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How to find data in a database?

1. Scan: Search whole database
I very slow (1TB from hard disk → lasts multiple hours)

2. Sort: phone book
I Sorting allows directed search

3. Hashing: digit sum / pigeon holes
I digit sum determines pigeon hole
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Standard Approaches do not work

I Sort: Errors destroy ordering
Customers

Name Location

Frieda Bozen
Frodo Auenland
Maria Meran
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Similarity of Sets

I Many similarity criteria can be expressed as set overlaps
I Examples:

I Words in text documents or websites
I Friends on Facebook
I Products in a shopping basket
I Tags on Flickr
I Click stream: Links clicked by a user
I ...
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Set Similarity Join
Definition

I R,S . . . collections of sets

I Similarity function sim, e.g.
I O(x , y) = |x ∩ y |
I J(x , y) = |x∩y |

|x∪y |
I Threshold t

R
sim
on S = {(r , s) ∈ R × S | sim(r , s) ≥ t}
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Similarity Join: Find all Similar Pairs

I Data set: Titles and authors of n = 873.524
publications (DBLP)

I Sets with an average word count of 15 (min. 2, max: 289)
I Zipf-distributed word frequencies, 408.824 different words
I Goal: find pairs of sets sharing many elements (e.g., 90%)

sim(A,B) =
|A ∩ B|
|A ∪ B|

I Naive solution: Compute all overlaps

1. Compute overlap for all pairs of sets
2. Return pairs for which the overlap is large enough
→ very inefficient: O(n2) computed overlaps (˜381 billion)
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Clever Solution

I Compare lengths and start computation for sets of similar size

I Terminate as soon as it is guaranteed the overlap is not
reachable anymore
→ single comparisons are very efficient (6-20ns)

I However, still too many comparisons . . .
→ still O(n2) comparisons (˜381 billion)

Overlap Runtime

0.95% 2201 s
0.90% 3136 s
0.80 % 4280 s
0.70 % 7770 s
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Complexity

R S

{a, b}r1 {a, b}s1
{d , g}r2 {c , e}s2
{c , f }r3 {c, g}s3

|r1 ∩ s1| = 2 |r1 ∩ s2| = 0 |r1 ∩ s3| = 0

|r2 ∩ s1| = 0 |r2 ∩ s2| = 0 |r2 ∩ s3| = 1

|r3 ∩ s1| = 0 |r3 ∩ s2| = 1 |r3 ∩ s3| = 1
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Complexity / Inverted List Index
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Background - Prefix Filter1

I Example
I 2 sets
I Sorted alphabetically
I Scan from left to right to compute overlap:

r: ? ? ? ? ?

s: ? ? ? ? ?

max. overlap: 5

|r ∩ s| ≥ 4

1S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity
joins in data cleaning. In Proc. ICDE, pages 5–16, 2006.
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Background - Abstract Model of Algorithms

a c

s1

s3

s4

s2

s3

s5

a c r6

r7

(1a) lookup collection of
probing sets R

collection S
prefix index

(1b) crop
inverted

lists

pre-candidates

s3

s4

(
]

s3

s5

)
{r6}×

probing id

(2) filter
pre-

candidates

candidates

(r6,s3)
(r6,s4)

{ }

(3) verification

{(r6,s4)}

result
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Preprocessing

Preprocessing:

1. Convert input objects into sets (arbitrary token data types).

2. Convert to integer sets. The larger the integer value, the more
common the token is.

3. Sort sets by tokens.

4. Sort set collection by set size.

Here you find the preprocessing instructions for the datasets in this
project:
http://ssjoin.dbresearch.uni-salzburg.at/datasets.html

http://ssjoin.dbresearch.uni-salzburg.at/datasets.html
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