
Distributed Information Management

Daniel Kocher

Salzburg, Summer term 2021

Department of Computer Sciences
University of Salzburg

Part I

Data Management

3

Literature, Sources, and Credits

Literature:

• Silberschatz et al. Database System Concepts. McGraw Hill, Sixth Edition, 2010.

• Wiese. Advanced Data Management. De Gruyter Oldenbourg, 2015.

Credits: These slides are partially based on slides of other lectures.

• Nikolaus Augsten, University of Salzburg, Austria (Credits also for valuable
discussions and guidance).

• Andrew Pavlo, Carnegie Mellon University (CMU), USA.

4

Introduction

Motivation

The amount of data is growing rapidly in many di�erent domains.

We do not collect data to simply store it, but we want to

• access it fast at any time and from any place,

• search it (for exact and similar pa�erns),

• aggregate it (partially),

• join it with other data,

• have multiple users working on the data concurrently,

• make sense out of it.

5

Motivation

“But I can organize my data without the overhead of a dedicated system!”

Theoretically yes, but this implies:

• Organizing your data in multiple independent (plain) files.

• Other users may have trouble to understand your organization.

• Taking care of all the requirements yourself.

• You drop flexibility and scalability.

What can possibly go wrong?

6

Example Application

Manage your movies collection in CSV files using Python3.

Movies: (name;year;runtime;genre;)

The Godfather;1972;177;Mafia;

The Avengers;2012;143;Sci-Fi;

Batman - The Dark Knight;2008;152;Action;

American Psycho;2000;101;Thriller;

Home Alone;1990;103;Comedy;

Actors: (name;birthyear;knownfor;)

Marlon Brando;1924;The Godfather;

Al Pacino;1940;The Godfather;

Macaulay Culkin;1980;Home Alone;

Joe Pesci;1943;Home Alone;

Robert Downey Jr.;1965;The Avengers;

Mark Ruffalo;1967;The Avengers;

Christian Bale;1974;Batman - The Dark Knight;

Christian Bale;1974;American Psycho;

Heath Ledger;1979;Batman - The Dark Knight;

Willem Dafoe;1955;American Psycho;

7

Example Application

�ery: Find all movies of “Christian Bale”.

i f name == ” ma in ” :
with open (” a c t o r . c s v ” , ” r ”) as f i n :

for l i n e in f i n . r e a d l i n e s () :
p a r t s = l i n e . s p l i t (” ; ”)

name = pa r t s [0]
b i r t h y e a r = in t (p a r t s [1])
knownfor = p a r t s [2]

i f name == ” Ch r i s t i a n Ba le ” :
print (knownfor)

8

Problems in Data Management

Redundancy and Inconsistency:

• Several copies of a datum may exist (possibly stored di�erently).

• Redundancy: Higher storage requirements. How about accessing the data?
⇒Multiple file accesses (which is slow).

• Inconsistency: What happens if you have to update the data?
⇒We must not forget a single copy.

• Goal: Minimize redundancy and prevent inconsistency.

Example: Update “The Avengers” to “Marvel’s The Avengers”.

9

Example Application

�ery: Update “The Avengers” to “Marvel’s The Avengers”.

Movies: (name;year;runtime;genre;)

The Godfather;1972;177;Mafia;

Marvel's The Avengers;2012;143;Sci-Fi;

Batman - The Dark Knight;2008;152;Action;

American Psycho;2000;101;Thriller;

Home Alone;1990;103;Comedy;

Actors: (name;birthyear;knownfor;)

Marlon Brando;1924;The Godfather;

Al Pacino;1940;The Godfather;

Macaulay Culkin;1980;Home Alone;

Joe Pesci;1943;Home Alone;

Robert Downey Jr.;1965;The Avengers;

Mark Ruffalo;1967;The Avengers;

Christian Bale;1974;Batman - The Dark Knight;

Christian Bale;1974;American Psycho;

Heath Ledger;1979;Batman - The Dark Knight;

Willem Dafoe;1955;American Psycho;

10

Problems in Data Management

Data Access and Analysis:

• We want to analyze our data. How to link related data?
⇒ Each analysis requires a tailored program.

• Goal: Generic analysis and linkage of related data.

Example: List all movies of “Christian Bale” and with its runtime.

11

Example Application

�ery: List all movies of “Christian Bale” and with its runtime.

Movies: (name;year;runtime;genre;)

The Godfather;1972;177;Mafia;

Marvel's The Avengers;2012;143;Sci-Fi;

Batman - The Dark Knight;2008;152;Action;

American Psycho;2000;101;Thriller;

Home Alone;1990;103;Comedy;

Actors: (name;birthyear;knownfor;)

Marlon Brando;1924;The Godfather;

Al Pacino;1940;The Godfather;

Macaulay Culkin;1980;Home Alone;

Joe Pesci;1943;Home Alone;

Robert Downey Jr.;1965;The Avengers;

Mark Ruffalo;1967;The Avengers;

Christian Bale;1974;Batman - The Dark Knight;

Christian Bale;1974;American Psycho;

Heath Ledger;1979;Batman - The Dark Knight;

Willem Dafoe;1955;American Psycho;

12

Problems in Data Management

Data Integrity Issues:

• Updates may violate the integrity of your data.

• How do you ensure data integrity?
⇒ Each single application must respect all consistency constraints.

• Goal: Global definition and monitoring of consistency constraints.

Example: Insert “Christian Bale” as actor in “The Avengers”.

13

Problems in Data Management

Concurrency Issues:

• Multiple users should be able to access and update the data simultaneously. How
do you ensure consistency over all applications that access the data?

• Anomalies: Inconsistencies, e.g., lost updates.

• E�iciency: If one user locks a file, then the other user must wait.

• Goal: Out-of-the-box multi-user operation without anomalies.

Example: Users A inserts “Chris Evans” as actor while user B inserts “Scarle�
Johansson” as actress in “The Avengers” simultaneously.

14

Example Application

Scenario: Users A inserts “Chris Evans” as actor while user B inserts “Scarle�
Johansson” as actress in “The Avengers” simultaneously.

Actors: (name;birthyear;knownfor;)

Marlon Brando;1924;The Godfather;

Al Pacino;1940;The Godfather;

Macaulay Culkin;1980;Home Alone;

Joe Pesci;1943;Home Alone;

Robert Downey Jr.;1965;The Avengers;

Mark Ruffalo;1967;The Avengers;

Christian Bale;1974;Batman - The Dark Knight;

Christian Bale;1974;American Psycho;

Heath Ledger;1979;Batman - The Dark Knight;

Willem Dafoe;1955;American Psycho;

Scarlett Johansson;1984;The Avengers;

15

Problems in Data Management

Atomicity and Recovery:

• Data must neither be lost nor inconsistent when the system crashes.

• Atomicity: Data may be inconsistent if an operation is only applied partially
⇒ Execute an operation in an all-or-nothing manner.

• Recovery: Backup of data may not reflect the latest state.

• Goal: Prevent data loss and inconsistencies by design.

Example: Update all “The Avengers” to “Marvel’s The Avengers”. Your system crashes in
between “Mark Ru�alo” and “Scarle� Johansson”.

16

Example Application

Scenario: Update all “The Avengers” to “Marvel’s The Avengers”. Your system crashes
in between “Mark Ru�alo” and “Scarle� Johansson”.

Actors: (name;birthyear;knownfor;)

Marlon Brando;1924;The Godfather;

Al Pacino;1940;The Godfather;

Macaulay Culkin;1980;Home Alone;

Joe Pesci;1943;Home Alone;

Robert Downey Jr.;1965;Marvel's The Avengers;

Mark Ruffalo;1967;Marvel's The Avengers;

Christian Bale;1974;Batman - The Dark Knight;

Christian Bale;1974;American Psycho;

Heath Ledger;1979;Batman - The Dark Knight;

Willem Dafoe;1955;American Psycho;

Scarlett Johansson;1984;The Avengers;

17

Problems in Data Management

Other Issues:

• E�iciency: E�icient algorithms are required to analyze large amounts of data.

• General-purpose: The problems of application developers will partially overlap.

• Security issues: Flexible and fine-grained access rights for multiple users.

18

Database Management Systems

A database management system (DBMS) is

(i) a collection of interrelated data, the database, and

(ii) a set of programs to access the data.

In other words, you do not have to care about how to store the data (physically), how to
analyze it (e�iciently), how to (partially) update data, or how to deal with multiple users.
A DBMS organizes all this for you.

DBMSs are at the core of many applications.

19

When Not to Use a DBMS

• The data are too complex to model it.

• Specific requirements like real-time queries or special operations.

• The overhead of a DBMS is too high or unnecessary.

• No or low return on investment (ROI).

20

One Size Fits All?

General-Purpose DBMS

A DBMS that tries to fit as many application scenarios as possbile with a single system.
This implies higher complexity but also a large user base.

Examples:
• PostgreSQL (open source)

• MySQL (open source)

• MonetDB (open source)

• SQLite (open source)

• IBM DB2 (closed source)

• Oracle Database (closed source)

• Microso� SQL Server (closed source)

• . . .

21

https://www.postgresql.org/
https://www.mysql.com/
https://www.monetdb.org/
https://www.sqlite.org/
https://www.ibm.com/analytics/db2
https://www.oracle.com/database/
https://www.microsoft.com/en-us/sql-server

General-Purpose DBMS

“But this sounds good, no?”

Problems:

• Unnecessary overhead (e.g., recovery or strong consistency)

• Limited performance

• Application-specific operations are not supported natively

• Limited flexibility

22

One Size Fits All (OSFA)

“One Size Fits All”: An Idea Whose Time Has Come and Gone

Michael Stonebraker1 and Ugur Cetintemel (2005)

“A one size fits all database doesn’t fit anyone”

Werner Vogels2 (2018)

1Database Systems Researcher at the MIT. Won the Turing Award in 2014.
2Computer Scientist and CTO at Amazon.

23

Special-Purpose DBMS

A DBMS that is tailored to fit a specific purpose best, i.e., provide all the functionality
that is required while also providing the best performance and flexilibity (with respect to
the specific application domain).

Synonyms: Specialized DBMS, purpose-built DBMS.

24

Special-Purpose DBMS

Temporal Data: A temporal DBMS is optimized to manage and analyze data that
references time (i.e., they are timestamped). For example, a time series
x =

〈
xt1, xt2, . . . , xtn

〉
is o�en a sequence of n data points that are spaced at strictly

increasing times (ti < ti+1 with i = 1, . . . , n − 1).

Requirements:

• Exact/Approximate matching of (parts of) time series.

• E�icient compression mechanisms.

• Serve specific aspects like valid time or transaction time.

• . . .

25

Special-Purpose DBMS

Real-Time Data: A real-time DBMS manages data that is changed continuously. A
DBMS that operates in real time answers the queries within a guaranteed time frame
(the response time, i.e., it has a deadline).

Requirements:

• Answer every query in a given time frame.

• �ery scheduling (or queuing).

• Consistency may not be that important.

• . . .

26

Special-Purpose DBMS

Process Mining Data: Process mining engines manage business event logs. An example
event log is the sequence of activities if you place an order in some online shop. These
systems are required to analyze large amounts of data in real time.

Requirements:

• Optimized, domain-specific language.

• Real-time performance for best user experience.

• . . .

27

Special-Purpose DBMS

Multiple specific aspects may need to be combined to serve a novel application scenario.
This may also result in a new special-purpose DBMS.

A modern application is not monolithic, i.e., di�erent DBMSs may be used to implement
di�erent parts of an application.

28

One Size Fits All

Towards a One Size Fits All Database Architecture

Jens Di�rich3 and Alekh Jindal. 2011.

One Size Fits all, Again! The Architecture of the Hybrid OLTP&OLAP Database
Management System HyPer

Alfons Kemper4 and Thomas Neumann5. 2011.

3Database Systems Researcher at Saarland University.
4Database Systems Researcher at the TU Munich co-author of the book Datenbanksysteme.
5Database Systems Researcher at the TU Munich.

29

Database Fundamentals

Basic Terminology

Data are facts that are to be stored.

Information is data combined with semantics (meaning).

Knowledge is information combined with an application.

35

Example Application

What are data, information, and knowledge in our example?

Movies:

name year runtime genre
The Godfather 1972 177 Mafia
The Avengers 2012 143 Sci-Fi
Batman - The Dark Knight 2008 152 Action
American Psycho 2000 101 Thriller
Home Alone 1990 103 Comedy

Actors:

name birthyear knownfor
Marlon Brando 1924 The Godfather
Al Pacino 1940 The Godfather
Macaulay Culkin 1980 Home Alone
Joe Pesci 1943 Home Alone
Robert Downey Jr. 1965 The Avengers
Mark Ru�alo 1967 The Avengers
Christian Bale 1974 Batman - The Dark Knight
Christian Bale 1974 American Psycho
Heath Ledger 1979 Batman - The Dark Knight
Willem Dafoe 1955 American Psycho

36

Basic Terminology

A database (DB) is a collection of interrelated data.

Metadata provides us with information about the structure of a database. All the
metadata are stored in a catalog.

A database system (DBS) is also referred to as the combination of a database, the
corresponding metadata, and a DBMS (which in this case only provides the set of
programs). The terms DBS and DBMS are o�en used interchangeably.

37

Example Application

Movies:

name year runtime genre
The Godfather 1972 177 Mafia
The Avengers 2012 143 Sci-Fi
.

Actors:

name birthyear knownfor
Marlon Brando 1924 The Godfather
Al Pacino 1940 The Godfather
.

Catalog: Tables Metadata: Columns Metadata:

relation columnCount
Actors 10
Movies 5

columnName dataType relation
name TEXT Actors
year INTEGER Actors
name TEXT Movies
.

38

Database System

User

DBS

�eries and applications

DBMS
Set of programs to answer queries

Set of programs to access the data

Metadata

Database

39

More Terminology

A table consists of multiple tuples, each of which is a sequence of a�ributes.
Informally, a tuple (a�ribute) can be imagined as a row (column) of a table.

A key is subset of a�ributes. A primary key is a key of minimum length that uniquely
identifies a tuple. A foreign key is a reference to a primary key.

40

Data Modeling

Data-Definition Language (DDL): Specify the structure of your data and the
consistency constraints that are enforced.

• Schema: Describes the structure of your data and how the data are interrelated,
e.g., a movie has 4 columns: name, year, runtime, and genre.

• Consistency Constraints: Describe integrity constraints that must be satisfied at
any given point in time, e.g., the runtime in minutes is an integer > 0.

41

Example Application

Movies:

name year runtime genre
The Godfather 1972 177 Mafia
The Avengers 2012 143 Sci-Fi
.

Actors:

name birthyear knownfor
Marlon Brando 1924 The Godfather
Al Pacino 1940 The Godfather
.

Pseudo-DDL (simplified):

CREATE TABLE Movies (

name TEXT KEY,

year INTEGER,

runtime INTEGER (> 0),

genre TEXT

)

CREATE TABLE Actors (

name TEXT KEY,

birthyear INTEGER,

knownfor TEXT REFERENCES(Movies.name)

)

42

Data Modeling

Data-Manipulation Language (DML):�ery and manipulate your data.

• �ery Language: Allows you to query your data without modifying it, e.g., get all
movies of “Christian Bale” or get all actors of “The Avengers”.

• Manipulation Language: Allows you to modify your data, e.g., insert a new
movie, delete an existing movie, update the movies of a particular actor.

A query is a statement that requests some information. Informally, your query “asks”
and the database system answers by returning the corresponding information.

Caveat: The term query language o�en refers to both DML parts.

43

Example Application

Movies:

name year runtime genre
The Godfather 1972 177 Mafia
The Avengers 2012 143 Sci-Fi
.

Actors:

name birthyear knownfor
Marlon Brando 1924 The Godfather
Al Pacino 1940 The Godfather
.

Pseudo-DML (simplified):

SELECT knownfor FROM Actors

WHERE name = 'Christian Bale'

SELECT name FROM Actors

WHERE knownfor = 'The Avengers'

INSERT INTO Movies

VALUES ('Hulk', 2003, 133, 'Sci-Fi')

UPDATE Actors

SET knownfor = 'American Psycho'

WHERE name = 'Christian Bale'

44

�ery Languages

Procedural Languages: Describe what data you want and also how to retrieve those.

Declarative Languages: Describe only what data you are interested in.

Pure Languages: Form the (theoretical) foundation underneath the languages that are
used in practice. Examples include relational algebra or tuple calculus.

Our Focus: Declarative languages.

45

Real-World Analogy

Send someone to the supermarket to get milk.

46

The SQL�ery Language

The Structured�ery Language (SQL) was developed by IBM and is the de-facto
standard language in database systems.

SQL is a declarative query language and includes DDL and DML elements.

The SQL standard (last revision: 2016) comprehensively summarizes all elements.

Inventing new approaches is like “trying to swim up the Niagara Falls”.

Michael Stonebraker in Information Age. 2010.

47

Example�eries in SQL

Data Definition:

CREATE TABLE Movies (

name VARCHAR(50) PRIMARY KEY,

year INTEGER NOT NULL,

runtime INTEGER CHECK(runtime > 0),

genre VARCHAR(50)

);

CREATE TABLE Actors (

name VARCHAR(50) PRIMARY KEY,

birthyear INTEGER,

knownfor VARCHAR(50) REFERENCES Movies(name)

);

• VARCHAR(n), INTEGER: Domain of a single column (data types).

• NOT NULL, CHECK: Constraints on a single column.

• PRIMARY KEY, REFERENCES: Constraints on an entire table.

48

Example�eries in SQL

�eries:

SELECT knownfor FROM Actors

WHERE name = 'Christian Bale';

SELECT name FROM Actors

WHERE knownfor = 'The Avengers';

• SELECT: Specifies the column to retrieve.

• FROM: Specifies the tables to consider.

• WHERE: Specifies the condition(s) the result must satisfy.

49

Example�eries in SQL

�eries:

INSERT INTO Movies(name, year, runtime, genre)

VALUES ('Hulk', 2003, 133, 'Sci-Fi');

UPDATE Actors SET knownfor = 'American Psycho'

WHERE name = 'Christian Bale';

• INSERT INTO . . .VALUES: Adds new tuple to a table based on the given values.

• UPDATE . . .SET: (Partially) changes the values of a tuple.

50

Data Abstraction

Abstraction: Hide the complexity of the system while providing all the functionality
(from people without deep computer science background). Everyone should be able to
use a database system.

3 Levels of Data Abstraction (bo�om-up):6

1. Physical: How to store the data (e.g., on hard disk).

2. Logical: What data are stored and how are they related.

3. View: Specific views on the data (e.g., on a specific part of the data).

6Cf. also ANSI/SPARC architecture.

51

3 Levels of Data Abstraction

The physical level defines the data structures that are used to store and access the data
physically. Examples are tables or auxiliary structures like indexes.

The logical level defines the schemata and constraints of the entire database.
Physical structures may be used underneath, but the user does not have to know them.
⇒ physical data independence.

The view level reduces the complexity by providing only information that is necessary
for the respective user. Irrelevant data are not shown.

52

3 Levels of Data Abstraction

Users

. . .View 1 View nView level

Mapping between
view and logical level.

Logical levelLogical level

Mapping between logi-
cal and physical level.

Physical levelPhysical level

Database

Mappings are used to link the abstraction levels.
53

Instance vs. Schema

A schema describes the overall structure of the data (o�en using tables) and is typically
stable (i.e., rarely modified).

An instance is the information that is stored at a particular point in time. The instance
may be frequently subject to changes.

Each level has its own schema with the logical schema being the most important one.

A valid instance satisfies all structural requirements and consistency constraints.

54

Instance vs. Schema

Schemata:
Movies:

name year runtime genre

Actors:

name birthyear knownfor

Instances:
Movies:

name year runtime genre
The Godfather 1972 177 Mafia
The Avengers 2012 143 Sci-Fi
.

Actors:

name birthyear knownfor
Marlon Brando 1924 The Godfather
Al Pacino 1940 The Godfather
.

55

Data Independence

Logical Data Independence: The ability to update the logical schema transparently,
i.e., no change on the view level is required.

Physical Data Independence: The ability to update the physical schema
transparently, i.e., no change on the logical level is required.

Benefits:

• Only the mapping between the levels need to be adapted.

• No change in the application required (it operates on the views).

56

Assignment 1

Assignment 1

Summary:

• Where: Release and submission via Blackboard.

• When: March 22 – April 19, 2021 (resp. late: April 26, 2021).

• What to do: (a) Set up a relational database locally (PostgreSQL; data will be
provided), (b) get familiar with SQL and learn how to execute queries (most queries
will be given), (c) write a small Python3 application that executes the queries, and
(d) answer questions regarding the assignment.

• What to submit: The Python3 code and the answers to the questions.

• Grading: 55% Python3 code, 45% questions (incl. the meeting).

58

(Declarative)�ery Processing

Example SQL�ery (+ Result):

SELECT knownfor FROM Actors

WHERE name = 'Christian Bale';
⇒ ? ⇒

knownfor
Batman - The Dark Knight
American Psycho

�ery processing describes the process of extracting data from a database. In other
words: What happens in a database when we issue a (declarative) query?

66

(Declarative)�ery Processing

On a high level, three major components are used to process a query:

1. Parser: Translates the query into an internal representation.

2. Optimizer: Choses the most e�icient way to evaluate the query.

3. Evaluation Engine: Executes the evaluation plan and returns the result.

query parser and
translator

relational
algebra

expression

optimizer
execution

plan
evaluation
engine

query
output

datastatistics
about data

67

(Declarative)�ery Processing

An evaluation plan typically consists of multiple operation. Optimization is done based
on the estimated costs of all involved operations.

For a given query, multiple valid evaluation plans may exist and must be compared
e�iciently (with respect to their estimated costs).

The estimated costs considermany di�erent factors including access to hard disk,
time to execute the query on the CPU, or network communication costs.

68

Data Models

Types of Data Models

3 types of data models that are somewhat related to the 3 levels of data abstraction.

Conceptual data models: High level, i.e., only the schema is reflected but no instances.
Related to the view level. Examples include Entity-Relationship (ER) and Unified
Modeling Language (UML) models.

Logical data models: Depicts the instances and can be used to implement a database.
Related to the logical level. Examples include the relational and the object-based models.

Physical data models: Low level, i.e., as close to the physical storage as possible.
Related to the physical level and is typically system-specific.

69

Types of Data Models – Examples

Logical Model (Relational):

Movies:

name year runtime genre
The Godfather 1972 177 Mafia
The Avengers 2012 143 Sci-Fi
.

Actors:

name birthyear knownfor
Marlon Brando 1924 The Godfather
Al Pacino 1940 The Godfather
.

Conceptual Model (ER):

Movies

nameyearruntime

genre Actors

name birthyear

known for
1 n

70

Relational Data Model

Intuitive and widely used model. An example of record-based models.

A collection of relations (tables) stores records of data as rows. A tuple (row) is
an entity of the real world, an a�ribute (column) is a property of an entity. The
structure of a record is fixed.

A relation has a name and a set of (unique) a�ributes. An a�ribute has a name and
a predefined domain, i.e., values originate from a specific domain.

Tables are filled row-wise and a row represents the state of an entity.

71

Relational Data Model

The set of columns is called relation schema, and the set of relation schemata over all
tables is called the database schema.

Intrarelational constraints: Dependencies inside a single table, Σi

Interrelational constraints: Dependencies between di�erent tables, Σ

Relation schema: Ri = ({Ai1,Ai2, . . . ,Aim} , Σi)
7.

Database schema: D = ({R1, R2, . . . , Rn} , Σ).

7Aij . . .Name of the j-th a�ribute (column) of the i-th relation (table).

72

Relational Data Model – Example

Movies:

name year runtime genre
The Godfather 1972 177 Mafia
The Avengers 2012 143 Sci-Fi
.

Actors:

name birthyear knownfor
Marlon Brando 1924 The Godfather
Al Pacino 1940 The Godfather
.

Relation schemata:
Movies = ({name, year, runtime, genre} , {name, year→ runtime, genre})
Actors = ({name, birthyear, knownfor} , {name, birthyear→ knownfor})

Database schema:
MovieStore = ({Movies,Actors} , {Actors.knownfor ⊆ Movies.name})

73

Relational Data Model

Normalization: Reduce anomalies (which lead to inconsistencies) by distributing
a�ributes among tables and linking them using foreign key constraints.

Referential Integrity: Values of foreign keys exist as values in the referenced table, i.e.,
the referenced table contains at least one tuple that holds the value of the foreign key.

74

Relational Data Model – Example

Movies:

id name year runtime genre
1 The Godfather 1972 177 Mafia
2 The Avengers 2012 143 Sci-Fi
3 Batman - The Dark Knight 2008 152 Action
4 American Psycho 2000 101 Thriller
5 Home Alone 1990 103 Comedy

Actors:

id name birthyear knownfor
101 Marlon Brando 1924 The Godfather
102 Al Pacino 1940 The Godfather
103 Macaulay Culkin 1980 Home Alone
104 Joe Pesci 1943 Home Alone
105 Robert Downey Jr. 1965 The Avengers
106 Mark Ru�alo 1967 The Avengers
107 Christian Bale 1974 Batman - The Dark Knight
108 Christian Bale 1974 American Psycho
109 Heath Ledger 1979 Batman - The Dark Knight
110 Willem Dafoe 1955 American Psycho

75

Relational Data Model – Example

Movies:

id name year runtime genre
1 The Godfather 1972 177 Mafia
2 The Avengers 2012 143 Sci-Fi
3 Batman - The Dark Knight 2008 152 Action
4 American Psycho 2000 101 Thriller
5 Home Alone 1990 103 Comedy

Actors:

id name birthyear
.
106 Mark Ru�alo 1967
107 Christian Bale 1974
108 Heath Ledger 1979
109 Willem Dafoe 1955

knownFor:

movie-id actor-id
.
2 106
3 108
3 107
4 107
4 109

76

Relational Data Model

Drawbacks:

• Relations may not be optimal to represent the data.

• Everything is a relation (semantic overloading).

• Homogeneous structure of data.

• Limited flexibility and data types.

Drawbacks and new challenges gave rise to non-relational data models.

77

Object-Based Data Model

Many programming languages are object-oriented, i.e., based on the concept of objects.

Objects contain data and provide functionality, and interact with each other (e.g., like
human beings in the real world).

Example Objects:
Person
- name: String
- birthyear: Integer
talkTo(Person p)

Actor
- bestMovie: String
act()

Movie
- name: String
- year: Integer
- runtime: Integer
- genre: String
starring(Actor a)

* *

78

Object-Based Data Model

Three Options:

1. Object-relational data model: Extends relational data model with
object-oriented features.

2. Object-relational mapping (ORM):Maps objects to tuples in the relational
model and handles the translation.

3. Object-oriented data model: Implements an object-based data model natively.

79

Key-Value Data Model

Prototype of a schemaless model where each tuple is a pair of two strings (k, v). k is a
unique key that is associated with an arbitrary value v .

Data are accessed using the key and values are not interpreted by any means.
Example operations:

• put(k, v): Inserts a new pair key-value pairs (k, v)

• get(k): Retrieves the value associated with k.

• delete(k): Deletes the tuple(s) associated with k.

Caveat: In programming o�en referred to as hash table or dictionary (Python).

80

Key-Value Data Model

Only keys can be searched, values cannot be searched. Combinations of values must
be done by the application that accesses the data.

Easy to distribute⇒ Good for data-intensive applications.

Example Key-Value Store:

UserID Shopping Cart
1002 → Shoe, Jordans, red, 37 # Computer game “Diablo”, Blizzard # Headset, Razer, Kraken Ki�y
1003 → Wilson American Football, NFL, Replica # Hail Mary, Gloves Receiver, 2.0, Black & White
1004 → Book “Database System Concepts”, 7th Edition, Silberschatz
.

81

Document-Based Data Model

A document stores data in a semi-structured and nested text format (e.g., XML or JSON).

Each document has a unique identifier, but the value is a document structured in a
specific format that is interpretable (as opposed to a key-value store).

JavaScript Object Notation (JSON): Human-readable text format for data structures.
A JSON document consists of possibly nested key-value pairs.

82

Document-Based Data Model

A JSON document consists of a JSON object, which is enclosed by curly braces, { . . . }.
Inside, keys and the corresponding values are separated by a colon, and a value can be a
JSON object itself.

Example Document Store:

UserID Shopping Cart
1002 → {

“1”: { “type”: “Shoe”, “name”: “Jordans”, “color”: “red”, “size”: 37 },
“2”: { “type”: “Computer game”, “name”: “Diablo”, “publisher”: “Blizzard” },
“3”: { “gear”: “Headset”, “producer”: “Razer”, “model”: “Kraken Ki�y” }

}
.

83

Graph-Based Data Model

Graphs: Informally, graphs are structures that represent data (as nodes) and their
interrelation (as edges in between) by design. Both nodes and edges may carry
information. E�icient graph operations are supported natively.

Data and their relationship are distinct naturally (cf. semantic overloading of the
relational data model).

Example Graph:

Name: Christian
Age: 47

Name: Mark
Age: 53

Name: Scarle�
Age: 36

likes

knows

knows

84

Graph-Based Data Model

Property Graph Model: Multiple types for nodes/edges (multi-relational), each of
which may contain multiple properties (a�ributes) as name-value pairs (similar to
key-value pairs).

Example Property Graph:

Type: Actor
Name: Christian
Age: 47

Type: Actor
Name: Mark
Age: 53

Type: Actor
Name: Scarle�
Age: 36

Type: likes

Type: knows
Year: 2002

Type: knows
Year: 2000

85

Extensible Record Data Model

Also referred to as wide column data model and a generalization of Google’s
BigTable8 system.

Table cells are represented as (2-dimensional) key-value pairs, with row (unique) and
column (repeatedly) being the keys.

Example: Access table cell (4:year).
id name year runtime genre
1 The Godfather 1972 177 Mafia
2 The Avengers 2012 143 NULL
3 Batman - The Dark Knight 2008 152 Action
4 American Psycho 2000 101 Thriller
5 Home Alone 1990 103 Comedy

8Chang et al. Bigtable: A Distributed Storage System for Structured Data. OSDI, 2006.

89

Extensible Record Data Model

Column Families: Group columns that are accessed simultaneously.

1
name
The Godfather

year
1972

runtime
177

genre
Mafia

2
name
The Avengers

year
2012

runtime
143

. . .

CoreInfo:

1
name
The Godfather

year
1972

2
name
The Avengers

year
2012

. . .

ExtendedInfo:

1
runtime
177

genre
Mafia

2
runtime
143

. . .

90

Extensible Record Data Model

Encourages de-normalization (redundancy) for higher performance and provides
more flexibility, i.e., every row may be composed of di�erent columns.

The query workload defines how the data is modeled⇒ Know your workload.

91

Array-Based Data Model

Complex structures (like 2-dimensional satellite or n-dimensional sensor data) are
organized along multiple dimensions.

An array cell contains a tuple of a specific length and a tuple element may contain a
value or another array (allowing arbitrary nestings).

Specialized array functionality is natively supported (e.g., joins and aggregations).

92

Workloads & Challenges

Outline

• New data management challenges.

• Basics of distributed database systems (also compared to parallel DBS).

• Consistency guarantees: ACID vs. BASE.

• The CAP Theorem.

• Workloads: OLTP vs. OLAP, batch vs. stream processing.

94

New Data Management Challenges

• Data may be organized in complex structures (e.g., graphs).

• Data may be schemaless (e.g., not comply to a fixed schema).

• Data may be sparse (e.g., values may be non-existent).

• Data or schema may be constantly changing (e.g., schema evolution).

• Data may be distributed over multiple machines.
• Access must be transparent (i.e., user need not know where data resides).
• Systems must scale horizontally (i.e., new machines come and go).
• Systems must cope with large data volumes.

95

New Data Management Challenges

NoSQL (Not Only SQL):

• Class of non-relational DBSs.

• Weaker consistency guarantees (e.g., BASE9)

• Support for schema independence.

• Highly scalable.

NewSQL:

• Class of relational DBSs.

• Provide NoSQL-like scalability (for OLTP9 workloads).

• Retain consistency guarantees of RDBMS (e.g., ACID9).
9We will cover this term subsequently.

96

Parallel Database Systems

Parallel database management systems (PDBMSs) have multiple processors and hard
disks that are connected via a fast interconnection.

Performance characteristics:

• Throughput: Number of tasks (e.g., queries) that can be completed in a given time
frame. Example: �eries per seconds.

• Response time: Time it takes to complete a single task (e.g., query).

97

Parallel Database System Architectures

Shared memory DBMSs have many processors and disks that share a common
memory (typically via a bus).

+ E�icient communication between
processors (< 1µs).

- Limited scalability (≤ 64 processors;
interconnection to memory becomes the
bo�leneck).

P

P

P

P

P

M

P . . . processor, M . . .memory, . . . disks.

98

Parallel Database System Architectures

Shared disk DBMSs have many processors (with isolated memory) that share all disks
(typically via a bus).

+ Scale to a larger number of processors.

- Communication between processors is
slower (ms; bo�leneck now at
interconnection to disks).

P

P

P

P

P

M

M

M

M

M

P . . . processor, M . . .memory, . . . disks.

99

Parallel Database System Architectures

Shared nothing DBMSs have many processors with isolated memory and disk(s). The
combination of a processor with isolated memory and disk(s) is also referred to as node.

+ Scale to thousands of processors.

- Communication between processors is
slow; access to non-local disk data is slow.

P

P

P

P

P

M

M

M

M

M

P . . . processor, M . . .memory, . . . disks.

100

Distributed Database Systems

Distributed database management systems (DDBMSs) are DBMSs that operate on
multiple, geographically separated machines (also called sites).

Network

Site A

Site B

Site C

101

DDBMS vs. Shared-Nothing PDBMS

• Sites within a DDBMS are typically
• geograpically separated (i.e., not a single data center)
⇒ lower bandwidth (less throughput), higher latency (higher response time).

• separately administered (i.e., retain some degree of autonomy).

• PDBMS can deal with node failures, whereas DDBMS can deal with failures of
entire sites (e.g., due to natural disasters).

• DDBMS distinguish between local and global transactions.

102

Homogeneous vs. Heterogeneous DDBMS

A DDBMS is called homogeneous if the nodes share a common global database
schema, perform the same tasks (e.g., run the same so�ware), and actively cooperate in
processing. Goal: View of a single database.

A DDBMS is called heterogeneous if the nodes have di�erent schemata, perform
di�erent tasks (e.g., run di�erent so�ware), and may not be aware of other nodes.
Goal: Integrate di�erent databases.

103

Transactions

A transaction refers to a sequence of operations that accesses and (possibly) updates
various data items. A transaction transitions the database from one consistent state
into another consistent state.

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

104

Transactions

A DBMS must deal with two major issues:

• System crash: So�ware or hardware failures.

• Concurrency: Many di�erent users may work at the same time (i.e., multiple
transactions are executed).

A DBS implements particular consistency guarantees. Most relational DBMS manage
transactions according to the so-called ACID properties: Atomicity, Consistency,
Isolation, and Durability.

The ACID properties are considered strong consistency guarantees.

105

ACID Properties

Atomicity: Execute all operations of a transaction or none of them (“all or nothing”).

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

What happens if the system crashes a�er step 4?

106

ACID Properties

Consistency: A�er a transaction, all values in the database are correct (i.e., consistency
is preserved).

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

What is a consistency constraint in the above example? A + B is the same before and
a�er the transaction.

107

ACID Properties

Isolation: A transaction must be unaware of other simultaneously executing
transactions (otherwise an inconsistent state may be encountered).

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

Imagine a second transaction BEGIN; READ(A); READ(B); print(A + B); COMMIT in between
steps 4 and 5.

108

ACID Properties

Durability: Successful transaction results persist in the database, even if the system
crashes.

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

If the system crashes and the EUR 500 are lost, nobody is happy.

109

Transactions in PostgreSQL

110

Intermediate Course Assessment

• Announcement via Blackboard.

• Give anonymous feedback regarding the lecture (up to now).

• Give anonymous feedback regarding assignment 1.

The assessment helps us to improve the course and is very much appreciated!

111

A�er-Assignment 1 Meetings

• Available dates/times will be provided via Blackboard (groups).

• Choose a date/time that fits your schedule.

• One member of your group must enroll to this date via Blackboard.

• First come first serve.

• Grading will be based on the last submission before the meeting.

112

Assignment 2

Assignment 2

Summary:

• Where: Release and submission via Blackboard.

• When: April 19 – May 17, 2021 (resp. late: May 24, 2021).

• What to do: (a) Set up a document-based database locally (MongoDB; data will be
provided), (b) get familiar with JSON and learn how to execute queries (most
queries will be given), (c) write a small Python3 application that executes the
queries, and (d) answer questions regarding the assignment.

• What to submit: The Python3 code and the answers to the questions.

• Grading: 55% Python3 code, 45% questions (incl. the meeting).

113

Intermediate Course Assessment

• Give anonymous feedback regarding the lecture (up to now).

• Give anonymous feedback regarding assignment 1.

The feedback helps us to improve the course and is very much appreciated!

117

Transaction Management

Programmers must ensure to properly define the transactions to preserve consistency.

A DBS typically includes a so-called transaction manager, which ensures that the
transactions comply to the consistency guarantees (e.g., the ACID properties).

A transaction has commi�ed if it completes successfully. Otherwise, the transaction is
aborted. Undoing the changes of an aborted transaction is referred to as rollback.

118

Transaction Management – Atomicity

Before the DBS changes the database, it writes some information (transaction identifier,
old/new values) about the changes into a so-called log file.

Example: Transfer EUR 500 from bank account A (EUR 800) to account B (EUR 2,000).

Transaction T1:

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

---[CRASH]---

7. WRITE(B)

8. COMMIT

Pseudo log file:

T1: OLD(A=800), NEW(A=300)

Database:

UPDATE(A=300)

ROLLBACK T1 on restart

119

Transaction Management – Isolation

Strict serial exeuction of concurrent transactions guarantees isolation, but severely limits
the performance.

A concurrency-control scheme ensures that transactions can execute concurrently
(i.e., their operations can be interleaved). Interleaving the operations of a transaction is
called schedule and may result in a correct database state, or not!

A concurrent schedule is serializable if an equivalent serial schedule exists, i.e., the
outcome of executing the transactions concurrently is the same as if they would have
been executed serially.

120

Transaction Management – Isolation (Lock-Based)

Example: Transfer EUR 500 from bank account A (EUR 800) to account B (EUR 2,000).

Transaction T1:

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

Transaction T2:

1. BEGIN

2. READ(A)

3. A = A + 1,000

4. WRITE(A)

5. COMMIT

Database:

LOCK(A, T1) ok

UPDATE(A=300)

LOCK(A, T2) conflict

LOCK(B, T1) ok

UNLOCK(A, T1), UNLOCK(B, T1) ok

121

Transaction Management – Durability

Updating the persistent data may be postponed to improve performance, i.e., the data is
provisionally updated in main memory (RAM). Data in main memory is volatile, i.e., it is
lost on system restart.

Excursion: Nowadays, data can be considerd persistent if it is wri�en to hard disk.
DBMSs aim to be e�icient/fast, thus they try to avoid or postpone expensive/slow
operations like accesses to hard disk. Multiple data structures are maintained in main
memory, which are commly referred to as bu�ers. The content of the bu�ers is only
wri�en to disk if inevitable.

122

Memory Hierarchy

Magnetic band

Optical disk (CD, DVD, . . .)

Magnetic disk (HDD)

Flash memory (SSD)

Main memory (RAM)

Cache

Registers < 1ns

> 1ns

≈ 100ns

≈ 100µs

≈ 10ms (10,000,000ns)

> 1s

factor: 105

Brain

Room

City

Pluto

123

Transaction Management – Durability

Example: Transfer EUR 500 from bank account A (EUR 800) to account B (EUR 2,000).

Transaction T1:

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

Pseudo log file:

T1: OLD(A=800), NEW(A=300)

T1: OLD(B=2,000), NEW(B=2,500)

Database:

postponed UPDATE(A=300)

postponed UPDATE(B=2,500)

---[CRASH]---

124

Distributed Transaction Management

A DDBMS must consider additional aspects:

• Distributed data storage (replication and fragmentation).

• Distributed transactions (local and global).

126

Distributed Data Storage

Assume the movies table of our example database and the relational data model.

Movies:

name year runtime genre
The Godfather 1972 177 Mafia
The Avengers 2012 143 Sci-Fi
.

Actors:

name birthyear knownfor
Marlon Brando 1924 The Godfather
Al Pacino 1940 The Godfather
.

Network

N1

N2

N3

M

A

What if N1 gets disconnected?

127

Distributed Data Storage – Replication

Replication: Data are replicated among multiple sites, i.e., a copy (replica) of the same
data exists in di�erent sites (intentional redundancy).

Example Replication:

Network

N1

N2

N3

M A

M A

M

128

Distributed Data Storage – Replication

Full replication: A copy of a relation is stored at all sites.

Network

N1

N2

N3

M A

M A

M A

Fully replicated database: Every site contains a copy of the entire database.

Pros: Higher availability and performance, reduced data transfer.
Cons: Increased update costs and higher complexity of concurrency control.

129

Replication in MongoDB (Document-Based)

130

Distributed Data Storage – Fragmentation

Fragmentation: Data are partitioned into fragements stored in distinct sites, i.e., a
specific part of the data is stored in a site.

Horizontal fragmentation: Relation is split row- or tuple-wise, and each row/tuple
resides in a separate site.

Vertical fragmentation: Relation is split into subschemata (based on the
columns/a�ributes), and each subschema resides in a separate site.

135

Example Horizontal Fragmentation

Movies M1:

name year runtime genre
The Godfather 1972 177 Mafia
The Avengers 2012 143 Sci-Fi

Actors A1:

name birthyear knownfor
Marlon Brando 1924 The Godfather
Al Pacino 1940 The Godfather

Movies M2:

name year runtime genre
Batman - The Dark Knight 2008 152 Action
American Psycho 2000 101 Thriller

Actors A2:

name birthyear knownfor
Macaulay Culkin 1980 Home Alone
Joe Pesci 1943 Home Alone

Movies M3:

name year runtime genre
Home Alone 1990 103 Comedy

Actors A3:

name birthyear knownfor
Robert Downey Jr. 1965 The Avengers
Mark Ru�alo 1967 The Avengers

136

Example Horizontal Fragmentation

Network

N1

N2

N3

M1 A1

M2 A2

M3 A3

Actors A1:

name birthyear knownfor
Marlon Brando 1924 The Godfather
Al Pacino 1940 The Godfather

Actors A2:

name birthyear knownfor
Macaulay Culkin 1980 Home Alone
Joe Pesci 1943 Home Alone

Actors A3:

name birthyear knownfor
Robert Downey Jr. 1965 The Avengers
Mark Ru�alo 1967 The Avengers

137

Distributed Data Storage – Fragmentation

Horizontal and vertical fragmentation can bemixed. In any case, the fragmented data
must be reconstructable.

Pros: Higher performance (on fragments), be�er locality (reduced data transfer).
Cons: Increased costs on site failure and if data is retrieved from di�erent sites.

138

Distributed Transactions

Local transactions access/update data at only one (local) site. A local transaction
manager enforces the ACID properties.

Global transactions access/update data at multiple (local) sites. Local subtransaction
are executed at each site. Enforcing the ACID properties is much more complex.

Each site has a local transaction manager and a transaction coordinator.

139

Distributed Transactions

The local transaction manager ensures that the ACID properties hold for local
transactions and maintains the local log files.

The transaction coordinator starts transactions that are initiated at a site, distributes
the subtransactions to other sites, and ensures that a transaction either executes at all
sites or at none.

Network

N1

N2

N3

TC1 TM1

TC2 TM2

TC3 TM3

140

Distributed Transactions – Commit Protocols

Required because we must ensure atomicity across all sites, e.g., we are not allowed to
commit a transaction at N1 but abort the same transaction at N2.

List of Protocols:

• Two-Phase Commit (2PC; used in practice).

• Three-Phase Commit (3PC; solves issues of 2PC but impracticable).

• Persistent Messaging (PM).

141

Distributed Transactions – 2PC in a Nutshell

Transaction T is initiated at site Ni with transaction coordinator TCi .

Phase 1: TCi “asks” other participants to prepare to commit (and logs it beforehand).
Each transaction manager determines if it can commit, logs it, and “reports” it to TCi .

Phase 2: If TCi receives a single abort message, then all participants are informed to
abort T. Otherwise, all participants are notified to commit T . Prior to that, TCi logs
the decision locally. The involved transaction managers comply to the decision.

142

Auto-Evaluation

• Structured�ery Language (SQL).

• Integritätsbedingungen, valide Instanz.

• Datenabstraktion (physische Datenunabhängigkeit).

• Instanz vs. Schema, Primärschlüssel.

• Operationen in einem Key-Value Store.

• Durchsatz in einem parallelen DBMS (PDBMS).

146

Short Answers

• Warum deklarative Sprachen und nicht direkt Ausführungsplan?

• Prinzip hinter Datenunabhängigkeit. Warum erstrebenswert?

• Wünschenswertes Szenario für Redundanz. Warum?

• Prinzip hinter Transaktionen bzgl. des DB-Zustandes?

• Serieller vs. serialisierbarer Ablaufplan.

• Rolle des Loggings bzgl. ACID. Vorteil der Logs?

147

Ad MongoDB Replication in Action

How to connect to a MongoDB replica set transparently?

149

Consistency

Di�erent notions of consistency to specify desired properties in a DDBMS. Ideally, all
updates appear immediately at all sites in the same order (illusion of a single data copy).

Strong consistency refers to this ideal scenario, but this is o�en expensive (or even
impracticable). Weak consistency relaxes the consistency constraints to improve the
performance or the availability of a DDBMS.

150

Availability

High Availability: A DDBMS with extremely low downtime (about 99.99% available).

In large systems, a failure happens frequently (nodes may be down or the network may
partition).

Trade consistency to achieve high availability.

151

Brewer’s CAP Theorem

A distributed database system has three properties:

• Consistency: All replicated copies are in the same state.

• Availability: System runs even in case of failures due to replication.

• Partition-tolerance: System runs even if the network is partitioned.

Network partition: Network decomposes into multiple parts/subsystems that cannot
reach one another.

CAP Theorem: You can have at most two of the three properties.

152

Brewer’s CAP Theorem

A

C P

Pick Two
CA AP

CP

153

Brewer’s CAP Theorem

AP Systems: Systems stay available in case of a network partition, but inconsistencies
may be introduced. These inconsistencies must be resolved once the network partition is
resolved.

CP Systems: Systems maintain consistency in case of a network partition, but may be
unavailable for some time.

CA Systems: “Ideal” consistency and availability. No availability and consistency
guarantees in case of a network partition.

In Practice: Network partitions cannot be avoided⇒ AP or CP.

154

The BASE Properties

BASE is an alternative consistency model that is not as strict as the ACID properties
and favors availability over consistency.

Basically Available: The system appears to work most of the time, i.e., reads/writes
should be allowed even if the network partitions, but without consistency guarantee.

So� State: The state of the database may not be precisely defined all the time, i.e.,
replicas do not have to be consistent.

Eventually Consistent: Once the network partitioning is resolved, the states of all
replicas converge, i.e., all replicas become consistent eventually.

155

Eventual Consistency

No new updates⇒Writes are propagated to all replicas and all replicas converge
towards a common state.

Inconsistent replicas must be identified because two replicas may be updated
independently (e.g., version-vector scheme).

Inconsistent updates may need to be merged (e.g., in the worst case, human
interaction is required – comparable to a merge conflict in git).

156

Workloads

With regard to database systems, a workload is a set of queries/updates that reflects a
typical usage pa�ern (load).

Di�erent database systems perform be�er/worse on particular workloads.

Transaction Processing Performance Council (TPC): An independent consortium
that releases standardized benchmarks for various workloads, the TPC benchmarks 10.

10http://www.tpc.org/

157

http://www.tpc.org/

OLTP Workloads

Online Transaction Processing (OLTP): Short-lived read/write transactions with
a small footprint (i.e., only a small portion of the data is touched). Many transactions
must be processed as fast as possible (high throughput, low response time). The TPC-C
benchmark provides typical OLTP workloads.

OLTP system

1s

T1
T2
T3
T4

Tn−2
Tn−1
Tn

. . .

ok
ok

ok

ok

123,456 trans./sec.

Throughput:

158

OLAPWorkloads

Online Analytical Processing (OLAP): Long-running read-only queries that
exploratory analyze a large portion of the overall data (to support decision). This o�en
involves complex join operations and the main focus is low response time. The
TPC-DS benchmark provides typical OLAP workloads. “Data Warehouse”.

OLAP system

T1

T2

T3

Tm−1

Tm

. . .

123ms

4,5678ms

357ms

1,987ms

9ms

Response time:

159

Workloads – Batches vs. Streams

Batch Workloads: A batch is a large but bounded static dataset. Before data can be
processed, all data must be completely available (e.g., on hard disk).

StreamWorkloads: A stream is an unbounded evolving dataset. Data items are
processed as they stream into the system one a�er another, i.e., the data does not have
to be completely available.

160

Systems Potpourri

Continuous Development

Picture taken from Davoudian et al. A Survey on NoSQL Stores. ACM Computing Surveys, 2018.

165

Continuous Development

In-Memory Database Systems: Relies on main memory (RAM) for storing the
data rather than hard disks (HDDs) or SSDs. Very low response times
(microseconds) but must deal with durability (logs).

Database as a Service (DBaaS): A cloud-based platform (service) that provides
computing infrastructure, data storage and database functionality in the cloud. The
clients (you) do not have to set up their own database system on their own hardware,
but just access and use a database that runs in the cloud.

166

Key-Value Stores – Redis

The REmote DIctionary Server 11 is an in-memory NoSQL database system based on
the key-value data model that supports durability (i.e., data can be made persistent).

• Redis is a CP system.

• In-memory, i.e., very fast (avg. read/write performance: < 1ms).

• Collection of useful, high-performance data structures (lists, sets, bitmaps, . . .).

• Replication and persistence support.

• Supports many programming languages incl. Java, Python, C/C++, and JavaScript.

11https://redis.io

167

https://redis.io

Key-Value Stores – Redis

Use Case: Cache between application and database system.

Redis as cache

DBS

Application

1. Data request 2. Hit: Read from cache1. Data request

2. Miss: Read from DB 3. Update cache

4. Serve request

168

Key-Value Stores – Other Systems

Riak KV 12 is a distributed persistent key-value store with support for advanced data
types (e.g., JSON). It is inspired by Amazon’s DynamoDB 13 and provides high
availability (i.e., is an AP system).

Memcached 14 (“Mem-Cash-Dee”) is a distributed in-memory key-value store with a
performance similar to Redis. However, Memcached supports only the simple
key-value data model and has no support for durability. Not a database system!

12https://riak.com/products/riak-kv/
13https://aws.amazon.com/dynamodb/
14https://memcached.org/

169

https://riak.com/products/riak-kv/
https://aws.amazon.com/dynamodb/
https://memcached.org/

Document Stores – MongoDB

MongoDB 15 is a distributed NoSQL database system based on the document-oriented
data model with a focus on high availability and horizontal scalability.

• MongoDB is a CP system.

• Uses JSON as document format (specifically, a binary JSON format called BSON).

• Shared-nothing system architecture.

• JSON-based query language (limited support for joins as we know it).

• Replication and sharding (aka fragmentation) support through replica sets.

15https://www.mongodb.com/

170

https://www.mongodb.com/

Document Stores – Other Systems

Apache CouchDB 16 is a distributed document store with support formaster-master
replication and a conflict resolution protocol. It is an AP system that uses the plain
JSON format.

Couchbase 17 is a distributed document store with a built-in in-memory cache
(memcached) and an SQL-like query language (N1QL). It uses CouchDB as back end.

16https://couchdb.apache.org/
17https://www.couchbase.com/

171

https://couchdb.apache.org/
https://www.couchbase.com/

Graph Stores – Neo4J

Neo4j 19 is a NoSQL database system based on the graph data model with ACID
guarantees. Neo4j is a native graph store.

• Neo4j is a CP system (as of version 3.5).

• Shared-nothing system architecture.

• Set of core servers (serve write+read) and many read replicas.

• Emphasis on read availability (full replication).

• SQL-inspired query language (Cypher) to describe graph pa�erns (ASCII art).

19https://neo4j.com/

173

https://neo4j.com/

Graph Stores – Neo4j

https://neo4j.com/docs/operations-manual/current/clustering/introduction/. 175

https://neo4j.com/docs/operations-manual/current/clustering/introduction/

Graph Stores – Other Systems

Tigergraph 20 is a distributed native graph store that supports parallel computation and
advanced analytics. It has its own query language GSQL.

ArangoDB 21 is a multi-model database system that supports the graph-based model in
JSON format.

OrientDB 22 is another multi-model database system that supports the graph-based
model. It uses an SQL-like syntax that is extended for graphs.

20https://www.tigergraph.com/
21https://www.arangodb.com/
22https://orientdb.org/

176

https://www.tigergraph.com/
https://www.arangodb.com/
https://orientdb.org/

Extensible Record Store – Apache Cassandra

Apache Cassandra 23 is a distributed NoSQL database system based on the extensible
record (or wide column) data model. It is a decentralized and “master-less” DDBMS that
supports eventual consistency.

• Apache Cassandra is an AP system (but can be configured as CP system).

• Shared-nothing system architecture.

• Support for nested column families (so-called super column families).

• The Cassandra query language (CQL) resembles SQL.

23https://cassandra.apache.org/

177

https://cassandra.apache.org/

Extensible Record Store – Apache Cassandra

Master-less architecture⇒ No single point of failure.

Consistent Hashing (Token Ring)

1

25

34

0-19

20-39
40-59

60-79

80-99

Hash function h(.) determines node.

Data h(.) Node

Christian Bale 1974 18 1
Scarle� Johansson 1984 21 2
Mark Ru�alo 1967 67 4
Mark Wahlberg 1971 67 4

178

Extensible Record Store – Apache Cassandra

Master-less architecture⇒ No single point of failure.

Replication Factor (for example, 3)

1

25

34

0-19

20-39
40-59

60-79

80-99

Hash function h(.) determines node.

Data h(.) Node

Christian Bale 1974 18 1
Scarle� Johansson 1984 21 2
Mark Ru�alo 1967 67 4
Mark Wahlberg 1971 67 4

179

Other Systems

• RDBMS: PostgreSQL 24, SQLite 25, Oracle 26, Microso� SQL Server 27, . . .

• NewSQL Systems: CockroachDB 28, VoltDB 29, . . .

• In-Memory OTLP & OLAP Systems: HyPer 30, SAP Hana 31, . . .

• Cloud Services: Amazon DynamoDB 32, Snowflake Cloud Data Warehouse 33, . . .
24https://www.postgresql.org/
25https://www.sqlite.org/
26https://www.oracle.com/database/
27https://www.microsoft.com/en-us/sql-server/sql-server-2019
28https://www.cockroachlabs.com/
29https://www.voltdb.com/
30https://hyper-db.de/
31https://www.sap.com/products/hana.html
32https://aws.amazon.com/dynamodb/
33https://www.snowflake.com/

180

https://www.postgresql.org/
https://www.sqlite.org/
https://www.oracle.com/database/
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.cockroachlabs.com/
https://www.voltdb.com/
https://hyper-db.de/
https://www.sap.com/products/hana.html
https://aws.amazon.com/dynamodb/
https://www.snowflake.com/

Additional Material

Use the database of databases 34 for a first impression and cross references.

A 37-page survey on NoSQL database systems 35

Books on NoSQL database systems 36 37

34https://dbdb.io/
35Davoudian et al. A Survey on NoSQL Stores. ACM Computing Surveys, 2018.
36Sadalage and Fowler. NoSQL Distilled – A Brief Guide to the Emerging World of Polyglot Persistence.
Addison-Wesley, 2013.
37Redmond and Wilson. 7 Databases in 7 Weeks - A Guide to Modern Databases and the NoSQL Movement.
Pragmatic Bookshelf, 2012.

181

https://dbdb.io/

	Data Management
	Introduction
	One Size Fits All?
	Database Fundamentals
	Assignment 1
	Data Models
	Workloads & Challenges
	Assignment 2
	Systems Potpourri

