
UV Distributed Information Management
Summer term 2021

Assignment 01 - Q&A

�is document provides supplementary material regarding terms, topics, and questions that
have been discussed during the lecture, and is supposed to support the students.

1 Data Management

�is section covers supplementary material of part 1 on Data Management.

1.1 Terminology

Data integrity (Datenintegrität, in german) �is term has di�erent meanings. In the con-
text of information security, data integrity refers to the prevention of unauthorized mo-
di�cation of information. In other words, data integrity de�nes the correctness or validity
of the data upon modi�cation (done by humans or machines). In our context, consistency
(or integrity) constraints are used to describe conditions that must be satis�ed for the data
to be correct. �e data are consistent (or of integrity) if all the constraints are satis�ed.

Example: If an a�ributeA stores the balance of a bank account, we may want to disallow
values that are smaller than EUR -5,000 (i.e., we allow a credit of at most EUR 5,000 per
bank account). If a customer then tries to lend more than EUR 5,000 from our bank, this
constraint is violated and the system may prevent it.

Key (Schlüssel, in german) In the relational model (record-based tables), we need a way to
distinguish the rows. Let K be a subset of the a�ributes (columns) of a relation (table). K
is called super key if the a�ributes of K su�ce to uniquely identify a tuple (row) in the
relation. K is a candidate key if K is a super key and K cannot be further reduced (i.e., no
a�ributes can be removed) without losing the super key property. A candidate key that
consists of a�ributes that are rarely subject to updates is typically chosen as primary key.

Example: �e social security number, the bank account identi�er, or the registration
number at universities are prototypical examples of primary keys. However, also a com-
bination of multiple a�ributes can serve as primary key, e.g., the combination of �rstna-
me, lastname, and birthyear.

Schema In our lecture, the schema refers to the overall design of a database, i.e., it de�nes the
structure of the data (similar to a variable declaration in a programming language) and
the relationships between the data.We distinguish between relation and database schema.
�e relation schema refers to the schema of a single relation (table; in the relational



model), whereas the database schema refers to the collection of all relation schemata in
the database.

Caveat: �e term schema may have a di�erent meaning in some database systems, e.g.,
a schema may subsume multiple tables. �erefore, we recommend to read the manual of
the database system at hand. Nonetheless, we use the term schema as described above.

1.2 �estions

Q1 Regarding the ACID properties: How is the isolation guarantee implemented?

�e ACID properties are split into four parts and we will provide information about the im-
plementation (from a logical point of view) for each single part (based on Silberschatz et al.
Database System Concepts. 7th Edition.):

Atomicity �e atomicity property guarantees that a transaction is either executed completed
or not at all (“all or nothing” ). A transaction T that completes successfully is referred to
as committed. Contrarily, a transactionT is called aborted if it does not complete suc-
cessfully. In the case that transactionT is aborted, the DBS must ensure that any change
to the database is undone.�is is commonly referred to as rollback of a transaction. Ma-
ny systems implement this guarantee by maintaining a log �le. �e DBS then records
each single modi�cation that will be done by a transaction in this log �le. A log record
contains information to identify the transaction and about the data that is updated (e.g.,
old and new values). Only a�er the log record has been wri�en to persistent storage, the
DBS modi�es the data in the database accordingly. �e information in the log �le allows
the DBS to undo all the modi�cations of a transaction (i.e., to roll it back) in case of a
hardware or so�ware failure.

Consistency �e consistency property states that the database is in a consistent state if tran-
sactions are executed in isolation. Application developers must ensure the consistency
of individual transaction, for example, by de�ning integrity constraints.

Isolation In a DBS, many transactions may be executed concurrently. �e isolation proper-
ty guarantees that each transaction is unaware of other transactions that are executed
concurrently (it appears to a single transaction that it is executed in isolation). For every
pair of transactions Ti and Tj , it appears to Ti as if Tj either �nished before or started
a�er Ti . A simple way to implement (or rather ensure) this property is to execute tran-
saction in a serial way, i.e., one a�er another. However, this would severely limit the
performance (with respect to both throughput and response time) of the DBS. �erefo-
re, so-called concurrency control schemes have been developed and are still subject
to active database systems research. A concurrency control scheme typically allows the
DBS to execute multiple transactions concurrently. Assume we have two transaction Ti
andTj , each of which consists of 8 instructions. When we executeTi andTj concurrently,
the operating system (OS) decides which transaction is executed on the processor (CPU)
and for how long (i.e., for how many cycles). For example, the OS may decide to allow
Ti to execute its �rst 2 instructions, then T2 is allowed to execute 4 instructions. A�er-
wards,T1 is allowed to execute 4 instructions, thenT2 executes 4 instructions, and �nally
T1 �nishes by executing the remaining 2 instructions.�is so-called schedulemay result
in a correct database state, or not. �us, the concurrency control component of the DBS
ensures that only schedules are executed that result in a consistent database state. One



possible way is to use only so-called serializable schedules, i.e., concurrent schedules
that have the same e�ect as some serial schedule. �ere are various policies for concur-
rency control that can be utilized to ensure this: Lock-based protocols ensure isolation
by locking data items at runtime, i.e., if one transaction accesses a data item, no other
transaction is allowed to modify this data item. Optimistic validation-based protocols
monitor the system such that each transaction is executed in multiple phases and con-
sistency is validated at the end. In the case of a con�ict, the corresponding transaction is
restarted. Other schemes include timestamp-based protocls, the multiversion concurren-
cy control scheme, and snapshot isolation. For interested students, we refer to Chapter
18 of Silberschatz et al. Database System Concepts (7th Edition).

Durability �e durability property guarantees that all modi�cations executed by a transac-
tion that has commi�ed are persistent even in the case of system failure. A transaction
cannot be rolled back once it has commi�ed. In other words, a�er a transaction has com-
mi�ed, the modi�cations can only be undone by a subsequent transaction that reverts
these modi�cations. �e informations that is recorded in the log �le (cf. Atomicity) al-
lows the DBS to redo a modi�cation if the system needs to restart (e.g., due to a system
failure), thus ensuring durability. Only when the last information is wri�en to the log �-
le, the transaction completes (i.e., it transitions into the “commi�ed” state). �e recovery
systems are also subject to active research and we refer interested students to Chapter
19 of Silberschatz et al. Database System Concepts (7th Edition) for more details.


	Data Management
	Terminology
	Questions


