PERSISTENT MESSAGING PROTOCOL

The following refinement solves an issue regarding the timeout mechanism in the persistent messaging protocol discussed in *Silberschatz et al.*, *Database System Concepts*, 6th ed., 2011.

Components

 $\left. \begin{array}{c} \text{Sender } \mathcal{S} \\ \text{Receiver } \mathcal{R} \end{array} \right\} \text{ we allow temporary failure }$

Temporary failures make a node unreachable (e.g., because of network or node failure) for a finite amount of time. After the failure, the node returns and continues processing messages.

Messaging Infrastructure

- arbitrary delay (i.e., messages may get lost or may not arrive in sending order)
- probability of successful delivery > 0 (i.e., not all messages get lost)

Protocol

All additions to the original protocol (described in *Silberschatz et al.*) are marked in red.

 $MTS(i, M_i, t_i)$: messages_to_send relation $RM(i, M_i, t_i)$: received_messages relation t_i : time when message M_i with unique message number i was first sent by S

${\mathcal S}$

• for each $(i, M_i, t_i) \in \texttt{MTS}$: send (i, M_i, t_i) to $\mathcal R$

- (*i*,acknowledge) received: MTS = MTS $\setminus \{(j, M_j, t_j) \mid (j, M_j, t_j) \in MTS, j = i\}$
- do periodically: $T_{OLD} = min \{t_i \mid (i, M_i, t_i) \in \texttt{MTS}\}$ send T_{OLD} to \mathcal{R}

• (i, M_i, t_i) received: if $t_i \geq T_{OLD}$: if $(i, M_i, t_i) \notin RM$: RM = RM $\cup \{(i, M_i, t_i)\}$ send (i, acknowledge) to S

 \mathcal{R}

• T_{OLD} received: $\texttt{RM} \; = \; \texttt{RM} \; \setminus \; \{(i, M_i, t_i) \mid (i, M_i, t_i) \in RM, t_i < T_{OLD}\}$