branches: O(n) time and space
(b) for each binary branch find position i in BiBsort(S): O(n log n) time

(binary search in BiBsort(S) for n binary branches)
(c) BBV (T)[i] is incremented: O(1)

Computing the distance:
the two binary branch vectors are of size O(n)
computing the distance has time complexity O(n)
(subtracting two binary branch vectors)

The overall complexity is O(n log n) time and O(n) space.

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 26 / 28

Binary Branch Distance Complexity

Improving the Time Complexity with a Hash Function

Note: Improvement using a hash function:

we assume a hash function that maps the O(n) binary branches to
O(n) buckets without collision
we do not sort BiB(S)
position i in the vector BBV (T) is computed using the hash function
O(n) time (instead of O(n log n)) and O(n) space

In the following we assume the sort algorithm with O(n log n) runtime.

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 27 / 28

Binary Branch Distance Complexity

Complexity for Similarity Joins

Join two sets with N trees each (tree size: n):

Compute Binary Branch Vectors (BBVs):
O(Nn log(Nn)) time, O(N2n) space

BBVs are of size O(Nn)
time: sort O(Nn) binary branches / O(Nn) binary searches in BBVs
space: O(N) BBVs must be stored

Compute Distances: O(N3n) time

computing the distance between two trees has O(Nn) time complexity
(subtracting two binary branch vectors)
O(N2) distance computations required

Overal Complexity: O(N3n + Nn log n)2 time and O(N2n) space

2O(N3n + Nn log(Nn)) = O(N3n + Nn logN + Nn log n) = O(N3n + Nn log n)
Augsten (Univ. Salzburg) Similarity Search WS 2018/19 28 / 28

Rui Yang, Panos Kalnis, and Anthony K. H. Tung.
Similarity evaluation on tree-structured data.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 754–765, Baltimore, Maryland, USA,
June 2005. ACM Press.

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 28 / 28

