Database Tuning

Recovery Tuning

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at
Department of Computer Sciences
University of Salzburg

M database
research group

http://dbresearch.uni-salzburg.at

Sommersemester 2019
Version August 8, 2019

Adapted from “Database Tuning” by Dennis Shasha and Philippe Bonnet.

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Logging and Recovery

Outline

€@ Recovery Tuning
@ Logging and Recovery

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 2 /30

Recovery Tuning Logging and Recovery

Atomicity and Durability in Case of Failure

COMMITTED
COMMIT

ACTIVE
BEGIN (running, waiting)
TRANS

ROLLBACK ABORTED }

States of a Transaction

@ Durability: After a transactions commits, changes to the database
persist even in the case of system failure.

@ Atomicity: after failure, reconstruct database such that

e changes of all committed transactions are reflected
o effects of non-committed and aborted transactions are eliminated

@ Recovery subsystem: Guarantee atomicity & durability in failure case.

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 3/30

Recovery Tuning Logging and Recovery

Failure Types

@ Software:

o 99% are Heisenbugs (non-reproducible, due to timing or overload)
e Heisenbugs do not appear if system is restarted
e example: error due to isolation level that was chosen too low

@ Hardware: failure in physical device

o CPU, RAM, disk, network
e fail-stop: device stops when failure occurs, e.g., CPU

@ Maintenance: problem during system repair or maintenance
e examples: recover from failure, backup

@ Operations: regular operations

e regular system administration and configuration
@ user operations

@ Environment: factors outside the computer system
o examples: fire in the machine room (Credit Lyonnais, 1996), 9/11

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Logging and Recovery

Failure Probability

[Software
B Hardware
[1 Maintenance

From J.Gray and A.Reuters - Operatlons
Transaction Processing: Concepts H Environment

and Techniques
q B Unknown

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 5/ 30

Recovery Tuning Logging and Recovery

Which Failures Can Database Systems Tolerate?

@ Some software failures:

e crashing client
e crashing operating system
@ SOMme Sserver errors

@ Hardware failure:

e CPU fail-stop and erasure of main memory

o single disk fail-stop (if enough redundant disks are available)
@ Environment: Power outage
@ Backups still important:

e recovery system does not substitute backups
e backups required for failures not covered by recovery system
e example: accidental deletions, natural disaster

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Logging and Recovery

Durability

@ Durability in databases:

e goal: make changes permanent before sending commit to client
e implementation: store transaction data on stable storage

@ Stable storage: immune to failure (only approximated in practice)

e durable media, e.g., disks, tapes, battery-backed RAM
o replication on several units (redundant disks to survive disk failure)

@ Problems:

e non-durable buffers in some system layer
e partial disk writes

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 7 / 30

Recovery Tuning Logging and Recovery

How To Deal with Non-Durable Buffers?

@ Non-durable buffer in some system layer:

e database tells system to write a disk page
e but disk page remains in some non-durable buffer

@ Operating system buffer:

e write operations are buffered

o fsync flushes all pages of a given file — OK
@ Disk controller cache:

e common in RAID controllers

e battery-backed cache — OK

e other caches may lead to inconsistencies in case of failure
@ Disk cache: switch off for log disk (critical!)

e hdparm -I /dev/sda shows meta data of disk /dev/sda
e hdparm -W O /dev/sda switches disk buffer off

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Logging and Recovery

How To Deal with Partial Disk Writes?

@ Partial disk writes:

e database writes disk page which consists of several sectors
e.g., 8kB page consists of 16 sectors (512B each)

e power failure during write: page may be only partially written

e leads to inconsistent database state

@ Disk controller: battery backed cache

e data in cache is written at restart after power outage
e consistent state is restored

@ Operating system: file system
o file system that prevents partial writes, e.g., Raiser 4
@ Database: e.g., full page writes in PostgreSQL

e before-image of page is stored before updating it
e recovery: partially written page is restored and update is repeated

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Logging and Recovery

Guaranteeing Atomicity

1. Before images: state at transaction start

e used to undo the effects of a uncommitted transaction
e before image must remain on stable storage until commit

2. After images: state at transaction end

e used to install effects of transaction after commit
e after image must be written to stable storage before commit

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Logging and Recovery

Concepts

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 11 / 30

Data files: tables, indexes
Log file: stores before and after images
Database buffer: contains pages that transactions modify

Dirty page: buffer page with uncommitted changes

Recovery Tuning Logging and Recovery

Write-Ahead Logging

e WAL commit:

e write after images to log file before transaction commits
o data files can be updated later (after commit)

@ WAL abort:

e variant 1: explicitly store before image in log

e variant 2: use data file as a before image

e only in variant 1 it is safe to write dirty pages to the data file

o dirty pages are typically written when the database buffer is full

e Example: WAL for a transaction T that modifies pages P; and P,

e pages P; and P; are loaded to the database buffer

transaction T modifies the pages P; and P,

database generates log records Ir; and Ir; for the modifications
database writes log records to stable storage before committing

*)
*)
*)
e modified pages are written to data file after transaction T commits

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 12 / 30

Recovery Tuning

Write-Ahead Logging

" UNSTABLE STORAGE

Logging and Recovery

log records before commit

RECOVERY

DATABASE BUFFER
LOG BUFFER
Iri| Irj .)
= Pi P
WRITE| WRITE \

modified pages after commit

STABLE STORAGE

Augsten (Univ. Salzburg) DBT — Recovery Tuning

Sommersemester 2019

Recovery Tuning Logging and Recovery

Logging Variants

@ Logging granularity: what does a log record store?
e page-level logging
o byte-level logging (log partial pages)
e record-level logging

@ Logical logging: log operation and argument that caused update

@ e.g., operation: insert into employee,
argument: (103-4403-33,Brown)

e saves disk space

e implemented in DB2

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 14 / 30

Recovery Tuning Logging and Recovery

Logging Guarantee

@ Guarantee by logging algorithms:

current database state = current state of data files + log

@ Current database state:
o reflects all committed transactions
@ Current state of data file:

e reflects only committed transactions physically in data file
@ some transactions may be committed and stored in the log,
but not yet written to the database

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Logging and Recovery

Checkpoint and Dump

@ Checkpoint: force data files to reflect current database state

e write all committed changes to data file
e committed changes may be in database buffer or log

@ When do checkpoints happen?

o at regular intervals (tuning parameter)
o log is full (Oracle)
o explicit SQL command

@ Dump: transaction-consistent database state

e entire database including changes of all committed transactions
@ recovery guarantee:

current database state = database dump + log (after dump)

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 16 / 30

Recovery Tuning Logging and Recovery

Recovering after Main Memory and Disk Failure

@ Main memory failure: database buffer is lost

e log needs to be considered only starting after last checkpoint
e all committed changes before checkpoint are already in data file

@ Data disk failure: (disk with log is still OK)

e database dump required
o log after database dump needs to be considered
e checkpoints irrelevant

@ Log disk failure: disaster!

e committed transactions after last checkpoint get lost

e database may be inconsistent - last consistent state is last dump
e to prevent disaster, replicate disk with log

e make sure to avoid risk of non-durable buffers and partial writes

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Tuning the Recovery Subsystem

Outline

€@ Recovery Tuning

@ Tuning the Recovery Subsystem

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 18 / 30

Recovery Tuning Tuning the Recovery Subsystem

Tuning Activities

UNSTABLE STORAGE

DATABASE BUFFER
LOG BUFFER
Iri| Irj - -
SCICIN N e - B i
WRITE | WRITE

log records before commit modified pages after commit

i - o

RECOVERY STABLE STORAGE

Log on separate disk
Log buffer tuning: group commit

Log buffer tuning: trading in durability

= W o

Tuning data writes (checkpoints)

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Tuning the Recovery Subsystem

1. Log on Separate Disk

@ Update transaction must write to the log, i.e., to the disk

@ If log and data files share disk, disk seeks are required.

@ Separate disk for log:

o sequential writes instead of seeks (10 to 100 times faster)
o log independent from data files in case of disk failure
o disk setting can be tailored to log (e.g., switch off buffer)

@ PostgreSQL: How to move log to an other disk?

o log directory: pg_xlog
location: show data_directory; (needs admin permission)
e move log directory to log disk and create symbolic link

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Tuning the Recovery Subsystem

Experiment — Separate Disk for Log

O Same disk

B Different disk

Throughput (statements/sec)

Updates Insertions

@ 300k inserts or update statements.
@ Each statement is a separate transaction and forces a write.
@ Same disk: data files and log are on the same disk.

@ Different disks: log has its own disk.

Oracle 9i on Linux server with internal hard drives (no RAID controller)

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 21 / 30

Recovery Tuning Tuning the Recovery Subsystem

2. Group Commit

@ Log buffer is flushed to disk before each commit.

@ Group commit:
e commit a group of transactions together
o only one disk write (flush) for all transactions
@ Advantage: higher throughput
@ Disadvantages: some transactions must wait before committing

o locks are held longer (until commit)
e lower response time for waiting transactions

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Tuning the Recovery Subsystem

Group Commit — Experiment

350

N N O

S U O

o O O
| |

150
100 -

Throughput (tuples/sec)

(3]
o o
|

1 25

Size of Group Commit

@ Increasing the group commit size increases the throughput.

DB2 UDB V7.1 on Windows 2000

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 23 /30

Recovery Tuning Tuning the Recovery Subsystem

WAL Buffer and Group Commit in PostgreSQL

e WAL buffer: Write ahead log buffer

o RAM buffer, z.B. 768kB (wal_buffers)
o all log records are written to this buffer

o WAL page is flushed at commit or every 200ms (wal writer_delay)
o data is written to a file called WAL segment (16MB each)

@ commit _delay: (default: 0)

o time delay between a commit and flushing WAL buffer

e during waiting period, hopefully other transactions commit
e if other transaction commits, do group commit

e if no other transaction commits, waiting time is lost

@ commit sibling: (default: 5)

e minimum number of concurrent open transactions for group commit
e if less transactions are open, commit_delay is disabled

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 24 / 30

Recovery Tuning Tuning the Recovery Subsystem

3. WAL Tuning: Trading in Durability (PostgreSQL)

@ synchronous_commit: (default: on)
e call £sync to force operating system to flush disk buffer
e commit only after £sync returns
e switch off if you do not want to wait for £sync
e parameter can be set for each transaction individually

@ Switching off synchronous commit increases performance.
@ \Worst case: database consistency not in danger
e system crash may cause loss of most recently committed transactions
e lost transactions seem uncommitted to database and are cleanly
aborted at startup, resulting in consistent database state
e client thinks that transaction committed, but it was aborted
o maximum delay between commit and flush (risk period):
3 x wal writer_delay (= 3 x 200ms by default)?
e fsync: (default: on)
e switching off fsync might result in unrecoverable data corruption
e synchronous_commit: similar performance, less risk

'during busy periods the WAL writer favors writing whole pages and may wait up to

3 X wal_writer_delay
Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 25 /30

Recovery Tuning Tuning the Recovery Subsystem

4. Tuning Data Writes

@ At commit time

o database buffer (in RAM) has committed information
o log (on disk) has committed information
e data file may not have committed information

@ Why is data not immediately written to data file?

e each page write requires a seek
o resulting random I/O bad for performance

@ Convenient writes:

e wait and write larger chunks at once
e write when cheap, e.g., disk heads are on the right cylinder

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019

Recovery Tuning Tuning the Recovery Subsystem

Database Writes — Tuning Options

o Fill ratio of the database buffer (RAM):

e Oracle: DB_BLOCK_MAX_DIRTY_TARGET specifies maximum number of dirty
pages in database buffer
o SQL Server: pages in free lists falls below threshold (3% by default)

@ Checkpoint frequency:

e checkpoint forces all committed writes that are only in database buffer
or log to the data file

e less frequent checkpoints allow more convenient writes

o less frequent checkpoints increase recovery time

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 27 / 30

Recovery Tuning Tuning the Recovery Subsystem

Checkpoint Tuning in PostgreSQL

@ Checkpoints have a cost:

e disk activity to transfer dirty pages to data file

o if full page writes is on (avoid partial disk writes), a before image

of each page in the buffer that is modified after the checkpoint must
be stored in log

@ Checkpoint is triggered if one of the following is reached:

o checkpoint_timeout (5min): max interval between checkpoints
o max wal_size (1GB): max overall size of log segments (16MB each)

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 28 / 30

Recovery Tuning Tuning the Recovery Subsystem

Checkpoint Tuning in PostgreSQL

@ Spreading checkpoint traffic:
o checkpoint traffic is distributed to reduce |/O load
o checkpoint_completion_target (0.5): fraction of time before next
checkpoint will happen
e checkpoint should finish within this time period

@ Monitoring checkpoints:

o checkpoint_warning (30s): write warning to log if checkpoints
happen more frequently
e frequent appearance indicates that max_wal_size should be increased

Augsten (Univ. Salzburg) DBT — Recovery Tuning Sommersemester 2019 29 / 30

Recovery Tuning Tuning the Recovery Subsystem

Checkpoint Tuning — Experiment

Throughput Ratio

0 checkpoint 4 checkpoints

@ Long transaction with many updates.
o Checkpoints triggered while transaction still active (log file to small).

@ Negative impact on performance: size of log files should be increased.

Oracle 8i EE on Windows 2000

DBT — Recovery Tuning Sommersemester 2019 30 / 30

Augsten (Univ. Salzburg)

