

Overview: The *pq*-Gram Index

• pq-Gram profile:

• Hashing: map pq-gram to integer:

Note: labels may be strings of arbitrary length!

• pq-Gram index: bag of hashed pq-grams $\mathcal{I}(T) = \{03003, 03037, 03376, 03760, 03600, 33004, 33047, 33470, 33700, 37000, 36000, 34000, 37000\}$

The pq-Gram Distance Algorithm

Intuition: similar trees have similar pq-gram indexes.

Similarity Search

Outline

Augsten (Univ. Salzburg)

1 The *pq*-Gram Distance

- Definition
- Algorithm
- Fanout Weighting and Lower Bound
- Experiments

The pq-Gram Distance Definition

Definition (*pq*-Gram Distance)

The pq-gram distance between two trees, T and T', is defined as

$$\delta_{g}(\mathsf{T},\mathsf{T}') = |\mathcal{I}(\mathsf{T}) \uplus \mathcal{I}(\mathsf{T}')| - 2|\mathcal{I}(\mathsf{T}) \oplus \mathcal{I}(\mathsf{T}')|$$

- Metric normalization to [0..1]: δ'_g(T, T') = δ_g(T,T')/|*I*(T)⊕*I*(T')|-*I*(T)⊕*I*(T')|
 Pseudo-metric properties hold for normalization [ABG10]:
 self-identity: x = y ≠ ⇒ δ_g(x, y) = 0
 - symmetry: $\delta_g(x, y) = \delta_g(y, x)$
 - triangle inequality: $\delta_g(x, z) \le \delta_g(x, y) + \delta_g(y, z)$
- Different trees may have identical indexes:

Augsten (Univ. Salzburg)

The *pg*-Gram Distance Algorithm

Similarity Search

а

С

С

WS 2018/19 14 / 32

```
Main Memory Algorithm (I)
```

CREATEINDEX($\mathsf{T}, \mathsf{r}, \mathcal{I}, stem, p, q$)

```
stem := shift(stem, \lambda(r))
base: shift register of size q (filled with *)
```

```
 \begin{array}{l} \text{if } r \text{ is a leaf then} \\ \mathcal{I} := \mathcal{I} \cup \{ stem \circ base \} \\ \text{else} \\ \text{for each child } c \text{ (from left to right) of } r \text{ do} \\ base := shift(base, \lambda(c)) \\ \mathcal{I} := \mathcal{I} \cup \{ stem \circ base \} \\ \mathcal{I} := CREATEINDEX(T, c, \mathcal{I}, stem, p, q) \\ \text{for } k := 1 \text{ to } q - 1 \\ base := shift(base, *) \\ \mathcal{I} := \mathcal{I} \cup \{ stem \circ base \} \end{array}
```

return \mathcal{I}

WS 2018/19 13/32

The pq-Gram Distance Algorithm Main Memory Algorithm (II)	The pq-Gram Distance Algorithm Main Memory Algorithm (III)
 Input of CREATEINDEX(T, r, I, stem, p, q): a subtree of T rooted in r the pq-gram index I computed so far the stem stem of r's parent the parameters p and q Output of CREATEINDEX(T, r, I, stem, p, q): pq-gram index including the input index I the pq-gram index of r and all its descendants i.e., the pq-grams (label tuples) with anchor node r or a descendant 	 <i>pq</i>-GRAM-INDEX(T, <i>p</i>, <i>q</i>) computes the <i>pq</i>-gram index for a complete tree T: <i>pq</i>-GRAM-INDEX(T, <i>p</i>, <i>q</i>) <i>stem</i>: shift register of size p (filled with *) <i>I</i>: empty index <i>I</i> = CREATEINDEX(T, root(T), <i>I</i>, <i>stem</i>, <i>p</i>, <i>q</i>) return <i>I</i>
Augsten (Univ. Salzburg) Similarity Search WS 2018/19	17/32 Augsten (Univ. Salzburg) Similarity Search WS 2018/19 18/32
The pq-Gram Distance Algorithm Complexity of the pq-Gram Index Algorithm	The pq-Gram Distance Algorithm Size of the pq-Gram Index
Theorem (<i>pq</i> -Gram Index Complexity)	Theorem (Size of the pq-Gram Index) Let T be a tree with I leaves and i non-leaves. The size of the pq-gram index of T is $ \mathcal{I}^{pq}(T) = 2l + qi - 1.$
The pq-gram index of a tree T with size $ T $ can be computed in $O(T $ time.	
Proof. Each recursive call of <i>createInde</i> x() processes one node in constant tim and each node is processed exactly once.	 We count all pq-grams whose leftmost leaf is a dummy node: Each leaf is the anchor node of exactly one pq-gram whose leftmost leaf is a dummy node, giving l pq-grams. Each non-leaf is the anchor of q - 1 pq-grams whose leftmost leaf is a dummy, giving i(q - 1) pq-grams. We count all pq-grams whose leftmost leaf is not a dummy node:

We count all pq-grams whose leftmost leaf is not a dummy node: Each node of the tree except the root is the leftmost leaf of exactly one pq-gram, giving l + i - 1 pq-grams.

Overall number of pq-grams: l + i(q - 1) + (l + i - 1) = 2l + qi - 1.

WS 2018/19 19/32

Augsten (Univ. Salzburg)

The pq-Gram Distance Fanout Weighting and Lower Bound pq-Gram Distance Lower Bound Outline

Theorem

Proof.

Let p = 1 and $c \ge \max(2q - 1, 2)$ be the cost of changing a leaf node. The pq-gram distance provides a lower bound for the fanout weighted tree edit distance, i.e., for any two trees, T and T',

 $\frac{\delta_g(\mathsf{T},\mathsf{T}')}{2} \leq \delta_f(\mathsf{T},\mathsf{T}').$

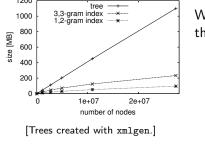
See [ABG10] (ACM Transactions on Database Systems).

• pq-Gram index size: linear in the tree size

• Experiment:

1200

Augsten (Univ. Salzburg)


• compute *pq*-gram index for trees with different number of nodes

Similarity Search

The pq-Gram Distance Experiments

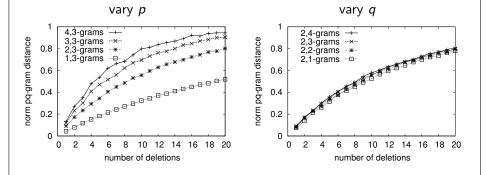
• compare tree and index size

Size of the *pq*-Gram Index

Why is the *pq*-gram index smaller than the tree?

- hash values are smaller than labels
- duplicate *pq*-grams of a tree are stored only once
- The pq-Gram Distance Experiments 1 The *pq*-Gram Distance • Definition Algorithm • Fanout Weighting and Lower Bound Experiments Augsten (Univ. Salzburg) Similarity Search WS 2018/19 26 / 32 The pq-Gram Distance Experiments Sensitivity to Structure Change — Leaf • Cost of leaf change \rightarrow depends only on q• Experiment: • delete leaf nodes • measure normalized *pq*-gram distance vary p vary q 4,3-grams -2,4-grams — 3,3-grams ------2,3-grams -----pq-gram distance pq-gram distance 0.8 2,2-grams *** 0.8 2,3-grams *** 1.3-grams 2,1-grams -----0.6 0.6 0.4 0.4 norm lorm 0.2 0.2 0 8 10 12 14 16 18 20 10 12 14 16 18 20 0 2 6 0 2 6 8 number of deletions number of deletions

(Artificial tree with 144 nodes, 102 leaves, fanout 2-6 and depth 6. Average over 100 runs.)


WS 2018/19

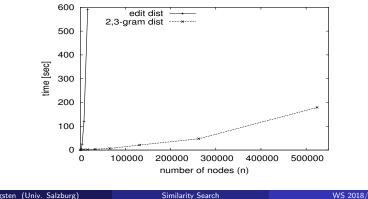
25 / 32

The *pq*-Gram Distance Experiments

Sensitivity to Structure Change - Non-Leaf

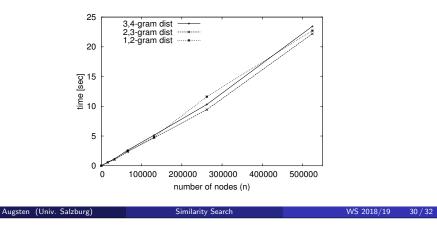
- Cost for non-leaf change \rightarrow controlled by p
- Experiment:
 - delete non-leaf nodes
 - measure normalized *pq*-gram distance

(Artificial tree with 144 nodes, 102 leaves, fanout 2-6 and depth 6. Average over 100 runs.)


Similarity Search

The pq-Gram Distance Experiments

Scalability to Large Trees


Augsten (Univ. Salzburg)

- pq-gram distance \rightarrow scalable to large trees
- compare with edit distance
- Experiment: For pair of trees
 - compute tree edit distance and pq-gram distance
 - vary tree size: up 5×10^5 nodes
 - measure wall clock time

The pq-Gram Distance Experiments Influence of *p* and *q* on Scalability

- Scalability (almost) independent of p and q.
- Experiment: For pair of trees
 - compute pq-gram distance for varying p and q
 - vary tree size: up 10⁶ nodes
 - measure wall clock time

pg-Grams vs. other Edit Distance Approximations

The pq-Gram Distance Experiments

Effectiveness: *pq*-grams outperform all other approximations

Experiment: two sets of address trees (299 and 302 trees)

- compute distances between all tree pairs
- find matches (symmetric nearest neighbor)

Distance	Correct	Recall	Precision	f-Measure	Runtime
fanout edit dist	259	86.6%	98.5%	0.922	19 min
unit edit dist	247	82.6%	96.5%	0.890	14 min
node intersection	197	65.9%	93.8%	0.774	4.3s
p,q-grams	236	78.9%	98.7%	0.877	8.1s
tree-embedding	206	68.9%	96.3%	0.803	7.1s
binary branch	193	64.5%	93.2%	0.763	7.4s
bottom-up	148	49.6%	92.5%	0.645	67.0s

Augsten (Univ. Salzburg)

WS 2018/19 31 / 32

WS 2018/19 29 / 32

Augsten (Univ. Salzburg) Similarity Search

