

Example: Binary Tree

- Two different binary trees: $\mathrm{T}_{B}=\left(N, E_{l}, E_{r}\right)$
$\mathrm{T}_{B 1}=(\{a, b, c, d, e, f, g\},\{(a, b),(b, c),(d, e),(e, f)\},\{(a, d),(e, g)\})$
$\mathrm{T}_{B 2}=(\{a, b, c, d, e, f, g\},\{(a, b),(b, c),(e, f)\},\{(a, d),(d, e),(e, g)\})$

- A full binary tree:

Augsten (Univ. Salzburg)

Similarity Search
Binary Branch Distance Binary Representation of a Tree
Example: Binary Tree Transformation

- Represent tree T as a binary tree:

Binary Representation of a Tree

- Binary tree transformation:
(1) link all neighboring siblings in a tree with edges
(1) delete all parent-child edges except the edge to the first child
- Transformation maintains
- label information
structure information
- Original tree can be reconstructed from the binary tree:
- a left edge represents a parent-child relationships in the original tree
- a right edge represents a right-sibling relationship in the original tree
- We extend the binary tree with null nodes ϵ as follows:
- a null node for each missing left child of a non-null node
- a null node for each missing right child of a non-null node
- Note: Leaf nodes get two null-children.
- The resulting normalized binary representation
- is a full binary tree
- all non-null nodes have two children
- all leaves are null nodes (and all null nodes are leaves)

Binary Branch Distance Binary Representation of a Tree	Binary Branch Distance Binary Branches
Example: Normalized Binary Tree	Outline
- Transforming T to the normalized binary tree $B(\mathrm{~T})$:	(1) Binary Branch Distance - Binary Representation of a Tree - Binary Branches - Lower Bound for the Edit Distance - Complexity
Augsten (Univ. Salzburg) Similarity Search WS 2019/20 9/28	Augsten (Univ. Salzburg) Similarity Search WS 2019/20 10/28
Binary Branch Distance Binary Branches	Binary Branch Distance ${ }^{\text {a }}$ Binary Branches
Binary Branch	Binary Branches of Trees and Datasets
- A binary branch $\operatorname{BiB}(\mathrm{v})$ is - a subtree of the normalized binary tree $B(\mathrm{~T})$ - consisting of a non-null node v and its two children - Example: $\begin{aligned} & \operatorname{BiB}(a)=(\{a, b, \epsilon\},\{(a, b)\},\{(a, \epsilon)\}) \\ & \operatorname{BiB}(d)=\left(\left\{d, \epsilon_{1}, \epsilon_{2}\right\},\left\{\left(d, \epsilon_{1}\right)\right\},\left\{\left(d, \epsilon_{2}\right)\right\}\right)^{1} \end{aligned}$ ${ }^{1}$ Although the two null nodes have identical labels (ϵ), they are different nodes. We emphasize this by showing their IDs in subscript.	- Binary branches can be serialized as strings: - $\operatorname{BiB}(\mathrm{v})=(\{\mathrm{v}, \mathrm{a}, \mathrm{b}\},\{(\mathrm{v}, \mathrm{a})\},\{(\mathrm{v}, \mathrm{b})\}) \rightarrow \lambda(\mathrm{v}) \circ \lambda(\mathrm{a}) \circ \lambda(\mathrm{b})$ - we can sort these strings $(\epsilon>\lambda(v)$ for all non-null nodes $v)$ - Binary branch sets: - $\operatorname{BiB}(\mathrm{T})$ is the set of all binary branches of $B(\mathrm{~T})$ - $\operatorname{BiB}(S)=\bigcup_{T \in S} B i B(T)$ is the set of all binary branches of dataset S - $B i B_{\text {sort }}(S)$ is the vector of sorted serialized strings of $\operatorname{BiB}(S)$ - Note: - nodes are unique in the tree, thus binary branches are unique - labels are not unique, thus the serialized binary branches are not unique

- $\operatorname{BiB}\left(c_{1}\right) \neq \operatorname{BiB}\left(c_{4}\right):$
- $\operatorname{BiB}\left(c_{1}\right)=\left(\left\{c_{1}, \epsilon_{2}, d_{3}\right\},\left\{\left(c_{1}, \epsilon_{2}\right)\right\},\left\{\left(c_{1}, d_{3}\right)\right\}\right)$
- $\operatorname{BiB}\left(c_{4}\right)=\left(\left\{c_{4}, \epsilon_{5}, d_{6}\right\},\left\{\left(c_{4}, \epsilon_{5}\right)\right\},\left\{\left(c_{4}, d_{6}\right)\right\}\right)$
- Serialization of both, $\operatorname{Bi} B\left(c_{1}\right)$ and $\operatorname{BiB}\left(c_{2}\right)$, is identical: ' $c \epsilon d$ '
- Sorted vector of serialized strings of $\operatorname{BiB}(S)$, where $S=\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}\right\}$: $B i B_{\text {sort }}(S)=(a b \epsilon, b c b, b c c, b c e, b e \epsilon, c \epsilon d, d \epsilon b, d \epsilon e, d \epsilon \epsilon, e \epsilon \epsilon)$
Augsten (Univ. Salzburg) Similarity Search
Example: Binary Branch Vectors

$S=\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}\right\}$ is the data set

- $B i B_{\text {sort }}(S)$ is the vector of sorted serialized strings of $B i B(S)$
- $\operatorname{BBV}\left(\mathrm{T}_{i}\right)$ is the binary branch vector of T_{i}
- the vector of serialized strings and the binary branch vectors are:

(S)	$a b \in$	$b c b$	$b c c$	bce	bet	$c \in$	$d \epsilon b$	$d \epsilon e$	$d \epsilon \epsilon$	
$\operatorname{BBV}\left(\mathrm{T}_{1}\right)$	1	1	0	1	0	2	0	0	2	
$\operatorname{BBV}\left(\mathrm{T}_{2}\right)$	1	0	1	0	1	2	1	1	0	

Binary Branch Vector

- The binary branch vector $B B V(\mathrm{~T})$
- is a representation of the binary branch set $\operatorname{BiB}(\mathrm{T})$
- Construction of the binary branch vector $B B V(T)$:
- compute $B i B_{\text {sort }}(S)$ (serialize and sort $B i B(S)$)
- b_{i} is the i-th serialized binary branch in sort order $\left(b_{i}=B i B_{\text {sort }}(S)[i]\right)$
- $\operatorname{BBV}(\mathrm{T})[i]$ is the number of binary branches in $B(\mathrm{~T})$ that serialize to b_{i}
- Note: $B B V(\mathrm{~T})[i]$ is zero if b_{i} does not appear in $\operatorname{BiB}(\mathrm{T})$

Outline

Binary Branch Distance- Binary Representation of a Tree
- Binary Branches
- Lower Bound for the Edit Distance
- Complexity

Binary Branch Distance Lower Bound for the Edit Distance
 Binary Branch Distance [YKT05]

Definition (Binary Branch Distance)

Let $B B V(T)=\left(b_{1}, \ldots, b_{k}\right)$ and $B B V\left(T^{\prime}\right)=\left(b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right)$ be binary branch vectors of trees T and T^{\prime}, respectively. The binary branch distance of T and T^{\prime} is

$$
\delta_{B}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)=\sum_{i=1}^{k}\left|b_{i}-b_{i}^{\prime}\right| .
$$

- Intuition: We count the binary branches that do not match between the two trees.

Augsten (Univ. Salzburg)

Example: Binary Branch Distance

- The normalized binary tree representations are:

Example: Binary Branch Distance

- We compute the binary branch distance between T_{1} and T_{2} :

Example: Binary Branch Distance

- The binary branch vectors of T_{1} and T_{2} are:

$B^{\text {i }} B_{\text {sort }}(S)$	$a b \epsilon$	$b c b$	$b c c$	bce	be ϵ	$c \in d$	$d \epsilon b$	$d \epsilon e$	$d \epsilon \epsilon$	$e \epsilon$
$\operatorname{BBV}\left(\mathrm{T}_{1}\right)$	1	1	0	1	0	2	0	0	2	1
$B B V\left(\mathrm{~T}_{2}\right)$	1	0	1	0	1	2	1	1	0	2

- The binary branch distance is

$$
\begin{aligned}
\delta_{B}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right) & =\sum_{i=1}^{10}\left|b_{1, i}-b_{2, i}\right| \\
& =|1-1|+|1-0|+|0-1|+|1-0|+|0-1|+ \\
& =92-2|+|0-1|+|0-1|+|2-0|+|1-2| \\
& =9,
\end{aligned}
$$

where $b_{1, i}$ and $b_{2, i}$ are the i-th dimension of the vectors $B B V\left(\mathrm{~T}_{1}\right)$ and $B B V\left(\mathrm{~T}_{2}\right)$, respectively.

Lower Bound Theorem

Theorem (Lower Bound)

Let T and T^{\prime} be two trees. If the tree edit distance between T and T^{\prime} is $\delta_{t}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)$, then the binary branch distance between them satisfies

$$
\delta_{B}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right) \leq 5 \times \delta_{t}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right) .
$$

Proof (Sketch — Full Proof in [YKT05]).

- Each node v appears in at most two binary branches.
- Rename: Renaming a node causes at most two binary branches in each tree to mismatch. The sum is 4 .
- Similar rational for insert and its complementary operation delete (at most 5 binary branches mismatch).

Proof Sketch: Illustration for Insert

- transform T_{1} to $\mathrm{T}_{2}: \operatorname{ins}(x, a, 2,2)$

- binary trees $B\left(\mathrm{~T}_{1}\right)$ and $B\left(\mathrm{~T}_{2}\right)$

- Two binary branches (bєe, $f \in g$) exist only in $B\left(T_{1}\right)$
- Tree binary branches (bєx, $f \epsilon \epsilon$, xeg) exist only in $B\left(T_{2}\right)$
- $\delta_{t}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=1$ (1 insertion)
- $\delta_{B}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=5$ (5 binary branches different)
- transform T_{1} to $\mathrm{T}_{2}: \operatorname{ren}(c, x)$

- binary trees $B\left(\mathrm{~T}_{1}\right)$ and $B\left(\mathrm{~T}_{2}\right)$

- Two binary branches (bec, ceg) exist only in $B\left(\mathrm{~T}_{1}\right)$
- Two binary branches (bєx, xeg) exist only in $B\left(T_{2}\right)$
- $\delta_{t}\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}\right)=1$ (1 rename)
- $\delta_{B}\left(T_{1}, T_{2}\right)=4$ (4 binary branches different)

Augsten (Univ. Salzburg) Similarity Search
Proof Sketch

- In general it can be shown that
- Rename changes at most 4 binary branches
- Insert changes at most 5 binary branches
- Delete changes at most 5 binary branches
- Each edit operation changes at most 5 binary branches, thus

$$
\delta_{B}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right) \leq 5 \times \delta_{t}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)
$$

Outline

Binary Branch Distance

- Binary Representation of a Tree
- Binary Branches
- Lower Bound for the Edit Distance
- Complexity

Improving the Time Complexity with a Hash Function

- Note: Improvement using a hash function:
- we assume a hash function that maps the $O(n)$ binary branches to $O(n)$ buckets without collision
- we do not sort $\operatorname{BiB}(S)$
- position i in the vector $B B V(T)$ is computed using the hash function
- $O(n)$ time (instead of $O(n \log n)$) and $O(n)$ space
- In the following we assume the sort algorithm with $O(n \log n)$ runtime.

Binary Branch Distance Complexity
 Complexity: Binary Branch Distance

- Compute the distance between two trees of size $O(n)$:

$$
\left(S=\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}\right\}, n=\max \left\{\left|\mathrm{T}_{1}\right|,\left|\mathrm{T}_{2}\right|\right\}\right)
$$

- Construction of the binary branch vectors $B B V\left(\mathrm{~T}_{1}\right)$ and $B B V\left(\mathrm{~T}_{2}\right)$:
(1) $\operatorname{BiB}(S)$ - compute the binary branches of T_{1} and T_{2} : $O(n)$ time and space (traverse T_{1} and T_{2})
(2) $B i B_{\text {sort }}(S)$-sort serialized binary branches of $\operatorname{BiB}(S)$:
$O(n \log n)$ time and $O(n)$ space
(3) construct $B B V\left(\mathrm{~T}_{1}\right)$ and $B B V\left(\mathrm{~T}_{2}\right)$:
(0) traverse all binary branches: $O(n)$ time and space
(D) for each binary branch find position i in $B i B_{\text {sort }}(S)$: $O(n \log n)$ time (binary search in $B i B_{\text {sort }}(S)$ for n binary branches)
(c) $B B V(\mathrm{~T})[i]$ is incremented: $O(1)$
- Computing the distance:
- the two binary branch vectors are of size $O(n)$
- computing the distance has time complexity $O(n)$ (subtracting two binary branch vectors)
- The overall complexity is $O(n \log n)$ time and $O(n)$ space.

Augsten (Univ. Salzburg) Similarity Search

Binary Branch Distance Complexity
Complexity for Similarity Joins

- Join two sets with N trees each (tree size: n):
- Compute Binary Branch Vectors (BBVs):
$O(N n \log (N n))$ time, $O\left(N^{2} n\right)$ space
- BBVs are of size $O(N n)$
time: sort $O(N n)$ binary branches / $O(N n)$ binary searches in BBVs
- space: $O(N) B B V$ s must be stored
- Compute Distances: $O\left(N^{3} n\right)$ time
- computing the distance between two trees has $O(N n)$ time complexity (subtracting two binary branch vectors)
- $O\left(N^{2}\right)$ distance computations required
- Overal Complexity: $O\left(N^{3} n+N n \log n\right)^{\dagger}$ time and $O\left(N^{2} n\right)$ space

[^0]: Rui Yang, Panos Kalnis, and Anthony K. H. Tung.
Similarity evaluation on tree-structured data.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 754-765, Baltimore, Maryland, USA, June 2005. ACM Press.

[^0]: ${ }^{\dagger} O\left(N^{3} n+N n \log (N n)\right)=O\left(N^{3} n+N n \log N+N n \log n\right)=O\left(N^{3} n+N n \log n\right)$

