Similarity Search

The pq-Gram Distance

Nikolaus Augsten
nikolaus.augsten@sbg.ac.at
Department of Computer Sciences
University of Salzburg

database
 research group
 http://dbresearch.uni-salzburg.at

WS 2020/21
Version February 18, 2021

Outline

(1) The pq-Gram Distance

- Definition
- Algorithm
- Fanout Weighting and Lower Bound
- Experiments
(2) Conclusion

Outline

(1) The pq-Gram Distance

- Definition
- Algorithm
- Fanout Weighting and Lower Bound
- Experiments
(2) Conclusion

pq-Grams - Intuition

- q-Grams for strings:
- split string into substrings (q-grams) of length q
- strings with many common substrings are similar
- $p q$-Grams for trees:
- split tree into small subtrees (pq-grams) of the same shape
- trees with many common subtrees are similar

$p q$-Grams

- The shape of a $p q$-gram $(p=2, q=3)$:

- p nodes (anchor node and $p-1$ ancestors) form the stem
- q nodes (q consecutive children of the anchor node) form the base

$p q$-Extended Tree

- Problem: How can we split the following tree T into 2, 3-grams?

- Solution: Extend tree T with dummy nodes (•):
- $p-1$ ancestors to the root node
- $q-1$ children before the first and after the last child of each non-leaf
- q children for each leaf
- The result is the $p q$-extened tree $T^{p q}$.

Example: Extended Tree

- An example tree T and its extended tree $T^{p q}(p=2, q=3)$:
2, 3-extended tree $T^{2,3}$

Definition: pq-Gram [ABG05]

Definition ($p q$-Gram)

Let T be a tree, $\mathrm{T}^{p, q}$ the respective extended tree, $p>0, q>0$. A subtree of $T^{p, q}$ is a $p q$-gram g of T iff
(a) g has q leaf nodes and p non-leaf nodes,
(b) all leaf nodes of g are children of a single node $a \in N(g)$ with fanout q, called the anchor node,
(c) the leaf nodes of g are consecutive siblings in $T^{p, q}$.

- Stem: anchor node and its ancestors in the pq-gram.
- Base: children of the anchor node in the $p q$-gram.

Definition ($p q$-Gram Profile)

The $p q$-gram profile, P_{T}, of a tree T is the set of all its $p q$-grams.

Example: Systematically Split Tree

- pq-Gram: small subtree with stem and base Example: $p=2, q=3$
- Systematically split tree into $p q$-grams
- $p q$-Gram profile: set of all $p q$-grams of a tree.

Label Tuples

- Linear encoding of a $p q$-gram g with anchor node v_{p} : (traverse $p q$-gram in preorder)

$$
\begin{gathered}
\begin{array}{c}
v_{1} \\
! \\
\vdots \\
\mid \\
v_{p} \\
v_{p+1} \\
\ldots
\end{array}=\left(v_{1}, \ldots, v_{p+q}, v_{p+1}, \ldots, v_{p+q}\right)
\end{gathered}
$$

- Label tuple: tuple of the $p q$-gram's node labels

$$
\lambda(g)=\left(\lambda\left(v_{1}\right), \ldots, \lambda\left(v_{p+q}\right)\right)
$$

for the $p q$-gram $g=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{p+q}\right)$.

pq-Gram Index

Definition ($p q$-Gram Index)

Let T be a tree with profile $\mathrm{P}_{\mathrm{T}}, p>0, q>0$. The $p q$-gram index, \mathcal{I}, of tree T is the bag of all label tuples of T,

$$
\mathcal{I}(\mathrm{T})=\biguplus_{g \in \mathrm{P}_{\mathrm{T}}} \lambda(g)
$$

- Note:
- pq-grams are unique within a tree
- but: different $p q$-grams may yield identical label tuples
- thus the $p q$-gram index may contain duplicates

Storing the pq-Gram Index Efficiently

- Problem: How to store node labels efficiently?
- Long labels: large storage overhead
- Varying label length: in a relational database, the inefficient VARCHAR type must be used instead of the efficient CHAR type
- Solution: Hashing
- compute fingerprint hash for labels
- store concatenation of the hashed labels
- Fingerprint hash function (e.g., Karp-Rabin [KR87]):
- maps a string s to a hash value $h(s)$
- $h(s)$ is of fixed length
- $h(s)$ is unique with high probability (for two different strings $s_{1} \neq s_{2}, h\left(s_{1}\right) \neq h\left(s_{2}\right)$ with high probability)

Overview: The pq-Gram Index

- pq-Gram profile:

- Hashing: map pq-gram to integer:

Note: labels may be strings of arbitrary length!
- pq-Gram index: bag of hashed pq-grams

$$
\begin{aligned}
\mathcal{I}(T)= & \{03003,03037,03376,03760,03600,33004,33047, \\
& 33470,33700,37000,36000,34000,37000\}
\end{aligned}
$$

Intuition: similar trees have similar $p q$-gram indexes.

The pq-Gram Distance

Definition (pq-Gram Distance)

The $p q$-gram distance between two trees, T and T^{\prime}, is defined as

$$
\delta_{g}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)=\left|\mathcal{I}(\mathrm{T}) \uplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|-2\left|\mathcal{I}(\mathrm{~T}) \oplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|
$$

- Metric normalization to $[0.1]: \delta_{g}^{\prime}\left(\mathrm{T}, \mathrm{T}^{\prime}\right)=\frac{\delta_{g}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)}{\left|\mathcal{I}(\mathrm{T}) \uplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|-\left|\mathcal{I}(\mathrm{T}) \oplus \mathcal{I}\left(\mathrm{T}^{\prime}\right)\right|}$
- Pseudo-metric properties hold for normalization [ABG10]:
\checkmark self-identity: $x=y \nRightarrow \Rightarrow \delta_{g}(x, y)=0$
\checkmark symmetry: $\delta_{g}(x, y)=\delta_{g}(y, x)$
\checkmark triangle inequality: $\delta_{g}(x, z) \leq \delta_{g}(x, y)+\delta_{g}(y, z)$
- Different trees may have identical indexes:

Outline

(1) The $p q$-Gram Distance

- Definition
- Algorithm
- Fanout Weighting and Lower Bound
- Experiments
(2) Conclusion

Main Memory Algorithm (I)

CREATEINDEX $(T, r, \mathcal{I}$, stem $, p, q)$

stem $:=\operatorname{shift}(s t e m, \lambda(r))$
base: shift register of size q (filled with $*$)
if r is a leaf then
$\mathcal{I}:=\mathcal{I} \cup\{$ stem \circ base $\}$
else
for each child c (from left to right) of r do
base $:=\operatorname{shift}($ base, $\lambda(\mathrm{c}))$
$\mathcal{I}:=\mathcal{I} \cup\{$ stem \circ base $\}$
$\mathcal{I}:=\operatorname{CrEATEINDEX}(\mathrm{T}, \mathrm{c}, \mathcal{I}$, stem $, p, q)$
for $k:=1$ to $q-1$
base $:=\operatorname{shift}($ base,$*)$
$\mathcal{I}:=\mathcal{I} \cup\{$ stem \circ base $\}$
return \mathcal{I}

Main Memory Algorithm (II)

- Input of CREATEINDEX(T, r, \mathcal{I}, stem, $p, q)$:
- a subtree of T rooted in r
- the $p q$-gram index \mathcal{I} computed so far
- the stem stem of r's parent
- the parameters p and q
- Output of CreateIndex(T, r, \mathcal{I}, stem, p, q): $p q$-gram index including
- the input index \mathcal{I}
- the $p q$-gram index of r and all its descendants
i.e., the $p q$-grams (label tuples) with anchor node r or a descendant of r

Main Memory Algorithm (III)

- $p q$-Gram- $\operatorname{Index}(\mathrm{T}, p, q)$ computes the $p q$-gram index for a complete tree T :

$p q-\operatorname{Gram}-\operatorname{Index}(T, p, q)$

stem: shift register of size p (filled with $*$)
\mathcal{I} : empty index
$\mathcal{I}=\operatorname{CREATEINDEX}(T, \operatorname{root}(T), \mathcal{I}, \operatorname{stem}, p, q)$
return \mathcal{I}

Complexity of the pq-Gram Index Algorithm

Theorem (pq-Gram Index Complexity)

The pq-gram index of a tree T with size $|\mathrm{T}|$ can be computed in $O(|\mathrm{~T}|)$ time.

Proof.

Each recursive call of createlndex() processes one node in constant time, and each node is processed exactly once.

Size of the $p q$-Gram Index

Theorem (Size of the pq-Gram Index)

Let T be a tree with I leaves and i non-leaves. The size of the pq-gram index of T is

$$
\left|\mathcal{I}^{p q}(\mathrm{~T})\right|=2 I+q i-1
$$

Proof.

1. We count all $p q$-grams whose leftmost leaf is a dummy node: Each leaf is the anchor node of exactly one $p q$-gram whose leftmost leaf is a dummy node, giving / pq-grams. Each non-leaf is the anchor of $q-1$ $p q$-grams whose leftmost leaf is a dummy, giving $i(q-1) p q$-grams.
2. We count all $p q$-grams whose leftmost leaf is not a dummy node: Each node of the tree except the root is the leftmost leaf of exactly one $p q$-gram, giving $l+i-1 p q$-grams.
Overall number of $p q$-grams: $I+i(q-1)+(I+i-1)=2 I+q i-1$.

Outline

(1) The $p q$-Gram Distance

- Definition
- Algorithm
- Fanout Weighting and Lower Bound
- Experiments
(2) Conclusion

Motivation: Unit Cost Model Not Always Intuitive

- Unit cost edit distance:
- no difference between leaves and non-leaves
- may lead to non-intuitive results
- Conclusion: Non-leaves should have more weight than leaves.

Fanout Weighted Tree Edit Distance

Definition (Fanout Weighted Tree Edit Distance)

Let T and T^{\prime} be two trees, $\mathrm{w} \in N(\mathrm{~T})$ a node with fanout $f, \mathrm{w}^{\prime} \in N\left(\mathrm{~T}^{\prime}\right)$ a node with fanout $f^{\prime}, c>0$ a constant. The fanout weighted tree edit distance, $\delta_{f}=\left(\mathrm{T}, \mathrm{T}^{\prime}\right)$, between T and T^{\prime} is defined as the tree edit distance with the following costs for the edit operations:

- Delete: $\alpha(w \rightarrow \epsilon)=f+c$
- Insert: $\alpha\left(\epsilon \rightarrow \mathrm{w}^{\prime}\right)=f^{\prime}+c$
- Rename: $\alpha\left(w \rightarrow w^{\prime}\right)=\left(f+f^{\prime}\right) / 2+c$
- Cost of changing a non-leaf node: proportional to its fanout.
- Cost of changing a leaf node: constant c.

Example: Fanout-Weighted Tree Edit Distance

- Fanout-Weighted Tree Edit Distance:
- leaf changes have small cost ($c=1$ in the example)
- non-leaf changes cost proportional to the node fanout

pq-Gram Distance Lower Bound

Theorem

Let $p=1$ and $c \geq \max (2 q-1,2)$ be the cost of changing a leaf node. The pq-gram distance provides a lower bound for the fanout weighted tree edit distance, i.e., for any two trees, T and T^{\prime},

$$
\frac{\delta_{g}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)}{2} \leq \delta_{f}\left(\mathrm{~T}, \mathrm{~T}^{\prime}\right)
$$

Proof.

See [ABG10] (ACM Transactions on Database Systems).

Outline

(1) The $p q$-Gram Distance

- Definition
- Algorithm
- Fanout Weighting and Lower Bound
- Experiments
(2) Conclusion

Size of the $p q$-Gram Index

- $p q$-Gram index size: linear in the tree size
- Experiment:
- compute pq-gram index for trees with different number of nodes
- compare tree and index size

Why is the $p q$-gram index smaller than the tree?

- hash values are smaller than labels
- duplicate $p q$-grams of a tree are stored only once
[Trees created with xmlgen.]

Sensitivity to Structure Change - Leaf

- Cost of leaf change \rightarrow depends only on q
- Experiment:
- delete leaf nodes
- measure normalized pq-gram distance

(Artificial tree with 144 nodes, 102 leaves, fanout 2-6 and depth 6 . Average over 100 runs.)

Sensitivity to Structure Change - Non-Leaf

- Cost for non-leaf change \rightarrow controlled by p
- Experiment:
- delete non-leaf nodes
- measure normalized $p q$-gram distance

(Artificial tree with 144 nodes, 102 leaves, fanout 2-6 and depth 6 . Average over 100 runs.)

Influence of p and q on Scalability

- Scalability (almost) independent of p and q.
- Experiment: For pair of trees
- compute $p q$-gram distance for varying p and q
- vary tree size: up 10^{6} nodes
- measure wall clock time

Scalability to Large Trees

- pq-gram distance \rightarrow scalable to large trees
- compare with edit distance
- Experiment: For pair of trees
- compute tree edit distance and $p q$-gram distance
- vary tree size: up 5×10^{5} nodes
- measure wall clock time

pq-Grams vs. other Edit Distance Approximations

Effectiveness: pq-grams outperform all other approximations

Experiment: two sets of address trees (299 and 302 trees)

- compute distances between all tree pairs
- find matches (symmetric nearest neighbor)

Distance	Correct	Recall	Precision	f-Measure	Runtime
fanout edit dist	259	86.6%	98.5%	0.922	19 min
unit edit dist	247	82.6%	96.5%	0.890	14 min
node intersection	197	65.9%	93.8%	0.774	4.3 s
p,q-grams	236	78.9%	98.7%	0.877	8.1 s
tree-embedding	206	68.9%	96.3%	0.803	7.1 s
binary branch	193	64.5%	93.2%	0.763	7.4 s
bottom-up	148	49.6%	92.5%	0.645	67.0 s

Summary

- Binary Branch Distance
- lower bound of the unit cost tree edit distance
- trees are split into binary branches (small subgraphs)
- similar trees have many common binary branches
- complexity $O(n \log n)$ time
- pq-Gram Distance
- lower bound for the fanout weighted tree edit distance
- trees are split into $p q$-grams (small subtrees)
- similar trees have many common $p q$-grams
- complexity $O(n \log n)$ time

围 Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
Approximate matching of hierarchical data using pq-grams. In Proceedings of the International Conference on Very Large Databases (VLDB), pages 301-312, Trondheim, Norway, September 2005. ACM Press.

围 Nikolaus Augsten, Michael Böhlen, and Johann Gamper.
The $p q$-gram distance between ordered labeled trees.
ACM Transactions on Database Systems (TODS), 35(1):1-36, 2010.
Richard M. Karp and Michael O. Rabin.
Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249-260, March 1987.

