Database Tuning

Introduction, Tuning Principles, Course Organization

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at
Department of Computer Sciences
University of Salzburg

M database
research group

http://dbresearch.uni-salzburg.at

Sommersemester 2019
Version March 12, 2019

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019

Outline

@ Introduction to Database Tuning

© Basic Principles of Tuning

© Course Organization

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 2/33

Introduction to Database Tuning

Outline

@ Introduction to Database Tuning

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 3/33

Introduction to Database Tuning

What is Database Tuning?

Activity of making a database application run faster:
@ Faster means higher throughput or lower response time
@ A 5% improvement is significant

What parameters should be considered for tuning?
@ All parameters that help to reach the tuning goal!

@ Examples: more or faster disks, more main memory, use indexes
effectively, write good queries, avoid unnecessary computations, avoid
transaction bottleneck etc.

Bad news: There is always a cost/benefit tread-off.
Good news: Sometimes the cost is very low and the benefit very high, e.g.
avoiding transaction bottlenecks or queries that run for hours unnecessarily.

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 4 /33

Introduction to Database Tuning

Why is Database Tuning hard?

The following query runs too slow:

select * from R where R.a > 5

What to do? S ——
application ‘ ’

database

PARSER
OPTIMIZER

EXECUTION

SUBSYSTEM
DISK LOCKING
SUBSYSTEM SUBSYSTEM
CACHE
MANAGER

hardware

LOGGING
SUBSYSTEM

DISK/

MEMORY CPU CONTROLLER

NETWORK

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 5/33

Introduction to Database Tuning

Course Objectives

@ Relevant notions concerning the internals of commercial DBMS

e helps you to understand the manual of your DBMS
e enables you to take informed tuning decisions

@ Tuning principles, backed by experiments:
e How do tuning principles impact the performance of my system?
@ Troubleshooting methodology:

o Troubleshooting (what is happening?)
e Hypothesis formulation

@ what is the cause of the problem?
@ apply tuning principles to propose a fix

o Hypothesis verification (experiments)

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 6/33

Introduction to Database Tuning

Prerequisites

@ Programming skills (Java)
o Data structures and algorithms (undergraduate level)
o lists, trees, arrays, binary search, merge algorithms, etc.

@ Databases management systems (undergraduate level)

e basic SQL knowledge
e advantageous to know transactions, indexes, buffer management, etc.

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 7/33

Introduction to Database Tuning

How Is This Course (DBT) Different from “Databases II"

(DBII)?

@ DBT looks at the same topics from a different perspective.

@ Algorithmic details vs. black box behavior:

e DBII: how exactly does a B-tree updated work?
e DBT: how efficient is a B-tree update and why?

@ Theory vs. hands-on:

e DBII: learn about sort-merge and hash join on paper
e DBT: experimentally compare sort-merge and hash join on a real
system, interpret the results

@ Local vs. Global:

e DBII: focus on topics in isolation
e DBT: focus on interaction between system components

@ There is a partial overlap, important notions will be revisited!

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019

Basic Principles of Tuning

Outline

© Basic Principles of Tuning

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 9/33

Basic Principles of Tuning

Tuning between Theory and Practice

@ Practitioner: Apply rules of thumb.

o Example: “Never use aggregate functions (such as AVG) when
transaction response time is critical.”

e Problem: Blindly applying rules of thumb may not work, e.g., AVG may
be OK if only few tuples are accessed via index.

@ [heoretician: Mathematically model problem and give guarantees
about solution.

e Example: Runtime behavior of join algorithms with different indexes.
e Problem: Complex approaches often not applicable in practice since
they rest on non-realizable assumptions.

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 10/33

Basic Principles of Tuning

Tuning between Theory and Practice

@ Database Tuner: Understand and apply principles!

e Understanding: The problem is not AVG, but scanning large amounts
of data (which AVG often does...).

e Principle: Do not scan large amounts of data in highly concurrent
environments.

e Understanding the principles is necessary to decide, whether they apply
in a particular situation.

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 11/33

Basic Principles of Tuning

Five Basic Tuning Principles

@ Five general and basic principles in tuning:

think globally; fix locally

partitioning breaks bottlenecks

start-up costs are high; running costs are low
render on the server what is due on the server
be prepared for trade-offs

06006

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 12/33

Basic Principles of Tuning

Think Globally; Fix Locally (1/11)

@ Tuner should be like a good physician:

o think globally: identify the problem (vs. treating symptoms)
o fix locally: minimalist intervention (reduce side effects)

@ Example: Disk activity is very high. What to do?

@ Solution 1: Buy more disks (local thinking).
e Disk activity is a symptom.
e Global thinking: Where is the disc activity generated?

@ missing index on frequent query (add index)
@ database buffer is too small (increase buffer)
e log and frequently accessed data share disk (move log to other disk)

e Solving the problem is cheaper and more effective than fighting the
symptom.

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 13/33

Basic Principles of Tuning

Think Globally; Fix Locally (I1/11)

@ Solution 2: Speed up query with the longest runtime.

e Slowest query might be infrequent and take only 1% of overall runtime.
e Speedup by factor 2 will increase system performance only by 0.5%!
e Speed up important queries!

@ Solution 3: Speed up query with largest share in runtime.

e The query that slows down the system might be unnecessary.
e Talk to application programmers. Is the query necessary? Can you
achieve the same thing in a simpler way?

@ Lesson learned: Look at the whole system when you identify the
problem (think globally). Fix the problem where it occurs (fix locally).

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 14 /33

Basic Principles of Tuning

Partitioning Breaks Bottlenecks

@ What is a bottleneck?

e rarely all parts of a system are saturated
e often one part limits the overall performance of the system
e bottleneck: the limiting part of the system

@ Example: Highway traffic jam:

e e.g. due to narrow street segment or merging streets
e bottleneck: road segment with greatest portion of cars per lane

@ Solutions for traffic jam:

@ make drivers drive faster through narrow street segment
@ create more lanes
@ encourage drivers to avoid rush hours

@ Solution 1 is a local fix (e.g., add index)

@ Solutions 2 and 3 are called partitioning.

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019

Basic Principles of Tuning

Partitioning Breaks Bottlenecks — Strategies

@ Partitioning in mathematics:

o divide a set into mutually disjoint (=non-intersecting) parts
o Example: A={a,b,c,d,e} is aset, {{a,c},{d},{b,e}} isa
partitioning of A
e database tuning: query load is partitioned
@ The two basic partitioning strategies are:

o divide load over more resources (add lanes)
o spread load over time (avoid rush hours)

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019

Basic Principles of Tuning

Partitioning Breaks Bottlenecks — Example

@ Example 1: Bank accounts

e A bank has N branches.
e Most clients access accounts from their home branch.
e Centralized system is overloaded.

@ Solution: Partition in space

e put account data of clients with home branch / into subsystem |
e partitioning of physical resources in space

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 17 /33

Basic Principles of Tuning

Partitioning Breaks Bottlenecks — Example

@ Example 2: Lock contention on free list.

o free list: list of unused database buffer pages
e a thread that needs a free page locks the free list
e during the lock no other thread can get a free page

@ Solution: Logical partitioning

e create several free lists

e each free list contains pointers to a portion of free pages
e a thread that needs a free page randomly selects a list
o
")

with n free lists the load per list is reduced by factor 1/n
logical partitioning of lockable resources

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019

Basic Principles of Tuning

Partitioning Breaks Bottlenecks — Example

@ Example 3: Lock and resource contention in system with long and
short “online” transactions that access the same data.
@ Lock and resource contention:

o lock contention: many threads lock the same resource (e.g., DB table)
e resource contention: many threads access the same resource (e.g., disk)

@ Long and online transactions:

o long transactions (e.g., data warehouse query loads) hold many locks
(e.g., on multiple tables)
e online transactions are short and need fast response time

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 19/33

Basic Principles of Tuning

Partitioning Breaks Bottlenecks

@ Problems:

e deadlocks may force long transactions to abort
e online transactions slow because

@ they have to wait for long transactions to finish and release the locks
@ long transactions use up resources (e.g., memory buffer)

@ Solution: Partition in time or space
e partition in time: run long transactions when there is little online

transaction activity
e partition in space: run long transactions (if read only) on out-of-date

data on separate hardware
e serialize long transactions so that they don't interfere with one another

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 20/33

Basic Principles of Tuning

Partitioning Breaks Bottle Necks — Summary

@ Types of partitioning:
o partitioning in space (bank branches)

o logical partitioning (free lists)
e partitioning in time (long and short transactions)

@ Partition with care: performance not always improved!

e bank branches: additional communication cost for some queries
o free lists: if one list is empty, need to go to next list
e transactions: additional offline system

@ Lesson learned: When you find a bottleneck,

@ try to speed up that component (fix locally)
@ if that does not work, then partition

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019

Basic Principles of Tuning

Start-Up Costs Are High: Running Costs Are Low

@ In man-made objects start-up time is often long:

@ cars: ignition system
e light bulbs: lifetime depends on the number of times they are turned on

o database systems :-)

DBT - Introduction Sommersemester 2019 22 /33

Augsten (Univ. Salzburg)

Basic Principles of Tuning

Start-Up Costs Are High: Running Costs Are Low

@ Reads from disk:

e expensive to begin read operation

e once read has started, data can be delivered at high speed

o Example: reading 64 KB (128 sectors) from a single disk track is less
than 2 times slower than reading 512 bytes (1 sector)

@ Conclusions:

e frequently scanned tables should be laid out sequentially on disk
e frequent query that projects few columns from table with hundreds of
columns: vertically partition table

@ Note: Holds also for RAM!

e scanning sequential data from RAM much faster than accessing the
same data in different positions
o RAM (random access memory) is not really random...

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 23/33

Basic Principles of Tuning

Start-Up Costs Are High: Running Costs Are Low

@ Network latency:

e overhead of sending a message is very high

e additional cost of sending large message over small message is small

o Example: sending 1 byte packet (message) is almost as expensive as
sending 1 KB packet (message)

@ Conclusion:
e sending few large data chunks is better than sending many small ones

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 pLACK]

Basic Principles of Tuning

Start-Up Costs Are High: Running Costs Are Low

@ Query overhead:
e before a query is executed by the database
@ it is parsed
@ it is optimized
@ and access paths to the data are selected

e even for small queries: approx. 10000 instructions
@ Compiled queries:

cache the results of parsing, optimizing, and access path selection

next execution of the cached query saves this overhead

cached query can be called with different parameters

example: queries generated by a form that asks for customers; only the
customer data changes, the structure of the query remains unchanged

@ Conclusion:
e compile often executed queries

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 25/33

Basic Principles of Tuning

Start-Up Costs Are High: Running Costs Are Low

@ Connection overhead from programming languages:

e applications written in C4++4-, Java, etc. make calls to databases
@ opening connection: significant overhead

@ establish network connection
@ user authentication
@ negotiate connection parameters

@ Connection caching and pooling:

e open a pool of connections and keep them open
e new request for a connection uses a free connection from the pool

@ Conclusion:

e do one SELECT and loop over results
(rather than doing SELECTs in a loop)
e cache and pool connections

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019

Basic Principles of Tuning

Start-Up Costs Are High: Running Costs Are Low

@ Different meanings of start-up cost:
obtaining first byte of a read
sending first byte of a message

preparing a query for execution

)
)
)
@ opening a connection to the database

@ Lesson learned: Obtain the effect you want with the fewest possible
start-ups.

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 27 /33

Basic Principles of Tuning

Render on the Server What |Is Due on the Server

@ Where to allocate the work?
o database system (server)
o application program (client)
@ Decision depends on three main factors:

e relative computing resources of client and server
e where the relevant information is located
e whether the database task interacts with the screen

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 28/33

Basic Principles of Tuning

Render on the Server What |Is Due on the Server

@ Relative computing resources of client and server.

e if server is overloaded, off-load tasks to clients
o good candidates: computing (CPU) intensive tasks

@ Do computation where the relevant information is located.

o Example: application responds (e.g., screen message) to database

change (e.g., insertions to a table)
e Client solution: polling

e periodically query the table for changes
e inefficient (many queries)

e Server solution: trigger
e fires only when change happens

e Since relevant info is on server, server solution is more efficient

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019

Basic Principles of Tuning

Render on the Server What |Is Due on the Server

@ Does the database task interact with screen?

e screen interaction should not be done in a transaction

(i.e., not server side)
e reason: screen transactions take a long time (at least seconds)
e solution: split transaction as follows

@ first transaction retrieves data from server
@ interactive session at the client side (outside any transaction)
© second transaction installs changes on server

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019

Basic Principles of Tuning

Be Prepared for Trade-Offs

@ Increasing speed has a cost:

adding main memory

adding disk storage

adding CPUs

adding new computer systems (e.g., offline system for OLAP queries)
maintain additional systems

@ Making one query faster may slow down another query!

@ Example: index makes critical queries fast, but

e additional disk space is required
e index slows down inserts and updates that don't use index

@ Lesson learned: You want speed? How much are you willing to pay?

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 31/33

Course Organization

Outline

© Course Organization

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 32/33

Course Organization

All Info Regarding Lecture and Lab:

http://dbresearch.uni-salzburg.at/teaching/2019ss/dbt/

Augsten (Univ. Salzburg) DBT - Introduction Sommersemester 2019 33/33

