
UV Distributed Information Management
Summer term 2021

Hands-On: MongoDB Replication in Action

�is document contains the individual steps that are required to replicate the hands-on exercise
“MongoDB Replication in Action”. Remark: �is hands-on exercise has only been tested on
Debian Linux (but probably works in a similar manner on other systems).

Commands and queries are wrapped in a framed listing environment which also speci�es the
used command-line tool at the beginning of the title (separated by a dash –). �e following
listing shows an example that executes the command ls in a Linux terminal (explanatory
comments are shown in gray and are not part of the command):

terminal – Show directories.
1 ls # this is a comment (i.e., not part of the command)

1 General Setup

In order to replicate this hands-on exercise, we need to simulate n nodes that are part of our
cluster 1. In our hands-on exercise, we assume n = 3 nodes, but this should also work for n > 3.
For our simulation, we create a cluster with 3 nodes locally on a single physical machine (i.e.,
our workstation, laptop, . . .). To accomplish this, we need 3 folders, each of which represents a
node in our cluster 2. When we start MongoDB in replication mode, we simply tell MongoDB
to use these 3 folders to store the data that resides on the respective node. �e following listing
shows how to create these 3 folders inside the home folder of your user:

terminal – Set up 3 directories (in home) that represent the 3 nodes of our cluster.

1 cd /home/<username > # switch to home directory
2 ls -lah # show directories
3
4 mkdir mongo # create a new directory mongo
5 cd mongo # switch to mongo directory
6
7 mkdir replica1 # create subdirectory mongo/replica1 (representing node 1)
8 mkdir replica2 # create subdirectory mongo/replica2 (representing node 2)
9 mkdir replica3 # create subdirectory mongo/replica3 (representing node 3)
10
11 ls -lah # show directories

Subsequently, we may need multiple terminal instances (i.e., processes) simultaneously sin-
ce each terminal simulates a single node. We will use these names to refer to the respective
1In practice, this is a set of machines that are connect via network, e.g., Ethernet.
2No need to establish connections, since they all reside on the same physical machine.

terminals, and the following table shows a mapping of terminal to node or functionality, re-
spectively:

Terminal Node / Functionality
N1 Node 1; runs the �rst mongod in the background.
N2 Node 2; runs the second mongod in the background.
N3 Node 3; runs the third mongod in the background.
mongo1 Runs the �rst mongo terminal (connected to node 1, i.e., port 42000).
mongo2 Runs the second mongo terminal (connected to node 2, i.e., port 42001).
mongo3 Runs the third mongo terminal (connected to node 3, i.e., port 42002).

Tabelle 1: Terminal-node/functionality mapping.

Remark: On most systems, you can change the title of the terminal (which is shown on top).
�is is particularly useful if you have many terminal instances like in this exercise. For a be�er
overview, change the titles of the respective terminals to match the terminal names given in
Table 1.

2 Replicate the Hands-On Exercise

2.1 Data Import

Before we can import the data, we must start the 3 MongoDB nodes in replication mode and
initiate our the replication (i.e., tell the nodes that the data should be replicated to the other
nodes). Furthermore, we must also specify that each of our nodes writes its data to a di�erent
location (to simulate that the 3 nodes are indeed separated from a storage point of view). �e-
refore, we specify three options when we start the nodes: (1) We use the so-called replica set
option, --replSet, to specify that our 3 nodes are part of a common replication (i.e., MongoDB
servers that are part of the same replication set take care of the same data by replicating it).
(2) We specify the location of the database, --dbpath, such that each terminal (i.e., process)
maintains its own data (e�ectively simulating 3 nodes). (3) Each node runs on a di�erent port,
--port. �e following three listings show how to start the Mongo daemons on our 3 nodes with
the corresponding parameters:

N1 – Start a Mongo daemon as part of replica set ReplicationTest on node 1 (port: 42000,
subdirectory: mongo/replica1).

1 # The backslash "\" is used to have a multi -line command in bash.
2 mongod --replSet ReplicationTest \
3 --dbpath="/home/<username >/ mongo/replica1" \
4 --port 42000

N2 – Start a Mongo daemon as part of replica set ReplicationTest on node 2 (port: 42001,
subdirectory: mongo/replica2).

1 # The backslash "\" is used to have a multi -line command in bash.
2 mongod --replSet ReplicationTest \
3 --dbpath="/home/<username >/ mongo/replica2" \
4 --port 42001

N3 – Start a Mongo daemon as part of replica set ReplicationTest on node 3 (port: 42002,
subdirectory: mongo/replica3).

1 # The backslash "\" is used to have a multi -line command in bash.
2 mongod --replSet ReplicationTest \
3 --dbpath="/home/<username >/ mongo/replica3" \
4 --port 42002

Next, we need to initialize the replica set, i.e., (a) we connect to node 1 with the mongo terminal,
(b) initiate the replication, (c) add the other nodes to the replica set. �erefore, we �rst connect
to node 1 using the mongo terminal:

terminal – Connect to node 1.
1 # Node 1 is identified by the port in the connection string (42000).
2 # Subsequently , this terminal is referred to as ‘‘mongo1 ’’ (cf. Table 1).
3 mongo --port 42000

Once we are in the mongo terminal, we can use the following command to check the status of
our replica set (denoted rs) and should see the following output:

mongo1 – Check the status of our replica set (rs).

1 rs.status ()
2
3 # The following output should be shown , denoting that the replica set is yet to
4 # be initialized.
5 # {
6 # "ok" : 0,
7 # "errmsg" : "no replset config has been received",
8 # "code" : 94,
9 # "codeName" : "NotYetInitialized"
10 # }

�e rs.status() command can used in between all the steps we show next to always see the
current status of the replica set. Naturally, the next step is to initiate the replica set (at node 1)
and to add the other nodes to the replica set that is initialized at node 1. �is can be done as
follows:

mongo1 – Check the status of our replica set (rs).

1 rs.initiate () # initiate replica set at node 1
2
3 rs.add("localhost :42001") # add node 2 (identified by port 42001)
4 rs.add("localhost :42002") # add node 3 (identified by port 42002)
5
6 rs.status ()

A�erwards, the rs.status() command should provide more output and the key “members”
should map to a list that contains 3 entries: localhost:42000 (i.e., node 1) as PRIMARY, and
localhost:42001/2 (i.e., node 2/3) as SECONDARY. �is con�rms that the replica set has been
initiated successfully and we can continue with the actual data import.

For a general description on how to import JSON data into a MongoDB database, we refer to
the description of assignment 2 3 and the MongoDB documentation 4. �e following command

3https://dbresearch.uni-salzburg.at/teaching/2021ss/dim/assignment2.pdf
4https://developer.mongodb.com/how-to/mongoimport-guide/

https://dbresearch.uni-salzburg.at/teaching/2021ss/dim/assignment2.pdf
https://developer.mongodb.com/how-to/mongoimport-guide/

imports the (relatively small) arXiv collection 5 into the database of node 1 (i.e., it is stored in
mongo/replica1):

terminal – Import the plain arXiv JSON �les into node 1 of our replica set.

1 # The backslash "\" is used to have a multi -line command in bash.
2 # Node 1 is identified by the port in the connection string (42000).
3 mongoimport "mongodb :// localhost :42000" \
4 --db replicationTest
5 --collection arxiv
6 --file <path -to -file >/arxiv.json

2.2 Connect the mongo Terminals

A�er the arXiv JSON �le has been imported successfully, our replica set ensures that the data is
replicated from node 1 (on which we imported the data) to node 2 and 3 (which are part of the
replica set), respectively. We can verify this by logging into the respective nodes. To connect to
a particular node using the mongo command-line tool, we must use the --port option as follows:

terminal – Connect to node 2.
1 # Node 2 is identified by the port in the connection string (42001).
2 # Subsequently , this terminal is referred to as ‘‘mongo2 ’’ (cf. Table 1).
3 mongo --port 42001

terminal – Connect to node 3.
1 # Node 3 is identified by the port in the connection string (42002).
2 # Subsequently , this terminal is referred to as ‘‘mongo3 ’’ (cf. Table 1).
3 mongo --port 42002

Remark: By now, we should have six terminals opened, three of which run the nodes of our
clustering (N1 – N3; showing debug output recurrently) and three of which are mongo terminal
that are connected to the three nodes (mongo1 – mongo3; waiting for user input).

Now that we have the six terminals set up, we can start using the cluster. First, we verify that
the data was indeed replicated to nodes 2 and 3:

mongo1/2/3 – Verify that the data is replicated on all three nodes.

1 # This should show the 3 default databases (admin , config , local) and our
2 # database (replicationTest).
3 show dbs
4
5 # Switch to our "replicationTest" database.
6 use replicationTest
7
8 # This should show 1 collection "arxiv".
9 show collections
10
11 # This should show 3 entries in the arXiv collection.
12 db.arxiv.find (). count()

5Downloadable from our Nextcloud: https://kitten.cosy.sbg.ac.at/index.php/s/4gdSoq5rFCb57Xw

https://kitten.cosy.sbg.ac.at/index.php/s/4gdSoq5rFCb57Xw

Remark: In case that one of the above commands results in the following error, please execute
the rs.secondaryOk() 6 command to resolve it.

mongo1/2/3 – NotPrimaryNoSecondaryOk exception.

1 # uncaught exception: Error: listDatabases failed :{
2 # "topologyVersion" : {
3 # "processId" : ObjectId ("60 b775579c140578afb0f4bd "),
4 # "counter" : NumberLong (4)
5 # },
6 # "operationTime" : Timestamp (1622636167 , 1),
7 # "ok" : 0,
8 # "errmsg" : "not master and slaveOk=false",
9 # "code" : 13435,
10 # "codeName" : "NotPrimaryNoSecondaryOk",
11 # "$clusterTime" : {
12 # "clusterTime" : Timestamp (1622636167 , 1),
13 # "signature" : {
14 # "hash" : BinData (0," AAAAAAAAAAAAAAAAAAAAAAAAAAA ="),
15 # "keyId" : NumberLong (0)
16 # }
17 # }
18 # }

3 Replication of a New Document

�e replica set consists of two types of members: PRIMARY 7 and SECONDARY 8. In fact, there is
another type of node, a so-called arbiter 9, but we ignore this type for this exercise. In a nutshell,
the replication in MongoDB 10 works as follows: �ere is a single PRIMARY node (N1 in our case)
and multiple SECONDARY nodes (N2 and N3 in our case). All write operations are served by the
PRIMARY node, and the data is replicated to the SECONDARY nodes (speci�cally, the log �les are
replicated). �e replication happens asynchronously.

Note that only the PRIMARY node can serve write operations, whereas read operations can be
served by one of the SECONDARY nodes. If we assume this for now, we can only insert a new
document on node 1, i.e., using mongo1 (since it is the PRIMARY that initiated the replica set; exe-
cuting the same command on one of the SECONDARY nodes will result in a NotWritablePrimary

exception). Before, however, we verify that none of our nodes contains this document (as of
yet):

mongo1/2/3 – Check if the document is present on node 1/2/3.

1 # Verify that our arXiv collection does not contain a document of type
2 # "Lehrveranstaltung" on node 1/2/3.
3 db.arxiv.find({ "type": "Lehrveranstaltung" })

6https://docs.mongodb.com/manual/reference/method/rs.secondaryOk/
7https://docs.mongodb.com/manual/core/replica-set-primary/
8https://docs.mongodb.com/manual/core/replica-set-secondary/
9https://docs.mongodb.com/manual/core/replica-set-arbiter/
10https://docs.mongodb.com/manual/replication/

https://docs.mongodb.com/manual/reference/method/rs.secondaryOk/
https://docs.mongodb.com/manual/core/replica-set-primary/
https://docs.mongodb.com/manual/core/replica-set-secondary/
https://docs.mongodb.com/manual/core/replica-set-arbiter/
https://docs.mongodb.com/manual/replication/

Once we veri�ed this, we can insert the new document on node 1 as follows:

mongo1 – Insert a new document on node 1.
1 # Insert a new document of type "Lehrveranstaltung" with name
2 # "Verteiles Informationsmanagement" into the arXiv collection.
3 db.arxiv.insertOne ({
4 "name": "Verteiltes Informationsmanagement",
5 "type": "Lehrveranstaltung"
6 })
7
8 # Look up the newly inserted document.
9 db.arxiv.find({ "type": "Lehrveranstaltung" })

Although we cannot insert a new document on our SECONDARY nodes, the data is automatically
being replicated from the PRIMARY node to the SECONDARY nodes, and we can verify this by
searching for the very same document on our SECONDARY nodes:

mongo2/3 – Search for the newly inserted document on node 2/3.

1 # Verify that the new document has been replicated onto nodes 2 resp. 3.
2 db.arxiv.find({ "type": "Lehrveranstaltung" })
3
4 # You should see the very same result as on node 1.

4 Killing the PRIMARY

If the PRIMARY node is unavailable (for whatever reason), one of the SECONDARY nodes holds
an election to elect itself as the new PRIMARY 11. Until a new PRIMARY is elected, the replica set
cannot process write operations. However, read operations can still be served by the SECONDARY
nodes (if con�gured appropriately).

In the �nal step of this hands-on exercise, we kill the PRIMARY and see if and how MongoDB
deals with it. �erefore, we simply terminate the mongod process that represents N1 (using CTRL

+ C or just closing the terminal). �is triggers the election mechanism of MongoDB and the
remaining two nodes (i.e., the previous SECONDARY nodes). If we now try to execute a query in
mongo1, we will get an error message because node 1 is not available (it is down). Contrariliy,
the other two nodes are still available and we can continue with mongo2/3.

First, we can check which of the two nodes is the new PRIMARY node:

mongo2/3 – Check the status of our replica set to �nd the new PRIMARY.

1 rs.status ()

Regardless of which nodes is the new PRIMARY node, we observe that our cluster is still available
and can be used.

Remark: In practice, we would like to connect to our cluster transparently, i.e., we do not
connect to a speci�c node but to the cluster. In other words, if one node becomes unavailable,
we do not want to update the connection or reconnect to our cluster. Instead, we want our
connection to stay valid as long as the cluster is running (available). �is can be accomplished

11https://docs.mongodb.com/manual/core/replica-set-elections

https://docs.mongodb.com/manual/core/replica-set-elections

by adapting the connection options as follows:

terminal – Connect to our cluster (i.e., replica set) transparently.

1 mongo --host ReplicationTest/localhost :42000 # Our new mongo1 terminal.

Although we still connect to node 1 (i.e., port 42000), we get a transparent connection by spe-
cifying the name of the replica set (ReplicationTest) explicitly. If we kill the PRIMARY node,
the election algorithm determines a new PRIMARY and we can continue to use this connection
without reconnecting.

	General Setup
	Replicate the Hands-On Exercise
	Data Import
	Connect the mongo Terminals

	Replication of a New Document
	Killing the PRIMARY

