

Upper and Lower Bound

• From the triangle inequality it follows that for all $1 \le l \le |K|$

$$|\mathsf{v}_{il} - \mathsf{v}_{jl}| \le \delta_t(\mathsf{T}_i, \mathsf{T}_j) \le \mathsf{v}_{il} + \mathsf{v}_{jl}$$

• Upper bound:

$$\delta_t(\mathsf{T}_i,\mathsf{T}_j) \leq \min_{l,1 \leq l \leq |\mathcal{K}|} v_{il} + v_{jl} = u_t(\mathsf{T}_i,\mathsf{T}_j)$$

• Lower bound:

Augsten (Univ. Salzburg)

$$\delta_t(\mathsf{T}_i,\mathsf{T}_j) \geq \max_{l,1 \leq l \leq |\mathcal{K}|} |\mathsf{v}_{il} - \mathsf{v}_{jl}| = l_t(\mathsf{T}_i,\mathsf{T}_j)$$

- Approximate join: match all trees with $\delta_t(\mathsf{T}_i,\mathsf{T}_i) \leq \tau$
 - Upper bound: If $u_t(T_i, T_i) \le \tau$, then T_i and T_i match.
 - Lower bound: If $I_t(T_i, T_i) > \tau$, then T_i and T_i do not match.

Similarity Search

Reference Sets Upper and Lower Bound

Reference Set — Tradeoff

- Small reference set: efficient reference vector computation
 - we have to compute |S| distances for each additional tree in the reference set to construct the vectors
 - for small reference sets the construction of the vectors is cheaper
- Large reference set: effective filters
 - large reference sets make u_t and l_t more effective
 - thus, once the reference vectors are computed, less distance computations are needed
- Where is the optimum?

WS 2019/20 10/22

WS 2019/20 16/22

of the end of the end

e Case $v_{jl}^{l} > v_{il}^{u}$: lower bound is $v_{jl}^{l} - v_{il}^{u}$ • Case $v_{jl}^{l} > v_{il}^{u}$: lower bound is $v_{jl}^{l} - v_{il}^{u}$ • Case $v_{il}^{l} > v_{jl}^{u}$: lower bound is $v_{il}^{l} - v_{jl}^{u}$ • Case $v_{il}^{l} > v_{jl}^{u}$: lower bound is $v_{il}^{l} - v_{jl}^{u}$ • Case $v_{il}^{l} > v_{jl}^{u}$: lower bound is $v_{il}^{l} - v_{jl}^{u}$ • All other cases ($[v_{il}^{l}, v_{il}^{u}]$ and $[v_{jl}^{l}, v_{jl}^{u}]$ overlap): no lower bound • All other cases ($[v_{il}^{l}, v_{il}^{u}]$ and $[v_{jl}^{l}, v_{jl}^{u}]$ overlap): no lower bound

 v_{il}^{u}

Similarity Search

Augsten (Univ. Salzburg)

 V_{kl}

WS 2019/20

22 / 22

Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava, and Ting Yu.

Approximate XML joins.

In *Proceedings of the ACM SIGMOD International Conference on Management of Data*, pages 287–298, Madison, Wisconsin, 2002. ACM Press.