
Database Tuning
Introduction, Tuning Principles, Course Organization

Nikolaus Augsten
nikolaus.augsten@sbg.ac.at

Department of Computer Sciences
University of Salzburg

http://dbresearch.uni-salzburg.at

Sommersemester 2019
Version March 12, 2019

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 1 / 33

Outline

1 Introduction to Database Tuning

2 Basic Principles of Tuning

3 Course Organization

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 2 / 33

Introduction to Database Tuning

Outline

1 Introduction to Database Tuning

2 Basic Principles of Tuning

3 Course Organization

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 3 / 33

Introduction to Database Tuning

What is Database Tuning?

Activity of making a database application run faster:

Faster means higher throughput or lower response time

A 5% improvement is significant

What parameters should be considered for tuning?

All parameters that help to reach the tuning goal!

Examples: more or faster disks, more main memory, use indexes
effectively, write good queries, avoid unnecessary computations, avoid
transaction bottleneck etc.

Bad news: There is always a cost/benefit tread-off.
Good news: Sometimes the cost is very low and the benefit very high, e.g.,
avoiding transaction bottlenecks or queries that run for hours unnecessarily.

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 4 / 33



Introduction to Database Tuning

Why is Database Tuning hard?

The following query runs too slow:

select * from R where R.a > 5

What to do?

PARSER
OPTIMIZER

EXECUTION
SUBSYSTEM

 DISK
SUBSYSTEM

CACHE
MANAGER

LOGGING
SUBSYSTEM

 LOCKING
SUBSYSTEM

NETWORK
DISK/

CONTROLLERCPUMEMORY

sql commandsapplication 

database

hardware

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 5 / 33

Introduction to Database Tuning

Course Objectives

1. Relevant notions concerning the internals of commercial DBMS

helps you to understand the manual of your DBMS
enables you to take informed tuning decisions

2. Tuning principles, backed by experiments:

How do tuning principles impact the performance of my system?

3. Troubleshooting methodology:

Troubleshooting (what is happening?)
Hypothesis formulation

what is the cause of the problem?
apply tuning principles to propose a fix

Hypothesis verification (experiments)

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 6 / 33

Introduction to Database Tuning

Prerequisites

Programming skills (Java)

Data structures and algorithms (undergraduate level)

lists, trees, arrays, binary search, merge algorithms, etc.

Databases management systems (undergraduate level)

basic SQL knowledge
advantageous to know transactions, indexes, buffer management, etc.

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 7 / 33

Introduction to Database Tuning

How Is This Course (DBT) Different from “Databases II”
(DBII)?

DBT looks at the same topics from a different perspective.

Algorithmic details vs. black box behavior:

DBII: how exactly does a B-tree updated work?
DBT: how efficient is a B-tree update and why?

Theory vs. hands-on:

DBII: learn about sort-merge and hash join on paper
DBT: experimentally compare sort-merge and hash join on a real
system, interpret the results

Local vs. Global:

DBII: focus on topics in isolation
DBT: focus on interaction between system components

There is a partial overlap, important notions will be revisited!

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 8 / 33



Basic Principles of Tuning

Outline

1 Introduction to Database Tuning

2 Basic Principles of Tuning

3 Course Organization

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 9 / 33

Basic Principles of Tuning

Tuning between Theory and Practice

Practitioner: Apply rules of thumb.

Example: “Never use aggregate functions (such as AVG) when
transaction response time is critical.”
Problem: Blindly applying rules of thumb may not work, e.g., AVG may
be OK if only few tuples are accessed via index.

Theoretician: Mathematically model problem and give guarantees
about solution.

Example: Runtime behavior of join algorithms with different indexes.
Problem: Complex approaches often not applicable in practice since
they rest on non-realizable assumptions.

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 10 / 33

Basic Principles of Tuning

Tuning between Theory and Practice

Database Tuner: Understand and apply principles!

Understanding: The problem is not AVG, but scanning large amounts
of data (which AVG often does...).
Principle: Do not scan large amounts of data in highly concurrent
environments.
Understanding the principles is necessary to decide, whether they apply
in a particular situation.

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 11 / 33

Basic Principles of Tuning

Five Basic Tuning Principles

Five general and basic principles in tuning:
1. think globally; fix locally
2. partitioning breaks bottlenecks
3. start-up costs are high; running costs are low
4. render on the server what is due on the server
5. be prepared for trade-offs

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 12 / 33



Basic Principles of Tuning

Think Globally; Fix Locally (I/II)

Tuner should be like a good physician:

think globally: identify the problem (vs. treating symptoms)
fix locally: minimalist intervention (reduce side effects)

Example: Disk activity is very high. What to do?

Solution 1: Buy more disks (local thinking).

Disk activity is a symptom.
Global thinking: Where is the disc activity generated?

missing index on frequent query (add index)
database buffer is too small (increase buffer)
log and frequently accessed data share disk (move log to other disk)

Solving the problem is cheaper and more effective than fighting the
symptom.

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 13 / 33

Basic Principles of Tuning

Think Globally; Fix Locally (II/II)

Solution 2: Speed up query with the longest runtime.

Slowest query might be infrequent and take only 1% of overall runtime.
Speedup by factor 2 will increase system performance only by 0.5%!
Speed up important queries!

Solution 3: Speed up query with largest share in runtime.

The query that slows down the system might be unnecessary.
Talk to application programmers. Is the query necessary? Can you
achieve the same thing in a simpler way?

Lesson learned: Look at the whole system when you identify the
problem (think globally). Fix the problem where it occurs (fix locally).

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 14 / 33

Basic Principles of Tuning

Partitioning Breaks Bottlenecks

What is a bottleneck?

rarely all parts of a system are saturated
often one part limits the overall performance of the system
bottleneck: the limiting part of the system

Example: Highway traffic jam:

e.g. due to narrow street segment or merging streets
bottleneck: road segment with greatest portion of cars per lane

Solutions for traffic jam:
1. make drivers drive faster through narrow street segment
2. create more lanes
3. encourage drivers to avoid rush hours

Solution 1 is a local fix (e.g., add index)

Solutions 2 and 3 are called partitioning.

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 15 / 33

Basic Principles of Tuning

Partitioning Breaks Bottlenecks – Strategies

Partitioning in mathematics:

divide a set into mutually disjoint (=non-intersecting) parts
Example: A = {a, b, c , d , e} is a set, {{a, c}, {d}, {b, e}} is a
partitioning of A
database tuning: query load is partitioned

The two basic partitioning strategies are:

divide load over more resources (add lanes)
spread load over time (avoid rush hours)

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 16 / 33



Basic Principles of Tuning

Partitioning Breaks Bottlenecks – Example

Example 1: Bank accounts

A bank has N branches.
Most clients access accounts from their home branch.
Centralized system is overloaded.

Solution: Partition in space

put account data of clients with home branch i into subsystem i
partitioning of physical resources in space

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 17 / 33

Basic Principles of Tuning

Partitioning Breaks Bottlenecks – Example

Example 2: Lock contention on free list.

free list: list of unused database buffer pages
a thread that needs a free page locks the free list
during the lock no other thread can get a free page

Solution: Logical partitioning

create several free lists
each free list contains pointers to a portion of free pages
a thread that needs a free page randomly selects a list
with n free lists the load per list is reduced by factor 1/n
logical partitioning of lockable resources

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 18 / 33

Basic Principles of Tuning

Partitioning Breaks Bottlenecks – Example

Example 3: Lock and resource contention in system with long and
short “online” transactions that access the same data.

Lock and resource contention:

lock contention: many threads lock the same resource (e.g., DB table)
resource contention: many threads access the same resource (e.g., disk)

Long and online transactions:

long transactions (e.g., data warehouse query loads) hold many locks
(e.g., on multiple tables)
online transactions are short and need fast response time

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 19 / 33

Basic Principles of Tuning

Partitioning Breaks Bottlenecks

Problems:

deadlocks may force long transactions to abort
online transactions slow because

they have to wait for long transactions to finish and release the locks
long transactions use up resources (e.g., memory buffer)

Solution: Partition in time or space

partition in time: run long transactions when there is little online
transaction activity
partition in space: run long transactions (if read only) on out-of-date
data on separate hardware
serialize long transactions so that they don’t interfere with one another

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 20 / 33



Basic Principles of Tuning

Partitioning Breaks Bottle Necks – Summary

Types of partitioning:

partitioning in space (bank branches)
logical partitioning (free lists)
partitioning in time (long and short transactions)

Partition with care: performance not always improved!

bank branches: additional communication cost for some queries
free lists: if one list is empty, need to go to next list
transactions: additional offline system

Lesson learned: When you find a bottleneck,
1. try to speed up that component (fix locally)
2. if that does not work, then partition

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 21 / 33

Basic Principles of Tuning

Start-Up Costs Are High; Running Costs Are Low

In man-made objects start-up time is often long:

cars: ignition system
light bulbs: lifetime depends on the number of times they are turned on
database systems :-)

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 22 / 33

Basic Principles of Tuning

Start-Up Costs Are High; Running Costs Are Low

Reads from disk:

expensive to begin read operation
once read has started, data can be delivered at high speed
Example: reading 64 KB (128 sectors) from a single disk track is less
than 2 times slower than reading 512 bytes (1 sector)

Conclusions:

frequently scanned tables should be laid out sequentially on disk
frequent query that projects few columns from table with hundreds of
columns: vertically partition table

Note: Holds also for RAM!

scanning sequential data from RAM much faster than accessing the
same data in different positions
RAM (random access memory) is not really random...

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 23 / 33

Basic Principles of Tuning

Start-Up Costs Are High; Running Costs Are Low

Network latency:

overhead of sending a message is very high
additional cost of sending large message over small message is small
Example: sending 1 byte packet (message) is almost as expensive as
sending 1 KB packet (message)

Conclusion:

sending few large data chunks is better than sending many small ones

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 24 / 33



Basic Principles of Tuning

Start-Up Costs Are High; Running Costs Are Low

Query overhead:
before a query is executed by the database

it is parsed
it is optimized
and access paths to the data are selected

even for small queries: approx. 10000 instructions

Compiled queries:

cache the results of parsing, optimizing, and access path selection
next execution of the cached query saves this overhead
cached query can be called with different parameters
example: queries generated by a form that asks for customers; only the
customer data changes, the structure of the query remains unchanged

Conclusion:

compile often executed queries

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 25 / 33

Basic Principles of Tuning

Start-Up Costs Are High; Running Costs Are Low

Connection overhead from programming languages:

applications written in C++, Java, etc. make calls to databases
opening connection: significant overhead

establish network connection
user authentication
negotiate connection parameters

Connection caching and pooling:

open a pool of connections and keep them open
new request for a connection uses a free connection from the pool

Conclusion:

do one SELECT and loop over results
(rather than doing SELECTs in a loop)
cache and pool connections

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 26 / 33

Basic Principles of Tuning

Start-Up Costs Are High; Running Costs Are Low

Different meanings of start-up cost:

obtaining first byte of a read
sending first byte of a message
preparing a query for execution
opening a connection to the database

Lesson learned: Obtain the effect you want with the fewest possible
start-ups.

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 27 / 33

Basic Principles of Tuning

Render on the Server What Is Due on the Server

Where to allocate the work?

database system (server)
application program (client)

Decision depends on three main factors:

relative computing resources of client and server
where the relevant information is located
whether the database task interacts with the screen

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 28 / 33



Basic Principles of Tuning

Render on the Server What Is Due on the Server

Relative computing resources of client and server.

if server is overloaded, off-load tasks to clients
good candidates: computing (CPU) intensive tasks

Do computation where the relevant information is located.

Example: application responds (e.g., screen message) to database
change (e.g., insertions to a table)
Client solution: polling

periodically query the table for changes
inefficient (many queries)

Server solution: trigger

fires only when change happens

Since relevant info is on server, server solution is more efficient

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 29 / 33

Basic Principles of Tuning

Render on the Server What Is Due on the Server

Does the database task interact with screen?

screen interaction should not be done in a transaction
(i.e., not server side)
reason: screen transactions take a long time (at least seconds)
solution: split transaction as follows

1. first transaction retrieves data from server
2. interactive session at the client side (outside any transaction)
3. second transaction installs changes on server

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 30 / 33

Basic Principles of Tuning

Be Prepared for Trade-Offs

Increasing speed has a cost:

adding main memory
adding disk storage
adding CPUs
adding new computer systems (e.g., offline system for OLAP queries)
maintain additional systems

Making one query faster may slow down another query!

Example: index makes critical queries fast, but

additional disk space is required
index slows down inserts and updates that don’t use index

Lesson learned: You want speed? How much are you willing to pay?

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 31 / 33

Course Organization

Outline

1 Introduction to Database Tuning

2 Basic Principles of Tuning

3 Course Organization

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 32 / 33



Course Organization

All Info Regarding Lecture and Lab:

http://dbresearch.uni-salzburg.at/teaching/2019ss/dbt/

Augsten (Univ. Salzburg) DBT – Introduction Sommersemester 2019 33 / 33


