
Thomas Hütter, WS 2020

PS Ähnlichkeitssuche  
in großen Datenbanken
Task 2 - Prefix Filter

• Collection R ordered by size and global order among all set elements.
Algorithm 1: setsimjoin(R, tJ):
input: R collection of sets, tJ similarity threshold
output: res set of result pairs (similarity at least tJ)
res = []; //stores the result pairs
for i = 0 to |R| - 1:
 for j = i + 1 to |R| - 1:
 if |R[j]| is to big for |R[i]| to reach tJ:
 break;
 if (R[i] ⋂ R[j] / R[i] ⋃ R[j]) ≥ tJ:
 res = res ∪ (i, j);
return res;

Task 1
Length Filter

Exercise
Complexity Analysis

• Given: function verify(r, s, tJ) from Algorithm 1.

• Task: analyze the runtime complexity.

Exercise
Set Similarity Self Join Algorithm

• Given: two sets r and s with |r| = 100 resp. |s| = 100 and Jaccard threshold  
tJ = 0.95.  

• Task: argue whether the pair (r, s) may (or not) be part of the result.

7 10 24 32 44 57 61 72 84 90r = 1 13 22 37 46 51 62 75 87 94s =… …

Prefix Filter
Optimization

• Motivation: verifying large set pairs is expensive.

• Idea: discard a pair without looking at all elements.

• Prefix filter: if there is no common element between the first π elements
(arbitrary but fixed order) of sets r and s, denoted r[:π] resp. s[:π], then (r, s)
cannot be part of the result. π depends on the set sizes and threshold tJ.

3 8 9r =

2 4 7 9s =

For (r, s), compute

prefix π(|r|, |s|, tJ). 3 8r =

2 4s =

]
]

r[:π]
[
[

s[:π]

|r[:π] ⋂ s[:π]| = 0

|r[:π] ⋂ s[:π]| ≠ 0
consider

discard

Pre-processing

• Goal: introduce a common input format that can be processed efficiently and
leveraged to optimize the algorithm.

• Idea: optimize prefix filter by having infrequent elements first.

Inverted Token Frequency

Hobbies
{guitar, swimming}
{hiking, guitar, singing}
{singing, guitar, swimming}
{guitar, skiing, swimming, hiking}

Hobbies
{4, 5}
{2, 3, 5}
{3, 4, 5}
{1, 2, 4, 5}

Hobbies
{5, 4}
{2, 5, 3}
{3, 5, 4}
{5, 1, 4, 2}

Original Dataset Pre-processed Dataset

Inverted token frequency

1x skiing → 1, 2x hiking → 2, 2x singing → 3,  
3x swimming → 4, 4x guitar → 5

Sort each set

• Add the Prefix Filter and implement verify(r, s, tJ).

• Correctness: perform all tests within 45 seconds.

• Compute the minimal prefix length. (1 point)

• Efficient integration of the prefix filter in algorithm. (0.5 point)

• Verify your implementation with given datasets on the teaching website.
Further datasets can be found at http://ssjoin.dbresearch.uni-salzburg.at/
datasets.html.

• Follow the submission guidelines written on the teaching website.

• Submit via abgaben.cosy.sbg.ac.at until 24.11.2020, 23:55.

Homework
Task 2

http://ssjoin.dbresearch.uni-salzburg.at/datasets.html
http://ssjoin.dbresearch.uni-salzburg.at/datasets.html
http://ssjoin.dbresearch.uni-salzburg.at/datasets.html
http://ssjoin.dbresearch.uni-salzburg.at/datasets.html
http://abgaben.cosy.sbg.ac.at

