Similarity Search
The pg-Gram Distance

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at
Department of Computer Sciences
University of Salzburg

M database
research group

http://dbresearch.uni-salzburg.at

WS 2019/20
Version February 24, 2020

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 1/32

Outline

0 The pg-Gram Distance
@ Definition
@ Algorithm
@ Fanout Weighting and Lower Bound
@ Experiments

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 2/32

The pg-Gram Distance Definition

Outline

@ The pg-Gram Distance
@ Definition

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 3/32

The pg-Gram Distance Definition

pg-Grams — Intuition

@ g-Grams for strings:

o split string into substrings (g-grams) of length g
e strings with many common substrings are similar

@ pg-Grams for trees:

o split tree into small subtrees (pg-grams) of the same shape
e trees with many common subtrees are similar

Augsten (Univ. Salzburg) Similarity Search WS 2019/20

The pg-Gram Distance Definition

pg-Grams

@ The shape of a pg-gram (p=2, g=3):
[J
|]stem

L
SN
e o e Aanchor node

base

@ p nodes (anchor node and p—1 ancestors) form the stem

@ g nodes (g consecutive children of the anchor node) form the base

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 5/32

The pg-Gram Distance Definition

pg-Extended Tree

@ Problem: How can we split the following tree T into 2, 3-grams?
a
b C
d e

@ Solution: Extend tree T with dummy nodes (e):

e p—1 ancestors to the root node

e g—1 children before the first and after the last child of each non-leaf
e g children for each leaf

@ The result is the pg-extened tree TPY.

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 6/32

The pg-Gram Distance Definition

Example: Extended Tree

@ An example tree T and its extended tree TP9 (p=2, g=3):

T 2, 3-extended tree T23
d o
/ \ |
b ¢ /a\
/ N\
d e o% \o
/ 1\ =7 X
© oo oo c oo
/ 1\ / I\

Augsten (Univ. Salzburg) Similarity Search WS 2019/20

The pg-Gram Distance Definition

Definition: pg-Gram [ABGO5]

Definition (pg-Gram)

Let T be a tree, TP9 the respective extended tree, p >0, g > 0. A
subtree of TP9 is a pg-gram g of T iff

@ g has g leaf nodes and p non-leaf nodes,

@ all leaf nodes of g are children of a single node a € N(g) with fanout
q, called the anchor node,

@ the leaf nodes of g are consecutive siblings in TP 9,

@ Stem: anchor node and its ancestors in the pg-gram.

@ Base: children of the anchor node in the pg-gram.

Definition (pg-Gram Profile)

The pg-gram profile, Pt, of a tree T is the set of all its pg-grams.

Augsten (Univ. Salzburg) Similarity Search WS 2019/20

The pg-Gram Distance Definition

Example: Systematically Split Tree

@ pg-Gram: small subtree with stem and base

°
Example: p=2, g=3 |]stem
°
@ Systematically split tree into pg-grams N
Y Yy sP Pq-g ./1\. anchor node
@ pg-Gram profile: set of all pg-grams of a tree.
base
k k k % %
| | | | |
P(T) a a a a a
/ I\ / I\ / I\ / I\ / I\
* x @ xap apc pbpcCcx*x C x %
sten a a a a a
| | | | |
ﬂ a a a a e
/ I\ / I\ / I\ /I\ / I\
* x € x e p e p*x bk *x *x x %
b C a a a
| | |
b b ©
/1N /1N /1N

Augsten (Univ. Salzburg) Similarity Search WS 2019/20

The pg-Gram Distance Definition

Label Tuples

@ Linear encoding of a pg-gram g with anchor node v,

(traverse pg-gram in preorder)
Vi

Vp = (V1,--,Vp, Vpt1, .-, Vpiq)
7 N

Vp+1 - - - Vptgq

@ Label tuple: tuple of the pg-gram’s node labels

Ag) = (A(v1),- -5 A(Vpiq))

for the pg-gram g = (v1,...,Vptq).

Augsten (Univ. Salzburg) Similarity Search WS 2019/20

The pg-Gram Distance Definition

pg-Gram Index

Definition (pg-Gram Index)

Let T be a tree with profile Pt, p>0, g>0. The pg-gram index, Z, of
tree T is the bag of all label tuples of T,

(M) = [H Ae)

gePr

@ Note:

@ pg-grams are unique within a tree
e but: different pg-grams may vyield identical label tuples
e thus the pg-gram index may contain duplicates

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 11 /32

The pg-Gram Distance Definition

Storing the pg-Gram Index Efficiently

@ Problem: How to store node labels efficiently?

e Long labels: large storage overhead
e Varying label length: in a relational database, the inefficient VARCHAR
type must be used instead of the efficient CHAR type

@ Solution: Hashing
e compute fingerprint hash for labels
e store concatenation of the hashed labels
@ Fingerprint hash function (e.g., Karp-Rabin [KR87]):

® maps a string s to a hash value h(s)
o h(s) is of fixed length
o h(s) is unique with high probability
(for two different strings s; # s, h(s1) # h(sp) with high probability)

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 12/32

The pg-Gram Distance Definition

Overview: The pg-Gram Index

@ pg-Gram profile:

* * * * * a a a a a a a a

I I I I I I I I I I | | |
a a a a a a a a a e b b C

VRN VAR / 1\ 71N\ /1IN VRN VAR / 1\ 71N\ /1N /1N /1N /1N
*x ka kap apc pCc*x Cx*x *xx€ kxep €p*x pHhx ok k kx k Kk k k Kk k k K *k k

@ Hashing: map pg-gram to integer:

—

(shorthand) . aabc 12"y 03376

*

| .

3 serialize

/ I\ I (*7a7a7b7c)
apc

o O T o
A~ O N W o/

Note: labels may be strings of arbitrary length!

@ pg-Gram index: bag of hashed pg-grams
Z(T) = {03003,03037,03376,03760,03600,33004, 33047,

33470, 33700, 37000, 36000, 34000, 37000}

Intuition: similar trees have similar pg-gram indexes. I

Augsten (Univ. Salzburg) Similarity Search WS 2019/20

The pg-Gram Distance Definition

The pg-Gram Distance

Definition (pg-Gram Distance)

The pg-gram distance between two trees, T and T’, is defined as

0g(T, T') = [Z(T) w Z(T")| — 2|Z(T) A Z(T")

o Metric normalization to [0..1]: 6o (T,T') = |I(T)LJ;JI('I(§§)(|-E|-;()T)P’HI(T/)|

@ Pseudo-metric properties hold for normalization [ABG10]:
@ self-identity: x = y#= = d,(x,y) =0
@ symmetry: dz(x,y) = 0z(y, x)
@ triangle inequality: d5(x,z) < dg(x,y) + 0g(y, 2)

a a
/ \ / N\

@ Different trees may have identical indexes:

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 14 /32

The pg-Gram Distance Algorithm

Outline

@ The pg-Gram Distance

@ Algorithm

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 15 /32

The pg-Gram Distance Algorithm

Main Memory Algorithm (1)

CREATEINDEX(T,r,Z, stem, p, q)

stem := shift(stem, \(r))
base: shift register of size q (filled with *)

if r is a leaf then
7 := 7 U {stem o base}

else
for each child c (from left to right) of r do

base := shift(base, \(c))

7 := T U {stem o base}

7 :=CREATEINDEX(T, c,Z, stem, p, q)
for k:=1tog—1

base := shift(base, *)

7 := T U {stem o base}

return 7
_4

WS 2019/20 16/32

Augsten (Univ. Salzburg) Similarity Search

The pg-Gram Distance Algorithm

Main Memory Algorithm (II)

@ Input of CREATEINDEX(T,r,Z, stem, p, q):

e a subtree of T rooted inr

e the pg-gram index Z computed so far

o the stem stem of r's parent

o the parameters p and g

@ Output of CREATEINDEX(T,r,Z, stem, p, q):
pg-gram index including

e the input index 7
e the pg-gram index of r and all its descendants
i.e., the pg-grams (label tuples) with anchor node r or a descendant of r

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 17 /32

The pg-Gram Distance Algorithm

Main Memory Algorithm (I1I)

o pg-GRAM-INDEX(T, p, q) computes the pg-gram index for a
complete tree T:

pqg-GRAM-INDEX(T, p, q)

stem: shift register of size p (filled with *)
Z: empty index

7 = CREATEINDEX(T, root(T),Z, stem, p, q)
return Z

WS 2019/20 18/32

Augsten (Univ. Salzburg) Similarity Search

The pg-Gram Distance Algorithm

Complexity of the pg-Gram Index Algorithm

Theorem (pg-Gram Index Complexity)

The pg-gram index of a tree T with size | T| can be computed in O(|T|)
time.

Each recursive call of createlndex() processes one node in constant time,
and each node is processed exactly once.

[]

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 19/32

The pg-Gram Distance Algorithm

Size of the pg-Gram Index

Theorem (Size of the pg-Gram Index)

Let T be a tree with | leaves and i non-leaves. The size of the pg-gram
index of T is

ZPI(TY| = 2/ + gi — 1.

@ We count all pg-grams whose leftmost leaf is a dummy node: Each
leaf is the anchor node of exactly one pg-gram whose leftmost leaf is a
dummy node, giving | pg-grams. Each non-leaf is the anchor of g — 1
pg-grams whose leftmost leaf is a dummy, giving i(q — 1) pg-grams.

@ We count all pg-grams whose leftmost leaf is not a dummy node:
Each node of the tree except the root is the leftmost leaf of exactly

one pg-gram, giving [+ — 1 pg-grams.
Overall number of pg-grams: I+ i(g—1)+(/+i—1)=2/+qi—1. [

v

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 20/ 32

The pg-Gram Distance Fanout Weighting and Lower Bound

Outline

@ The pg-Gram Distance

@ Fanout Weighting and Lower Bound

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 21/32

The pg-Gram Distance Fanout Weighting and Lower Bound

Motivation: Unit Cost Model Not Always Intuitive

N i
/I\ /TN

def def§

\ /I

h i h i k

@ Unit cost edit distance:

e no difference between leaves and non-leaves
e may lead to non-intuitive results

@ Conclusion: Non-leaves should have more weight than leaves.

Augsten (Univ. Salzburg) Similarity Search WS 2019/20

The pg-Gram Distance Fanout Weighting and Lower Bound

Fanout Weighted Tree Edit Distance

Definition (Fanout Weighted Tree Edit Distance)

Let T and T’ be two trees, w € N(T) a node with fanout 7, w' € N(T’) a
node with fanout f/, ¢ > 0 a constant. The fanout weighted tree edit
distance, 0f = (T, T'), between T and T’ is defined as the tree edit
distance with the following costs for the edit operations:

@ Delete: a(w —€)=Ff+c
o Insert: ae > w')=Ff"+¢
@ Rename: a(w —w')=(f+1f")/2+¢c

@ Cost of changing a non-leaf node: proportional to its fanout.

@ Cost of changing a leaf node: constant c.

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 23 /32

The pg-Gram Distance Fanout Weighting and Lower Bound

Example: Fanout-Weighted Tree Edit Distance

@ Fanout-Weighted Tree Edit Distance:

o leaf changes have small cost (¢ = 1 in the example)
e non-leaf changes cost proportional to the node fanout

Augsten (Univ. Salzburg) Similarity Search

k f &8

, 0 = 2 , 0 = 2
T \ =0 N
b c b C bdhik
/I\ N
d ef def 8

\ /I\

h | h 1 k

WS 2019/20

The pg-Gram Distance Fanout Weighting and Lower Bound

pg-Gram Distance Lower Bound

Theorem

Let p=1 and ¢ > max(2q — 1,2) be the cost of changing a leaf node.

The pg-gram distance provides a lower bound for the fanout weighted tree
edit distance, i.e., for any two trees, T and T’,

0g(T, T
2

< 5f(T7 T/)

See [ABG10] (ACM Transactions on Database Systems).

Augsten (Univ. Salzburg)

Similarity Search

WS 2019/20 25 /32

The pg-Gram Distance Experiments

Outline

@ The pg-Gram Distance

@ Experiments

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 26 /32

The pg-Gram Distance Experiments

Size of the pg-Gram Index

@ pg-Gram index size: linear in the tree size

@ Experiment:

e compute pg-gram index for trees with different number of nodes
@ compare tree and index size

1200 ,
tree ——

1000 | 3.3-gramindex -~
1,2-gram index -

800
600 r

size [MB]

400 |

wo| |

number of nodes

[Trees created with xmlgen.]

Augsten (Univ. Salzburg)

Why is the pg-gram index smaller
than the tree?

@ hash values are smaller than
labels

@ duplicate pg-grams of a tree are
stored only once

Similarity Search WS 2019/20 27 /32

The pg-Gram Distance Experiments

Sensitivity to Structure Change — Leaf

@ Cost of leaf change — depends only on g

@ Experiment:

e delete leaf nodes
e measure normalized pg-gram distance

vary p vary q
1 w w w w 1 w w w w
4,3-grams —+— 2,4-grams ——
3 3,3-grams %~ 3 2,3-grams -x-
S 08 23-grams x- S 08 22-grams x-
© 1,3-grams ~& o 2,1-grams &
© ©
= 0.6 c 0.6
© o
(@) (@)
S 0.4 >
o o
= =
5 02 5 E
c c
0 s A ‘ ‘ ‘ ‘ ‘ ‘ ‘ e Bt ‘ ‘ | | | |
0O 2 4 6 8 10 12 14 16 18 20 10 12 14 16 18 20

number of deletions number of deletions

(Artificial tree with 144 nodes, 102 leaves, fanout 2—6 and depth 6. Average over 100 runs.)

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 28 /32

The pg-Gram Distance Experiments

Sensitivity to Structure Change — Non-Leaf

@ Cost for non-leaf change — controlled by p

@ Experiment:

e delete non-leaf nodes
e measure normalized pg-gram distance

vary p vary q
1 1 - ; - ;
2,4-grams ——
S 8 2,3-grams -
5 08 S 08 22-grams -x-
k7 0 2,1-grams &
© ©
c 0.6 c 0.6 |
© ©
(@)] (@)]
> 04 | S 04
o o
- -
5 0.2 5 0.2
c C
0O 2 4 6 8 10 12 14 16 18 20 0O 2 4 6 8 10 12 14 16 18 20
number of deletions number of deletions

(Artificial tree with 144 nodes, 102 leaves, fanout 2—6 and depth 6. Average over 100 runs.)

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 29 /32

The pg-Gram Distance Experiments

Influence of p and g on Scalability

@ Scalability (almost) independent of p and gq.
@ Experiment: For pair of trees

e compute pg-gram distance for varying p and g
e vary tree size: up 10° nodes
e measure wall clock time

25 T . T T T T
3,4-gram dist ——
2,3-gram dist ——— <
1,2-gram dist -
o 15]
()
2L,
o) x
E10} o _
5t _
O ~ L L 1 1 1
0 100000 200000 300000 400000 500000

number of nodes (n)

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 30/32

The pg-Gram Distance Experiments

Scalability to Large Trees

@ pg-gram distance — scalable to large trees

@ compare with edit distance

@ Experiment: For pair of trees

e compute tree edit distance and pg-gram distance
e vary tree size: up 5 x 10° nodes

e measure wall clock time
600

"edit dist ——+—
2,3-gram dist - D
500 | |

400 | _

300 .

time [sec]

200 r 7

100 + _

O »»»»»»» }-—— 1 B L L 1 1
0] 100000 200000 300000 400000 500000

number of nodes (Nn)

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 31/32

The pg-Gram Distance

pg-Grams vs. other Edit Distance Approximations

Experiments

@ compute distances between all tree pairs

@ find matches (symmetric nearest neighbor)

Effectiveness: pg-grams outperform all other approximations I

Experiment: two sets of address trees (299 and 302 trees)

Distance Correct Recall Precision f-Measure Runtime
fanout edit dist 259 86.6% 98.5% 0.922 19 min
unit edit dist 247 82.6% 96.5% 0.890 14 min
node intersection 197 65.9% 93.8% 0.774 4.3s
p,g-grams 236 78.9% 98.7% 0.877 8.1s
tree-embedding 206 68.9% 96.3% 0.803 7.1s
binary branch 193 64.5% 93.2% 0.763 7.4s
bottom-up 148 49.6% 92.5% 0.645 67.0s

Augsten (Univ. Salzburg)

Similarity Search

WS 2019/20

32/32

@ Nikolaus Augsten, Michael Bohlen, and Johann Gamper.
Approximate matching of hierarchical data using pg-grams.
In Proceedings of the International Conference on Very Large

Databases (VLDB), pages 301-312, Trondheim, Norway, September
2005. ACM Press.

1 Nikolaus Augsten, Michael Bohlen, and Johann Gamper.
The pg-gram distance between ordered labeled trees.
ACM Transactions on Database Systems (TODS), 35(1):1-36, 2010.

8 Richard M. Karp and Michael O. Rabin.
Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249-260, March
1987.

Augsten (Univ. Salzburg) Similarity Search WS 2019/20 32/32

