QOutline

Similarity Search
The Binary Branch Distance

Nikolaus Augsten @ Binary Branch Distance
nikolaus.augsten@sbg.ac.at @ Binary Representation of a Tree
Department of Computer Sciences .
University of Salzburg ° Blnary Branches

@ Lower Bound for the Edit Distance

y database o Complexity
research group

http://dbresearch.uni-salzburg.at

WS 2019/20

Version February 24, 2020

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 1/28 Augsten (Univ. Salzburg) Similarity Search WS 2019/20

Binary Branch Distance Binary Representation of a Tree Binary Branch Distance Binary Representation of a Tree

Outline Binary Tree

@ In a binary tree
e each node has at most two children;
o left child and right child are distinguished:

0 Binary Branch Distance a node can have a right child without having a left child;
@ Binary Representation of a Tree o Notation: Tg = (N, E/, E;)

e Tp denotes a binary tree

e N are the nodes of the binary tree

o E; and E, are the edges to the left and right children, respectively
o Full binary tree:

e binary tree
e each node has exactly zero or two children.

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 3/28 Augsten (Univ. Salzburg) Similarity Search WS 2019/20

Binary Branch Distance Binary Representation of a Tree

Example: Binary Tree

e Two different binary trees: Tg = (N, E}, ;)
TBI = ({aV b? C’ d’ e? f7g}? {(a’ b)7(7C)7(d")7(67 f)}’ {(a d) (eg):)
TB2 = ({av b7 <, dvevf7g}7 {(37 b),(b, c),(e,f)}, J(q d)(d7 e)’<e'g»)ll)
7_Bl a T32 a
/N /N
b d # b d
/ / / \
c e c e
/ N\ / N\
f & f &
o A full binary tree:
a
RN
b d
/ \ / N\
C h e I
/' \
f &

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 5/28

Binary Branch Distance Binary Representation of a Tree

Example: Binary Tree Transformation

@ Represent tree T as a binary tree:

T — binary representation of T
a
| a
b — b T~ e /
/ N\ / N\ b
c d ¢ d VRN
C b
\ / \
d ¢ e
\
d

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 7/28

Binary Branch Distance Binary Representation of a Tree

Binary Representation of a Tree

@ Binary tree transformation:
@ link all neighboring siblings in a tree with edges
@ delete all parent-child edges except the edge to the first child

@ Transformation maintains
o label information
e structure information
@ Original tree can be reconstructed from the binary tree:
e a left edge represents a parent-child relationships in the original tree
e a right edge represents a right-sibling relationship in the original tree

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 6/28

Binary Branch Distance Binary Representation of a Tree

Normalized Binary Tree Representation

o We extend the binary tree with null nodes € as follows:
e a null node for each missing left child of a non-null node
e a null node for each missing right child of a non-null node

o Note: Leaf nodes get two null-children.

@ The resulting normalized binary representation

e is a full binary tree
e all non-null nodes have two children
o all leaves are null nodes (and all null nodes are leaves)

Similarity Search WS 2019/20

Augsten (Univ. Salzburg)

Binary Branch Distance Binary Representation of a Tree Binary Branch Distance Binary Branches

Example: Normalized Binary Tree ‘ Outline

e Transforming T to the normalized binary tree B(T):
T — B(T)

a a @ Binary Branch Distance

/ ‘ \ . , / \ 6 . i h

/A /A N @ Binary Branches
c b

/N /N

/ \ / N\ / \

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 9/28 Augsten (Univ. Salzburg) Similarity Search WS 2019/20 10/28
Binary Branch Distance Binary Branches ‘ Binary Branch Distance Binary Branches ‘
‘ Binary Branch ‘ Binary Branches of Trees and Datasets

@ A binary branch BiB(v) is

o a subtree of the normalized binary tree B(T)

e consisting of a non-null node v and its two children . o .
@ Binary branches can be serialized as strings:

o Example: o BiB(v) = ({v,a,b},{(v,a)},{(v,b)}) = A(v) o A(a) o A(b)
BiB(a) = ({a, b, e}, {(a, b)},{(a,€)}) o we can sort these strings (e > A(v) for all non-null nodes v)
BiB(d) = ({d, e1, €2}, {(d, e1)},{(d, &2)}) ! @ Binary branch sets:
/ a \ e BiB(T) is the set of all binary branches of B(T)
b € o BiB(S) = Uycs BiB(T) is the set of all binary branches of dataset S
N o BiBsyt(S) is the vector of sorted serialized strings of BiB(S)
c b :
RN AN o Note:
€ d c e e nodes are unique in the tree, thus binary branches are unique
/N /N /N o labels are not unique, thus the serialized binary branches are not unique

!Although the two null nodes have identical labels (€), they are different nodes. We

empbhasize this by showing their IDs in subscript.
Augsten (Univ. Salzburg) Similarity Search WS 2019/20 11/28 Augsten (Univ. Salzburg) Similarity Search WS 2019/20 12/28

Binary Branch Distance Binary Branches

Example: Binary Branches of Trees and Datasets

Binary Branch Distance Binary Branches

T1 T2
/a\ ?
/b\ € b/ \

o PN
7N 7N \ \
€ d3 Cy e 6/ d 6/ d
/N /N / \ /A RN
€ €€ dee € € b e e
E/ \6 /N /\
e € € €
/ \
€ €

(] BIB(Cl) 75 BiB(C4)Z
o BiB(a1) = ({c1, €2, ds}, {(c1, €2)}, {(c1, d3)})
° BiB(C4) = ({C47 €5, dﬁ}’ {(C47 E5)}’5 {(C4’ dﬁ)})
@ Serialization of both, BiB(c1) and BiB(c»), is identical: 'ced’
@ Sorted vector of serialized strings of BiB(S), where S = {T1, T2 }:
BiBsort(S) = (abe, beb, bec, bee, bee, ced, deb, dee, dee, ece)

Augsten (Univ. Salzburg)

Similarity Search WS 2019/20 13/28

Binary Branch Distance Binary Branches

Example: Binary Branch Vectors

/N
@ S={T1,To} is the data set € €

@ BiBsort(S) is the vector of sorted serialized strings of BiB(S)
e BBV(T,) is the binary branch vector of T;
@ the vector of serialized strings and the binary branch vectors are:

BiBsort(S)]abe\bcb\bcc\bce\bee\ced\deb\dee\dee\eee‘
BBV(T1) [1]1]0oJ1]o0]2]0f[0]2]1]
BBV(T2) [1]Jof1fof1[2]1[1]0]2]

Similarity Search WS 2019/20

Augsten (Univ. Salzburg)

‘ Binary Branch Vector

@ The binary branch vector BBV/(T)
o is a representation of the binary branch set BiB(T)
e Construction of the binary branch vector BBV/(T):

o compute BiBso(S) (serialize and sort BiB(S))
o b; is the i-th serialized binary branch in sort order (b; = BiBsort(S)[i])
e BBV/(T)[i] is the number of binary branches in B(T) that serialize to b;

e Note: BBV/(T)][i] is zero if b; does not appear in BiB(T)

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 14 /28

Binary Branch Distance Lower Bound for the Edit Distance

‘ QOutline

@ Binary Branch Distance

@ Lower Bound for the Edit Distance

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 16 /28

Binary Branch Distance Lower Bound for the Edit Distance

Binary Branch Distance [YKTO05]

Definition (Binary Branch Distance)

Let BBV(T) = (b1, .., bx) and BBV(T') = (b, .., b,) be binary branch
vectors of trees T and T’, respectively. The binary branch distance of T
and T is

k
3p(T,T") = |bi — bi|.
(=1

@ Intuition: We count the binary branches that do not match between
the two trees.

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 17 /28

Binary Branch Distance Lower Bound for the Edit Distance

Example: Binary Branch Distance

Binary Branch Distance Lower Bound for the Edit Distance

Example: Binary Branch Distance

@ We compute the binary branch distance between T3 and Tj:

Ty a T, a
| AN
b/b\e b . d .
/ A\ /N RN
c d ¢ d c d b
\
e

Augsten (Univ. Salzburg) Similarity Search WS 2019/20

Binary Branch Distance Lower Bound for the Edit Distance

Example: Binary Branch Distance

18/28

@ The normalized binary tree representations are:

b/ . i(T2/)a\6
C/ \C

c b
/N /N VRN 7N\
€ d C e € d € d
/N /N /N /A RN
€ €€ de € € b e e
7\ / A\ / N\
€ ¢ e € € €
/ \
€ €

WS 2019/20 19/28

Similarity Search

Augsten (Univ. Salzburg)

@ The binary branch vectors of T1 and T» are:

BiBsort(S)]abe\bcb\bcc\bce\bee\ced\deb\dee\dee\eee‘
BBV(T1) [1]1]0o]1]o0]2]0]0]2]1]
BBV(T2) [1Jo]1fof1[2]1[1]0][2]

@ The binary branch distance is

08(T1.T2) = 12 |bri — b
= 1-1/+[1-0[+|0—-1|+[1-0]+|0—1]+
2-2|+[0—-1]+|0—-1]+]2—-0]+ |1 -2
= 0,

where by ; and by ; are the i-th dimension of the vectors BBV/(Ty)
and BBV/(T>), respectively.

Augsten (Univ. Salzburg) Similarity Search WS 2019/20

20/28

Binary Branch Distance Lower Bound for the Edit Distance

Binary Branch Distance Lower Bound for the Edit Distance

Lower Bound Theorem Proof Sketch: lllustration for Rename
e transform T; to Ty ren(c, x)
Theorem (Lower Bound) a a
VRN VIR
Let T and T’ be two trees. If the tree edit distance between T and T’ is b S b P g
0+(T,T'), then the binary branch distance between them satisfies e f e f
55(T,T') < 5 x 8:(T, T'). @ binary treesa B(T1) and B(T2)]
b/ \e b/ \6
Proof (Sketch — Full Proof in [YKTO05]). R N
@ Each node v appears in at most two binary branches. 7 g e g
@ Rename: Renaming a node causes at most two binary branches in ; \f ¢ e ¢ \f ¢ e
each tree to mismatch. The sum is 4. K K
@ Similar rational for insert and its complementary operation delete (at @ Two binary branches (bec, ceg) exist only in B(T;)
most 5 binary branches mismatch). @ Two binary branches (bex, xeg) exist only in B(T>)
O @ 0:(T1,T2) =1 (1 rename)
@ 05(T1,T2) =4 (4 binary branches different)
Augsten (Univ. Salzburg) Similarity Search WS 2019/20 21/28 Augsten (Univ. Salzburg) Similarity Search WS 2019/20 22/28

Binary Branch Distance Lower Bound for the Edit Distance Binary Branch Distance Lower Bound for the Edit Distance

Proof Sketch: lllustration for Insert Proof Sketch

e transform T to Ty ins(x, a,2,2)

a a
AN VRN
b g

b x &
/A
e f @ In general it can be shown that
@ binary trees B(T1) and B(T>) o Rename changes at most 4 binary branches
a a e Insert changes at most 5 binary branches
o Delete changes at most Inary branches
VN Delete ch 5 binary branch
N . . .
e’ e S @ Each edit operation changes at most 5 binary branches, thus
/N /N
€ f e -4 / /
g / \f SN 0p(T,T") <5 x0T, T).
/7 N\ / \
€ € € €

@ Two binary branches (bee, feg) exist only in B(Ty)

@ Tree binary branches (bex, fee, xeg) exist only in B(T2)
0¢(T1,T2) =1 (1 insertion)

@ 05(T1,T2) =5 (5 binary branches different)

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 Augsten (Univ. Salzburg) Similarity Search

WS 2019/20 24/28

Binary Branch Distance Complexity Binary Branch Distance Complexity

‘ Outline Complexity: Binary Branch Distance

e Compute the distance between two trees of size O(n):
(5 ={T1, T2}, n=max{[Ta[,[T2[})
e Construction of the binary branch vectors BBV(T1) and BBV(T»):
@ BiB(S) — compute the binary branches of Ty and T»:
_ _ O(n) time and space (traverse Ty and T»)
@ Binary Branch Distance @ BiBsort(S) — sort serialized binary branches of BiB(S):
O(nlog n) time and O(n) space
@ construct BBV(T;) and BBV(T,):
@ traverse all binary branches: O(n) time and space
. @ for each binary branch find position i in BiBso:(S): O(nlog n) time
® Complexity (binary search in BiBsor:(S) for n binary branches)
@ BBV(T)[i] is incremented: O(1)
@ Computing the distance:

o the two binary branch vectors are of size O(n)
e computing the distance has time complexity O(n)
(subtracting two binary branch vectors)

@ The overall complexity is O(nlog n) time and O(n) space.

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 25/28 Augsten (Univ. Salzburg) Similarity Search WS 2019/20 26 /28

Binary Branch Distance Complexity Binary Branch Distance Complexity

Improving the Time Complexity with a Hash Function

Complexity for Similarity Joins

@ Join two sets with N trees each (tree size: n):

_) e Compute Binary Branch Vectors (BBVs):
@ Note: Improvement using a hash function: O(Nnlog(Nn)) time, O(N2n) space
e we assume a hash function that maps the O(n) binary branches to o BBVs are of size O(Nn)
O(n) buckets without collision o time: sort O(Nn) binary branches / O(Nn) binary searches in BBVs

o we do no't.sorth BiB(S) BEV(T) | 4 using the hash functi o space: O(N) BBVs must be stored
@ position / In the vector (T) is computed using the hash function o Compute Distances: O(N3n) time

o O(n) time (instead of O(nlogn)) and O(n) space .) i)
e computing the distance between two trees has O(Nn) time complexity
(subtracting two binary branch vectors)
o O(N?) distance computations required

@ Overal Complexity: O(N3n+ Nnlog n)! time and O(N?n) space

@ In the following we assume the sort algorithm with O(nlog n) runtime.

TO(N3n + Nnlog(Nn)) = O(N3n + Nnlog N + Nnlog n) = O(N°n -+ Nnlog n)

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 27 /28 Augsten (Univ. Salzburg) Similarity Search WS 2019/20 28 /28

[4 Rui Yang, Panos Kalnis, and Anthony K. H. Tung.
Similarity evaluation on tree-structured data.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 754-765, Baltimore, Maryland, USA,
June 2005. ACM Press.

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 28 /28

