Similarity Search The *pq*-Gram Distance

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at
Department of Computer Sciences
University of Salzburg

WS 2020/21

Version February 18, 2021

Similarity Search

1 The *pq*-Gram Distance

- Definition
- Algorithm
- Fanout Weighting and Lower Bound
- Experiments

1 The *pq*-Gram Distance

• Definition

- Algorithm
- Fanout Weighting and Lower Bound
- Experiments

2 Conclusion

pq-Grams – Intuition

- *q*-Grams for strings:
 - split string into substrings (q-grams) of length q
 - strings with many common substrings are similar
- *pq*-Grams for trees:
 - split tree into small subtrees (pq-grams) of the same shape
 - trees with many common subtrees are similar

Definition: pq-Gram [ABG05]

Definition (*pq*-Gram)

Let T be a tree, $T^{p,q}$ the respective extended tree, p > 0, q > 0. A subtree of $T^{p,q}$ is a *pq-gram g* of T iff

- (a) g has q leaf nodes and p non-leaf nodes,
- (b) all leaf nodes of g are children of a single node $a \in N(g)$ with fanout q, called the anchor node,
- (c) the leaf nodes of g are consecutive siblings in $T^{p,q}$.
 - Stem: anchor node and its ancestors in the *pq*-gram.
 - Base: children of the anchor node in the *pq*-gram.

Definition (pq-Gram Profile)

The pq-gram profile, P_T , of a tree T is the set of all its pq-grams.

Storing the *pq*-Gram Index Efficiently

• Problem: How to store node labels efficiently?

- Long labels: large storage overhead
- Varying label length: in a relational database, the inefficient VARCHAR type must be used instead of the efficient CHAR type
- Solution: Hashing
 - compute fingerprint hash for labels
 - store concatenation of the hashed labels
- Fingerprint hash function (e.g., Karp-Rabin [KR87]):
 - maps a string s to a hash value h(s)
 - h(s) is of fixed length
 - h(s) is unique with high probability (for two different strings $s_1 \neq s_2$, $h(s_1) \neq h(s_2)$ with high probability)

The *pq*-Gram Distance

Definition (pq-Gram Distance)

The pq-gram distance between two trees, T and T', is defined as

$$\delta_g(\mathsf{T},\mathsf{T}') = |\mathcal{I}(\mathsf{T}) \uplus \mathcal{I}(\mathsf{T}')| - 2|\mathcal{I}(\mathsf{T}) \cap \mathcal{I}(\mathsf{T}')|$$

• Metric normalization to [0..1]: $\delta'_g(\mathsf{T},\mathsf{T}') = \frac{\delta_g(\mathsf{T},\mathsf{T}')}{|\mathcal{I}(\mathsf{T}) \uplus \mathcal{I}(\mathsf{T}')| - |\mathcal{I}(\mathsf{T}) \oplus \mathcal{I}(\mathsf{T}')|}$

• Pseudo-metric properties hold for normalization [ABG10]:

- ✓ self-identity: $x = y \neq \Rightarrow \delta_g(x, y) = 0$
- ✓ symmetry: $\delta_g(x, y) = \delta_g(y, x)$
- ✓ triangle inequality: $\delta_g(x,z) \le \delta_g(x,y) + \delta_g(y,z)$

• Different trees may have identical indexes:

1 The *pq*-Gram Distance

• Definition

• Algorithm

- Fanout Weighting and Lower Bound
- Experiments

2 Conclusion

Main Memory Algorithm (I)

CREATEINDEX(T, r, \mathcal{I} , stem, p, q)

```
stem := shift(stem, \lambda(\mathbf{r}))
base: shift register of size q (filled with *)
if r is a leaf then
\mathcal{I} := \mathcal{I} \cup \{stem \circ base\}
else
for each child c (from left to right) of r do
    base := shift(base, \lambda(\mathbf{c}))
\mathcal{I} := \mathcal{I} \cup \{stem \circ base\}
\mathcal{I} := CREATEINDEX(T, \mathbf{c}, \mathcal{I}, stem, p, q)
for k := 1 to q - 1
    base := shift(base, *)
\mathcal{I} := \mathcal{I} \cup \{stem \circ base\}
```

Main Memory Algorithm (II)

• Input of CREATEINDEX(T, r, \mathcal{I} , stem, p, q):

- a subtree of T rooted in r
- the pq-gram index \mathcal{I} computed so far
- the stem *stem* of r's parent
- the parameters *p* and *q*
- Output of CREATEINDEX(T, r, I, stem, p, q):
 pq-gram index including
 - the input index ${\cal I}$
 - the *pq*-gram index of r and all its descendants
 - i.e., the *pq*-grams (label tuples) with anchor node r or a descendant of r

Complexity of the pq-Gram Index Algorithm

The *pq*-Gram Distance

Theorem (*pq*-Gram Index Complexity)

The pq-gram index of a tree T with size |T| can be computed in O(|T|) time.

Algorithm

Proof.

Each recursive call of *createIndex()* processes one node in constant time, and each node is processed exactly once.

Size of the *pq*-Gram Index

Theorem (Size of the *pq*-Gram Index)

Let T be a tree with I leaves and i non-leaves. The size of the pq-gram index of T is

$$|\mathcal{I}^{pq}(\mathsf{T})| = 2l + qi - 1.$$

Proof.

- 1. We count all pq-grams whose leftmost leaf is a dummy node: Each leaf is the anchor node of exactly one pq-gram whose leftmost leaf is a dummy node, giving l pq-grams. Each non-leaf is the anchor of q - 1pq-grams whose leftmost leaf is a dummy, giving i(q - 1) pq-grams.
- 2. We count all *pq*-grams whose leftmost leaf is not a dummy node: Each node of the tree except the root is the leftmost leaf of exactly one *pq*-gram, giving l + i - 1 *pq*-grams.

Overall number of pq-grams: l + i(q - 1) + (l + i - 1) = 2l + qi - 1.

The pq-Gram Distance

- Definition
- Algorithm
- Fanout Weighting and Lower Bound
- Experiments

2 Conclusion

Motivation: Unit Cost Model Not Always Intuitive

The pq-Gram Distance Fanout Weighting and Lower Bound

Fanout Weighted Tree Edit Distance

Definition (Fanout Weighted Tree Edit Distance)

Let T and T' be two trees, $w \in N(T)$ a node with fanout f, $w' \in N(T')$ a node with fanout f', c > 0 a constant. The fanout weighted tree edit distance, $\delta_f = (T, T')$, between T and T' is defined as the tree edit distance with the following costs for the edit operations:

- Delete: $\alpha(\mathsf{w} \to \epsilon) = f + c$
- Insert: $\alpha(\epsilon \rightarrow w') = f' + c$
- Rename: $\alpha(\mathsf{w} \to \mathsf{w}') = (f + f')/2 + c$
- Cost of changing a non-leaf node: proportional to its fanout.
- Cost of changing a leaf node: constant *c*.

pq-Gram Distance Lower Bound

Theorem

Let p = 1 and $c \ge \max(2q - 1, 2)$ be the cost of changing a leaf node. The pq-gram distance provides a lower bound for the fanout weighted tree edit distance, i.e., for any two trees, T and T',

$$\frac{\delta_g(\mathsf{T},\mathsf{T}')}{2} \leq \delta_f(\mathsf{T},\mathsf{T}').$$

Proof.

See [ABG10] (ACM Transactions on Database Systems).

1 The *pq*-Gram Distance

- Definition
- Algorithm
- Fanout Weighting and Lower Bound
- Experiments

2 Conclusion

Size of the *pq*-Gram Index

- pq-Gram index size: linear in the tree size
- Experiment:
 - compute *pq*-gram index for trees with different number of nodes
 - compare tree and index size

[Trees created with xmlgen.]

Why is the *pq*-gram index smaller than the tree?

- hash values are smaller than labels
- duplicate *pq*-grams of a tree are stored only once

Influence of *p* and *q* on Scalability

- Scalability (almost) independent of p and q.
- Experiment: For pair of trees
 - compute *pq*-gram distance for varying *p* and *q*
 - vary tree size: up 10⁶ nodes
 - measure wall clock time

Scalability to Large Trees

- pq-gram distance \rightarrow scalable to large trees
- compare with edit distance
- Experiment: For pair of trees
 - compute tree edit distance and *pq*-gram distance
 - $\bullet\,$ vary tree size: up 5×10^5 nodes
 - measure wall clock time

pq-Grams vs. other Edit Distance Approximations

Effectiveness: *pq*-grams outperform all other approximations

Experiment: two sets of address trees (299 and 302 trees)

- compute distances between all tree pairs
- find matches (symmetric nearest neighbor)

Distance	Correct	Recall	Precision	f-Measure	Runtime
fanout edit dist	259	86.6%	98.5%	0.922	19 min
unit edit dist	247	82.6%	96.5%	0.890	14 min
node intersection	197	65.9%	93.8%	0.774	4.3s
p,q-grams	236	78.9%	98.7%	0.877	8.1s
tree-embedding	206	68.9%	96.3%	0.803	7.1s
binary branch	193	64.5%	93.2%	0.763	7.4s
bottom-up	148	49.6%	92.5%	0.645	67.0s

Augsten (Univ. Salzburg)

Summary

• Binary Branch Distance

- lower bound of the unit cost tree edit distance
- trees are split into binary branches (small subgraphs)
- similar trees have many common binary branches
- complexity $O(n \log n)$ time

• pq-Gram Distance

- lower bound for the fanout weighted tree edit distance
- trees are split into pq-grams (small subtrees)
- similar trees have many common *pq*-grams
- complexity $O(n \log n)$ time

- Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
 Approximate matching of hierarchical data using *pq*-grams.
 In *Proceedings of the International Conference on Very Large Databases (VLDB)*, pages 301–312, Trondheim, Norway, September 2005. ACM Press.
- Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
 The pq-gram distance between ordered labeled trees.
 ACM Transactions on Database Systems (TODS), 35(1):1–36, 2010.
- Richard M. Karp and Michael O. Rabin.
 Efficient randomized pattern-matching algorithms.
 IBM Journal of Research and Development, 31(2):249–260, March 1987.