Similarity Search The pq-Gram Distance

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at Department of Computer Sciences University of Salzburg

WS 2018/19

Version January 9, 2019

Outline

- 1 The pq-Gram Distance
 - Definition
 - Algorithm
 - Fanout Weighting and Lower Bound
 - Experiments

Outline

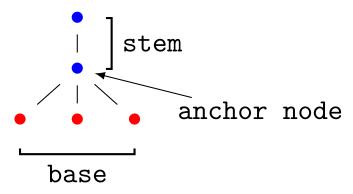
- 1 The pq-Gram Distance
 - Definition
 - Algorithm
 - Fanout Weighting and Lower Bound
 - Experiments

pq-Grams – Intuition

- *q*-Grams for strings:
 - split string into substrings (q-grams) of length q
 - strings with many common substrings are similar
- pq-Grams for trees:
 - split tree into small subtrees (pq-grams) of the same shape
 - trees with many common subtrees are similar

pq-Grams

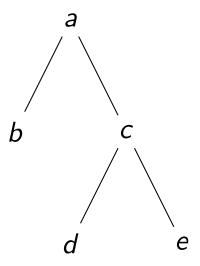
• The shape of a pq-gram (p=2, q=3):



- p nodes (anchor node and p-1 ancestors) form the stem
- q nodes (q consecutive children of the anchor node) form the base

pq-Extended Tree

• Problem: How can we split the following tree T into 2, 3-grams?



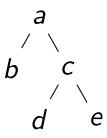
- Solution: Extend tree T with dummy nodes (●):
 - p-1 ancestors to the root node
 - \bullet q-1 children before the first and after the last child of each non-leaf
 - q children for each leaf
- The result is the pq-extendd tree T^{pq} .

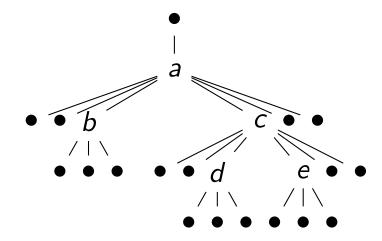
Example: Extended Tree

• An example tree T and its extended tree T^{pq} (p=2, q=3):

T

2, 3-extended tree $T^{2,3}$





Definition: pq-Gram [ABG05]

Definition (pq-Gram)

Let T be a tree, $T^{p,q}$ the respective extended tree, p > 0, q > 0. A subtree of $T^{p,q}$ is a pq-gram g of T iff

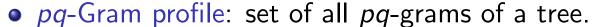
- \bigcirc g has q leaf nodes and p non-leaf nodes,
- all leaf nodes of g are children of a single node $a \in N(g)$ with fanout q, called the anchor node,
- \bigcirc the leaf nodes of g are consecutive siblings in $\mathsf{T}^{p,q}$.
 - Stem: anchor node and its ancestors in the pq-gram.
 - Base: children of the anchor node in the pq-gram.

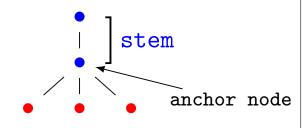
Definition (pq-Gram Profile)

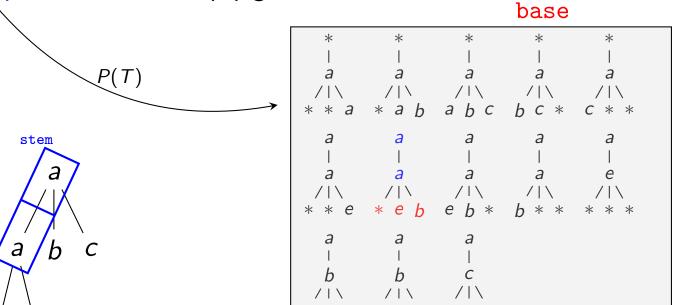
The pq-gram profile, P_T , of a tree T is the set of all its pq-grams.

Example: Systematically Split Tree

- pq-Gram: small subtree with stem and base Example: p = 2, q = 3
- Systematically split tree into pq-grams







base

Label Tuples

• Linear encoding of a pq-gram g with anchor node v_p : (traverse pq-gram in preorder)

• Label tuple: tuple of the pq-gram's node labels

$$\lambda(g) = (\lambda(\mathsf{v}_1), \dots, \lambda(\mathsf{v}_{p+q}))$$

for the pq-gram $g = (v_1, \dots, v_{p+q})$.

pq-Gram Index

Definition (pq-Gram Index)

Let T be a tree with profile P_T , p>0, q>0. The pq-gram index, \mathcal{I} , of tree T is the **bag of all label tuples** of T,

$$\mathcal{I}(\mathsf{T}) = \biguplus_{g \in \mathsf{P}_\mathsf{T}} \lambda(g)$$

- Note:
 - pq-grams are unique within a tree
 - but: different pq-grams may yield identical label tuples
 - thus the pq-gram index may contain duplicates

Storing the pq-Gram Index Efficiently

- Problem: How to store node labels efficiently?
 - Long labels: large storage overhead
 - Varying label length: in a relational database, the inefficient VARCHAR type must be used instead of the efficient CHAR type
- Solution: Hashing
 - compute fingerprint hash for labels
 - store concatenation of the hashed labels
- Fingerprint hash function (e.g., Karp-Rabin [KR87]):
 - maps a string s to a hash value h(s)
 - h(s) is of fixed length
 - h(s) is unique with high probability (for two different strings $s_1 \neq s_2$, $h(s_1) \neq h(s_2)$ with high probability)

Overview: The pq-Gram Index

• pq-Gram profile:

• Hashing: map pq-gram to integer:

Note: labels may be strings of arbitrary length!

• pq-Gram index: bag of hashed pq-grams $\mathcal{I}(\mathsf{T}) = \{03003, 03037, 03376, 03760, 03600, 33004, 33047, 33470, 33700, 37000, 36000, 34000, 37000\}$

Intuition: similar trees have similar pq-gram indexes.

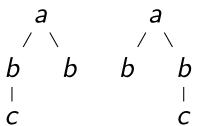
The pq-Gram Distance

Definition (pq-Gram Distance)

The pq-gram distance between two trees, T and T', is defined as

$$\delta_{\mathsf{g}}(\mathsf{T},\mathsf{T}') = |\mathcal{I}(\mathsf{T}) \uplus \mathcal{I}(\mathsf{T}')| - 2|\mathcal{I}(\mathsf{T}) \cap \mathcal{I}(\mathsf{T}')|$$

- Metric normalization to [0..1]: $\delta'_g(\mathsf{T},\mathsf{T}') = \frac{\delta_g(\mathsf{T},\mathsf{T}')}{|\mathcal{I}(\mathsf{T}) \uplus \mathcal{I}(\mathsf{T}')| |\mathcal{I}(\mathsf{T}) \cap \mathcal{I}(\mathsf{T}')|}$
- Pseudo-metric properties hold for normalization [ABG10]:
 - self-identity: $x = y \neq \emptyset$ $\delta_g(x, y) = 0$
 - symmetry: $\delta_g(x, y) = \delta_g(y, x)$
 - triangle inequality: $\delta_g(x,z) \leq \delta_g(x,y) + \delta_g(y,z)$



• Different trees may have identical indexes:

Outline

- 1 The pq-Gram Distance
 - Definition
 - Algorithm
 - Fanout Weighting and Lower Bound
 - Experiments

Main Memory Algorithm (I)

```
CREATEINDEX(T, r, \mathcal{I}, stem, p, q)
         stem := shift(stem, \lambda(r))
         base: shift register of size q (filled with *)
         if r is a leaf then
            \mathcal{I} := \mathcal{I} \cup \{stem \circ base\}
         else
            for each child c (from left to right) of r do
                  base := shift(base, \lambda(c))
                  \mathcal{I} := \mathcal{I} \cup \{stem \circ base\}
                  \mathcal{I} := \text{CREATEINDEX}(\mathsf{T}, \mathsf{c}, \mathcal{I}, stem, p, q)
            for k := 1 to q - 1
                  base := shift(base, *)
                  \mathcal{I} := \mathcal{I} \cup \{stem \circ base\}
         return \mathcal{I}
```

Main Memory Algorithm (II)

- Input of CREATEINDEX(T, r, \mathcal{I} , stem, p, q):
 - a subtree of T rooted in r
 - the pq-gram index \mathcal{I} computed so far
 - the stem stem of r's parent
 - the parameters p and q
- Output of CREATEINDEX(T, r, I, stem, p, q):
 pq-gram index including
 - ullet the input index ${\mathcal I}$
 - the pq-gram index of r and all its descendants i.e., the pq-grams (label tuples) with anchor node r or a descendant of r

Main Memory Algorithm (III)

• pq-GRAM-INDEX(T, p, q) computes the pq-gram index for a complete tree T:

pq-Gram-Index(T, p, q)

stem: shift register of size p (filled with *)

 \mathcal{I} : empty index

 $\mathcal{I} = \text{CREATEINDEX}(\mathsf{T}, \text{root}(\mathsf{T}), \mathcal{I}, stem, p, q)$

return \mathcal{I}

Complexity of the pq-Gram Index Algorithm

Theorem (pq-Gram Index Complexity)

The pq-gram index of a tree T with size |T| can be computed in O(|T|) time.

Proof.

Each recursive call of *createIndex*() processes one node in constant time, and each node is processed exactly once.

Size of the pq-Gram Index

Theorem (Size of the pq-Gram Index)

Let T be a tree with I leaves and i non-leaves. The size of the pq-gram index of T is

$$|\mathcal{I}^{pq}(\mathsf{T})| = 2I + qi - 1.$$

Proof.

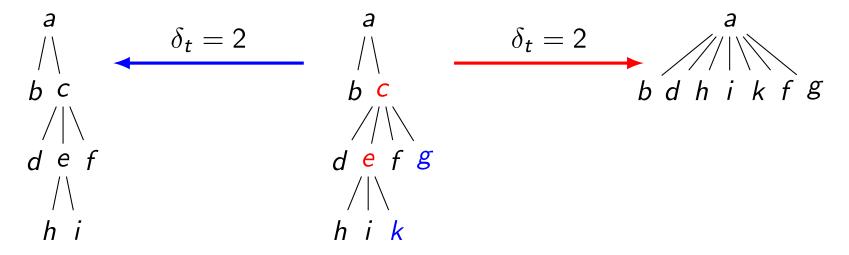
- We count all pq-grams whose leftmost leaf is a dummy node: Each leaf is the anchor node of exactly one pq-gram whose leftmost leaf is a dummy node, giving l pq-grams. Each non-leaf is the anchor of q-1 pq-grams whose leftmost leaf is a dummy, giving i(q-1) pq-grams.
- We count all pq-grams whose leftmost leaf is not a dummy node: Each node of the tree except the root is the leftmost leaf of exactly one pq-gram, giving l+i-1 pq-grams.

Overall number of pq-grams: l + i(q - 1) + (l + i - 1) = 2l + qi - 1.

Outline

- 1 The pq-Gram Distance
 - Definition
 - Algorithm
 - Fanout Weighting and Lower Bound
 - Experiments

Motivation: Unit Cost Model Not Always Intuitive



- Unit cost edit distance:
 - no difference between leaves and non-leaves
 - may lead to non-intuitive results
- Conclusion: Non-leafs should have more weight than leafs.

Fanout Weighted Tree Edit Distance

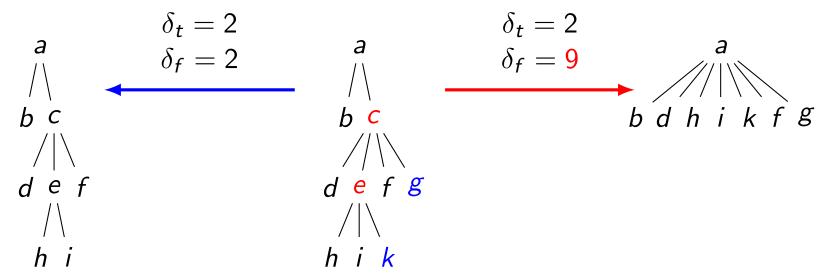
Definition (Fanout Weighted Tree Edit Distance)

Let T and T' be two trees, $w \in N(T')$ a node with fanout f, $w' \in N(T')$ a node with fanout f', c > 0 a constant. The fanout weighted tree edit distance, $\delta_f = (\mathsf{T}, \mathsf{T}')$, between T and T' is defined as the tree edit distance with the following costs for the edit operations:

- Delete: $\alpha(\mathsf{w} \to \epsilon) = f + c$
- Insert: $\alpha(\epsilon \rightarrow w') = f' + c$
- Rename: $\alpha(\mathsf{w} \to \mathsf{w}') = (f + f')/2 + c$
- Cost of changing a non-leaf node: proportional to its fanout.
- Cost of changing a leaf node: constant c.

Example: Fanout-Weighted Tree Edit Distance

- Fanout-Weighted Tree Edit Distance:
 - leaf changes have small cost (c = 1 in the example)
 - non-leaf changes cost proportional to the node fanout



pg-Gram Distance Lower Bound

Theorem

Let p = 1 and $c \ge \max(2q - 1, 2)$ be the cost of changing a leaf node. The pq-gram distance provides a lower bound for the fanout weighted tree edit distance, i.e., for any two trees, T and T',

$$\frac{\delta_{g}(\mathsf{T},\mathsf{T}')}{2} \leq \delta_{f}(\mathsf{T},\mathsf{T}').$$

Proof.

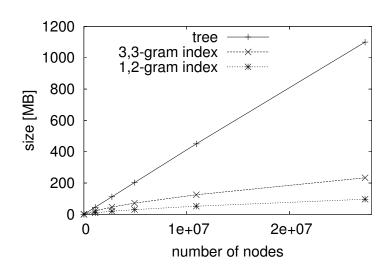
See [ABG10] (ACM Transactions on Database Systems).

Outline

- 1 The pq-Gram Distance
 - Definition
 - Algorithm
 - Fanout Weighting and Lower Bound
 - Experiments

Size of the pq-Gram Index

- pq-Gram index size: linear in the tree size
- Experiment:
 - compute pq-gram index for trees with different number of nodes
 - compare tree and index size



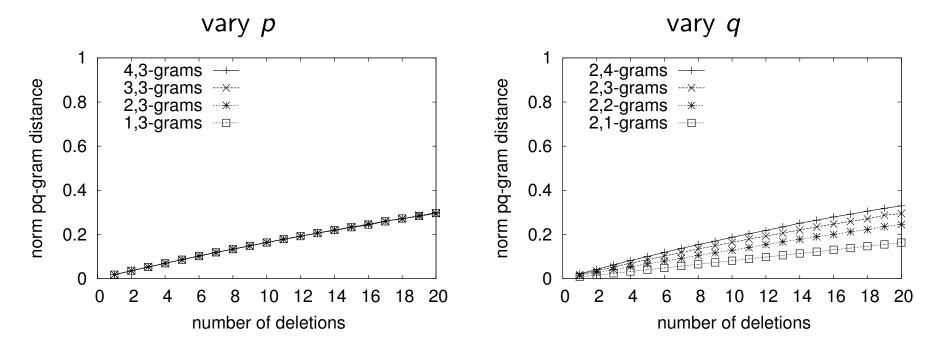
[Trees created with xmlgen.]

Why is the *pq*-gram index smaller than the tree?

- hash values are smaller than labels
- duplicate pq-grams of a tree are stored only once

Sensitivity to Structure Change — Leaf

- Cost of leaf change \rightarrow depends only on q
- Experiment:
 - delete leaf nodes
 - measure normalized pq-gram distance

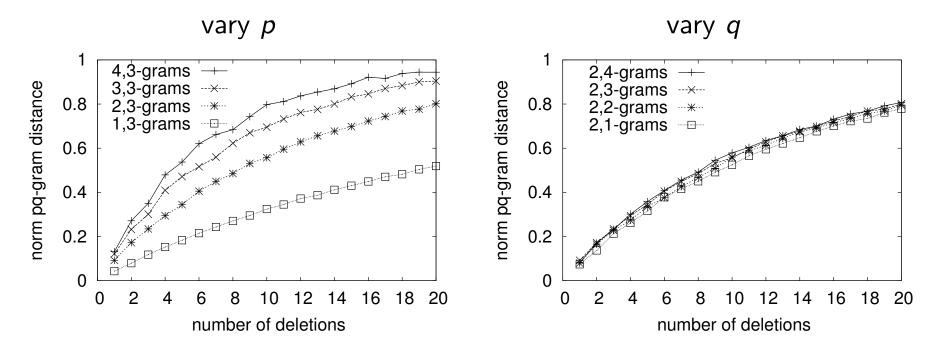


(Artificial tree with 144 nodes, 102 leaves, fanout 2-6 and depth 6. Average over 100 runs.)

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 28 / 32

Sensitivity to Structure Change — Non-Leaf

- Cost for non-leaf change \rightarrow controlled by p
- Experiment:
 - delete non-leaf nodes
 - measure normalized *pq*-gram distance

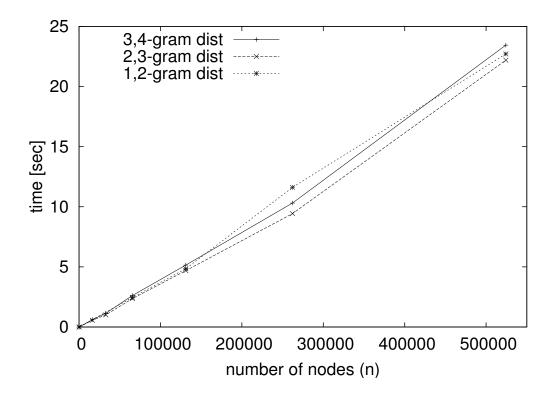


(Artificial tree with 144 nodes, 102 leaves, fanout 2-6 and depth 6. Average over 100 runs.)

Augsten (Univ. Salzburg) Similarity Search WS 2018/19 29 / 32

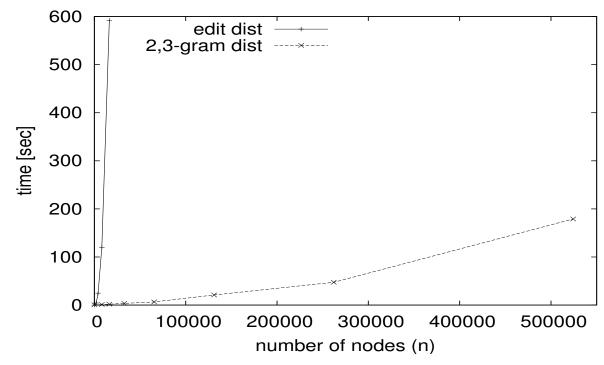
Influence of p and q on Scalability

- Scalability (almost) independent of p and q.
- Experiment: For pair of trees
 - compute pq-gram distance for varying p and q
 - vary tree size: up 10⁶ nodes
 - measure wall clock time



Scalability to Large Trees

- pq-gram distance \rightarrow scalable to large trees
- compare with edit distance
- Experiment: For pair of trees
 - compute tree edit distance and pq-gram distance
 - vary tree size: up 5×10^5 nodes
 - measure wall clock time



pq-Grams vs. other Edit Distance Approximations

Effectiveness: pq-grams outperform all other approximations

Experiment: two sets of address trees (299 and 302 trees)

- compute distances between all tree pairs
- find matches (symmetric nearest neighbor)

Distance	Correct	Recall	Precision	f-Measure	Runtime
fanout edit dist	259	86.6%	98.5%	0.922	19 min
unit edit dist	247	82.6%	96.5%	0.890	14 min
node intersection	197	65.9%	93.8%	0.774	4.3s
p,q-grams	236	78.9%	98.7%	0.877	8.1s
tree-embedding	206	68.9%	96.3%	0.803	7.1s
binary branch	193	64.5%	93.2%	0.763	7.4s
bottom-up	148	49.6%	92.5%	0.645	67.0s

- Nikolaus Augsten, Michael Böhlen, and Johann Gamper.

 Approximate matching of hierarchical data using pq-grams.

 In Proceedings of the International Conference on Very Large
 Databases (VLDB), pages 301–312, Trondheim, Norway, September 2005. ACM Press.
- Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
 The pq-gram distance between ordered labeled trees.

 ACM Transactions on Database Systems (TODS), 35(1):1–36, 2010.
- Richard M. Karp and Michael O. Rabin.

 Efficient randomized pattern-matching algorithms.

 IBM Journal of Research and Development, 31(2):249–260, March 1987.