Similarity Search

Pruning with Reference Sets

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at Department of Computer Sciences University of Salzburg

WS 2019/20

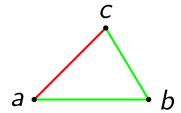
Version February 24, 2020

Outline

- Reference Sets
 - Definition
 - Upper and Lower Bound
 - Combined Approach

Outline

- Reference Sets
 - Definition
 - Upper and Lower Bound
 - Combined Approach


Reference Sets [GJK⁺02]

- Reference sets take advantage of the triangle inequality for metrics.
- An extended version of the triangle inequality is:

$$|\delta(a,b)-\delta(b,c)| \leq \delta(a,c) \leq \delta(a,b)+\delta(b,c),$$

where $\delta()$ is a metric distance function computed between a, b, and c.

Illustration: Triangle Inequality

$$\delta(a,c) < \delta(a,b) + \delta(b,c)$$

$$|\delta(a,b)-\delta(b,c)|<\delta(a,c)$$

$$a \xrightarrow{C} b$$

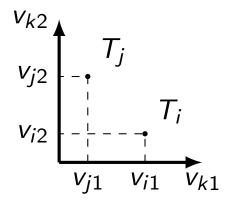
$$\delta(a,c)=\delta(a,b)+\delta(b,c)$$

$$|\delta(a,b) - \delta(b,c)| = \delta(a,c)$$

Notation

- S_1 and S_2 are sets of trees (unordered forests)
- $K \subseteq S_1 \cup S_2$ is called the reference set
- \bullet $\mathsf{T}_i \in S_1$ and $\mathsf{T}_j \in S_2$ are trees
- $k_I \in K$, $1 \le I \le |K|$, is a tree of the reference set

Reference Vector


- *v_i* is a vector
 - of size |K|
 - that stores the distance from $T_i \in S_1$ to each tree $k_l \in K$
 - the *I*-th element of v_i stores the edit distance between T_i and k_I :

$$v_{il} = \delta_t(\mathsf{T}_i, k_l)$$

ullet v_j is the respective vector for $\mathsf{T}_j \in S_2$

Metric Space

- Metric space of the reference set:
 - the elements of the reference set define the basis of a metric space
 - the vector v_k represents tree T_k as a point in this space
 - v_{kl} is the coordinate of the point on the *l*-th axis
- Example: Two trees T_i and T_j in the metric space defined by the reference set $K = \{k_1, k_2\}$.

Outline

- Reference Sets
 - Definition
 - Upper and Lower Bound
 - Combined Approach

Upper and Lower Bound

• From the triangle inequality it follows that for all $1 \le l \le |K|$

$$|v_{il} - v_{jl}| \le \delta_t(\mathsf{T}_i, \mathsf{T}_j) \le v_{il} + v_{jl}$$

• Upper bound:

$$\delta_t(\mathsf{T}_i,\mathsf{T}_j) \leq \min_{I,1 \leq I \leq |K|} v_{iI} + v_{jI} = u_t(\mathsf{T}_i,\mathsf{T}_j)$$

• Lower bound:

$$\delta_t(\mathsf{T}_i,\mathsf{T}_j) \ge \max_{I,1 \le I \le |K|} |v_{iI} - v_{jI}| = I_t(\mathsf{T}_i,\mathsf{T}_j)$$

- Approximate join: match all trees with $\delta_t(\mathsf{T}_i,\mathsf{T}_j) \leq \tau$
 - Upper bound: If $u_t(T_i, T_j) \le \tau$, then T_i and T_j match.
 - Lower bound: If $I_t(T_i, T_j) > \tau$, then T_i and T_j do *not* match.

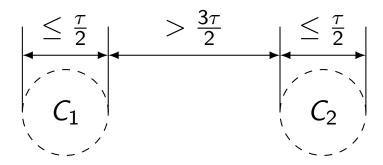
Example: Similarity Join with Reference Sets

- $S_1 = \{T_1, T_2, T_3\}, S_2 = \{T_4, T_5, T_6\}, \tau = 2$
- Reference set $K = \{T_1\}, 1 \le l \le |K| = 1$
- Distances:

	$\mid T_1 \mid$	T_2	T_3	T_4	T_{5}	T_6
$\overline{T_1}$	0	4	1	1	4	1
T_2		0	4	4	1	4
T_3			0	1	4	1
T_4				0	4	1
T_5					0	4
T_6						0

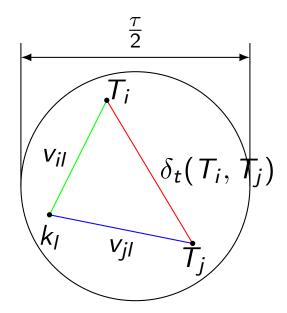
• Reference Vectors:

$$v_{1,1}=(0)$$
, $v_{2,1}=(4)$, $v_{3,1}=(1)$, $v_{4,1}=(1)$, $v_{5,1}=(4)$, $v_{6,1}=(1)$

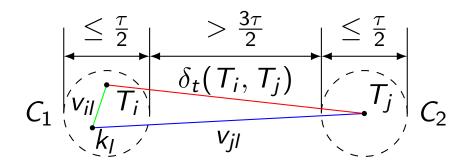

• The clusters $C_1 = \{T_1, T_3, T_4, T_6\}$ and $C_2 = \{T_2, T_5\}$ are well separated.

Reference Set — Tradeoff

- Small reference set: efficient reference vector computation
 - we have to compute |S| distances for each additional tree in the reference set to construct the vectors
 - for small reference sets the construction of the vectors is cheaper
- Large reference set: effective filters
 - large reference sets make u_t and l_t more effective
 - thus, once the reference vectors are computed, less distance computations are needed
- Where is the optimum?


Well Separated Clusters

- We cluster the set $S = S_1 \cup S_2$.
- ullet The clusters are well separated for threshold au if
 - trees within a cluster have small distance (within $\frac{\tau}{2}$)
 - trees from different cluster have large distance (more than $\frac{3\tau}{2}$)
- Example: Two well separated clusters C_1 and C_2 .


Trees within the Same Cluster — Upper Bound Applies

- Upper bound: $\delta_t(\mathsf{T}_i,\mathsf{T}_j) \leq v_{il} + v_{jl} = \delta_t(\mathsf{T}_i,k_l) + \delta_t(k_l,\mathsf{T}_j)$
- Assumption: $T_i \in S_1$ and $T_j \in S_2$ are in the same cluster C.
 - The clusters are well separated.
 - The cluster C contains a reference tree $k_l \in K$.
- In this case $v_{il} \leq \frac{\tau}{2}$ and $v_{jl} \leq \frac{\tau}{2} \Rightarrow \delta_t(\mathsf{T}_i, \mathsf{T}_j) \leq \tau$.
- Result: If T_i , T_j , and k_l are in the same cluster
 - from v_{il} and v_{il} we conclude that T_i and T_i match
 - thus we need not to compute $\delta_t(\mathsf{T}_i,\mathsf{T}_i)$

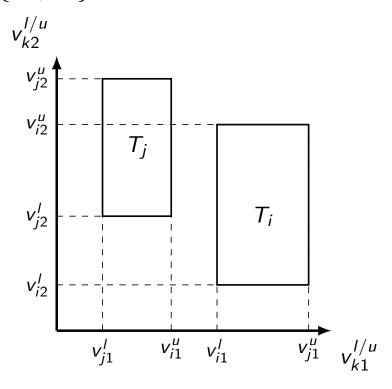
Trees in Different Clusters — Lower Bound Applies

- Lower bound: $\delta_t(\mathsf{T}_i,\mathsf{T}_j) > |v_{il} v_{jl}| = |\delta_t(\mathsf{T}_i,k_l) \delta_t(k_l,\mathsf{T}_j)|$
- Assumption: $T_i \in S_1$ is in cluster C_1 , $T_j \in S_2$ is in cluster C_2 .
 - The clusters are well separated.
 - The cluster C_1 contains a reference tree $k_l \in K$.
- In this case $v_{il} \leq \frac{\tau}{2}$ and $v_{jl} > \frac{3\tau}{2} \Rightarrow \delta_t(\mathsf{T}_i, \mathsf{T}_j) > \tau$.
- Result: If T_i and k_l are in the same cluster, but T_j is in a different cluster
 - from v_{ij} and v_{jj} we conclude that T_i and T_j do not match
 - thus we need not to compute $\delta_t(T_i, T_j)$

Optimum — Well Separated Clusters

- Optimum:
 - clusters are well separated
 - the reference set contains one tree per cluster
- Guha et al. [GJK⁺02] find clusters by sampling and estimate a reference set size.

Outline


- Reference Sets
 - Definition
 - Upper and Lower Bound
 - Combined Approach

Combined Approach

- We combine the previous approaches:
 - lower bound with traversal strings
 - upper bound with constrained edit distance
 - reference sets
- Instead of one vector v_i we compute two vectors for each tree T_i :
 - lower bound: v_i^I contains the traversal string distance
 - upper bound: v_i^u contains the constrained edit distance

Metric Space

- Metric space of the reference set:
 - the elements of the reference set define the basis of a metric space
 - \bullet each tree T_k is represented by a rectangle in this metric space
 - v_k^I and v_k^u are two opposite corners of this rectangle
- Example: Two trees T_i and T_j in the metric space defined by the reference set $K = \{k_1, k_2\}$.

Combined Approach: Triangle Inequality

- The triangle equations changes as follows:
 - \bigcirc For all $1 \leq l \leq |K|$

$$\delta_t(\mathsf{T}_i,\mathsf{T}_j) \leq v_{il}^u + v_{jl}^u$$

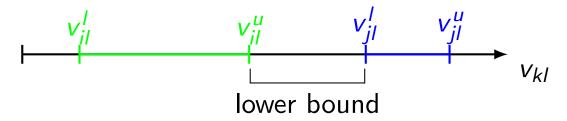
b For all $1 \le l \le |K|$

$$\delta_t(\mathsf{T}_i,\mathsf{T}_j) \ge \begin{cases} v_{jl}^l - v_{il}^u & \text{if } v_{jl}^l > v_{il}^u \\ v_{il}^l - v_{jl}^u & \text{if } v_{il}^l > v_{jl}^u \\ 0 & \text{otherwise} \end{cases}$$

- Note:
 - If $v_{il}^I > v_{il}^u$ or $v_{il}^I > v_{il}^u$ then $[v_{il}^I, v_{il}^u]$ and $[v_{il}^I, v_{il}^u]$ are disjoint intervals.
 - In all other cases we can not give a lower bound (other than 0).

Combined Approach: Upper and Lower Bounds

• Upper bound:


$$u_t(\mathsf{T}_i,\mathsf{T}_j) = \min_{l,1 \le l \le |K|} v_{il}^u + v_{jl}^u$$

Lower bound:

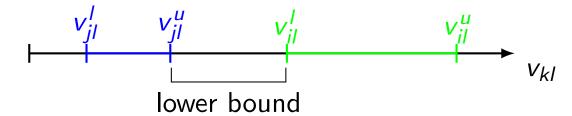
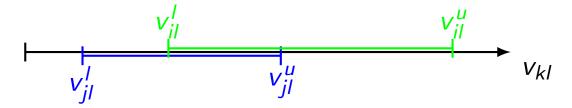

$$I_t(\mathsf{T}_i, \mathsf{T}_j) = \max_{l, 1 \le l \le |\mathcal{K}|} \begin{cases} v_{jl}^l - v_{il}^u & \text{if } v_{jl}^l > v_{il}^u \\ v_{il}^l - v_{jl}^u & \text{if } v_{il}^l > v_{jl}^u \\ 0 & \text{otherwise} \end{cases}$$

Illustration: Cases for the Lower Bound


• Case $v_{jl}^{l} > v_{il}^{u}$: lower bound is $v_{jl}^{l} - v_{il}^{u}$

• Case $v_{il}^{l} > v_{il}^{u}$: lower bound is $v_{il}^{l} - v_{il}^{u}$

• All other cases $([v_{il}^I, v_{il}^u])$ and $[v_{jl}^I, v_{jl}^u]$ overlap): no lower bound

Augsten (Univ. Salzburg)

Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and Ting Yu.

Approximate XML joins.

In *Proceedings of the ACM SIGMOD International Conference on Management of Data*, pages 287–298, Madison, Wisconsin, 2002. ACM Press.