Similarity Search The Binary Branch Distance

Nikolaus Augsten

nikolaus.augsten@sbg.ac.at Department of Computer Sciences University of Salzburg

WS 2021/22

Version October 26, 2021

Outline

- Binary Branch Distance
 - Binary Representation of a Tree
 - Binary Branches
 - Lower Bound for the Edit Distance
 - Complexity
- 2 Conclusion

Outline

- Binary Branch Distance
 - Binary Representation of a Tree
 - Binary Branches
 - Lower Bound for the Edit Distance
 - Complexity
- 2 Conclusion

Binary Tree

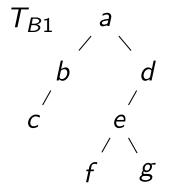
- In a binary tree
 - each node has at most two children;
 - left child and right child are distinguished:
 a node can have a right child without having a left child;
- Notation: $T_B = (N, E_I, E_r)$
 - T_B denotes a binary tree
 - N are the nodes of the binary tree
 - E_l and E_r are the edges to the left and right children, respectively
- Full binary tree:
 - binary tree
 - each node has exactly zero or two children.

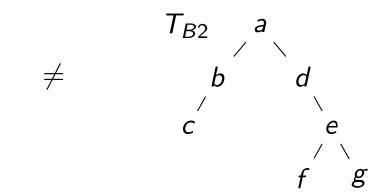
Example: Binary Tree

• Two different binary trees: $T_B = (N, E_I, E_r)$

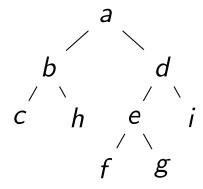
$$T_{B1} = (\{a, b, c, d, e, f, g\}, \{(a, b), (b, c), (d, e), (e, f)\}, \{(a, d), (e, g)\})$$

$$T_{B2} = (\{a, b, c, d, e, f, g\}, \{(a, b), (b, c), (e, f)\}, \{(a, d), (d, e), (e, g)\})$$





• A full binary tree:



Binary Representation of a Tree

- Binary tree transformation:
 - (i) link all neighboring siblings in a tree with edges
 - (ii) delete all parent-child edges except the edge to the first child
- Transformation maintains
 - label information
 - structure information
- Original tree can be reconstructed from the binary tree:
 - a left edge represents a parent-child relationships in the original tree
 - a right edge represents a right-sibling relationship in the original tree

Example: Binary Tree Transformation

• Represent tree T as a binary tree:

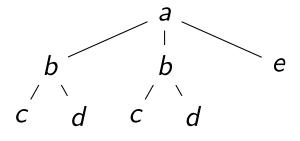


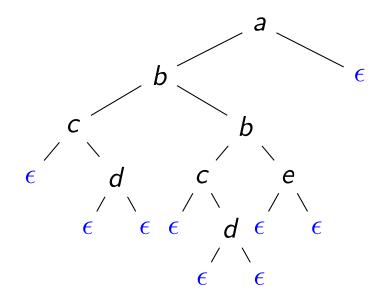
Normalized Binary Tree Representation

- We extend the binary tree with null nodes ϵ as follows:
 - a null node for each missing left child of a non-null node
 - a null node for each missing right child of a non-null node
- Note: Leaf nodes get two null-children.
- The resulting normalized binary representation
 - is a full binary tree
 - all non-null nodes have two children
 - all leaves are null nodes (and all null nodes are leaves)

Example: Normalized Binary Tree

• Transforming T to the normalized binary tree B(T):





Outline

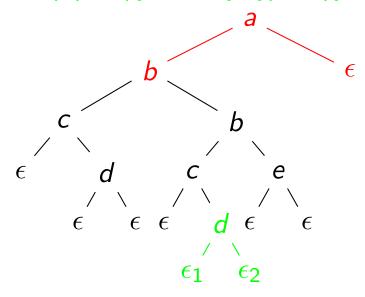
- Binary Branch Distance
 - Binary Representation of a Tree
 - Binary Branches
 - Lower Bound for the Edit Distance
 - Complexity
- 2 Conclusion

Binary Branch

- A binary branch BiB(v) is
 - a subtree of the normalized binary tree B(T)
 - consisting of a non-null node v and its two children
- Example:

$$BiB(a) = (\{a, b, \epsilon\}, \{(a, b)\}, \{(a, \epsilon)\})$$

 $BiB(d) = (\{d, \epsilon_1, \epsilon_2\}, \{(d, \epsilon_1)\}, \{(d, \epsilon_2)\})$ ¹

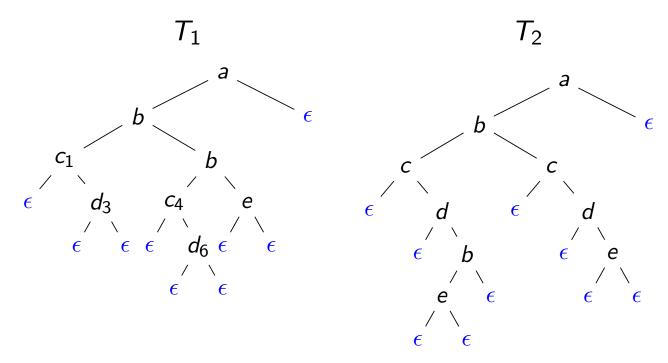


¹Although the two null nodes have identical labels (ϵ), they are different nodes. We emphasize this by showing their IDs in subscript.

Binary Branches of Trees and Datasets

- Binary branches can be serialized as strings:
 - $BiB(v) = (\{v, a, b\}, \{(v, a)\}, \{(v, b)\}) \rightarrow \lambda(v) \circ \lambda(a) \circ \lambda(b)$
 - we can sort these strings $(\epsilon > \lambda(v))$ for all non-null nodes v)
- Binary branch sets:
 - BiB(T) is the set of all binary branches of B(T)
 - $BiB(S) = \bigcup_{T \in S} BiB(T)$ is the set of all binary branches of dataset S
 - $BiB_{sort}(S)$ is the vector of sorted serialized strings of BiB(S)
- Note:
 - nodes are unique in the tree, thus binary branches are unique
 - labels are not unique, thus the serialized binary branches are not unique

Example: Binary Branches of Trees and Datasets

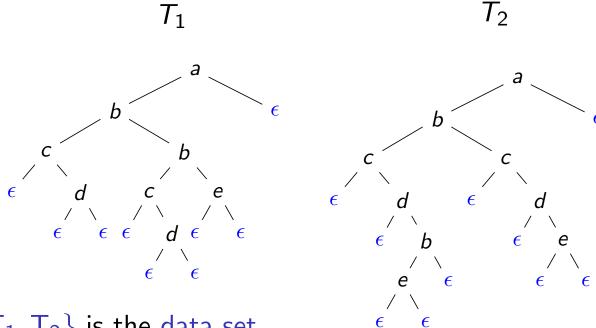


- $BiB(c_1) \neq BiB(c_4)$:
 - $BiB(c_1) = (\{c_1, \epsilon_2, d_3\}, \{(c_1, \epsilon_2)\}, \{(c_1, d_3)\})$
 - $BiB(c_4) = (\{c_4, \epsilon_5, d_6\}, \{(c_4, \epsilon_5)\}, \{(c_4, d_6)\})$
- Serialization of both, $BiB(c_1)$ and $BiB(c_2)$, is identical: ' $c \in d$ '
- Sorted vector of serialized strings of BiB(S), where $S = \{T_1, T_2\}$: $BiB_{sort}(S) = (ab\epsilon, bcb, bcc, bce, be\epsilon, c\epsilon d, d\epsilon b, d\epsilon e, d\epsilon \epsilon, e\epsilon \epsilon)$

Binary Branch Vector

- The binary branch vector BBV(T)
 - is a representation of the binary branch set BiB(T)
- Construction of the binary branch vector BBV(T):
 - compute $BiB_{sort}(S)$ (serialize and sort BiB(S))
 - b_i is the i-th serialized binary branch in sort order $(b_i = BiB_{sort}(S)[i])$
 - BBV(T)[i] is the number of binary branches in B(T) that serialize to b_i
- Note: BBV(T)[i] is zero if b_i does not appear in BiB(T)

Example: Binary Branch Vectors



- $S = \{T_1, T_2\}$ is the data set
- $BiB_{sort}(S)$ is the vector of sorted serialized strings of BiB(S)
- $BBV(T_i)$ is the binary branch vector of T_i
- the vector of serialized strings and the binary branch vectors are:

$BiB_{sort}(S)$
$BBV(T_1)$
$BBV(T_2)$

$ab\epsilon$	bcb	bcc	bce	$be\epsilon$	$c\epsilon d$	$d\epsilon b$	$d\epsilon e$	$d\epsilon\epsilon$	$e\epsilon\epsilon$
1	1	0	1	0	2	0	0	2	1
1	0	1	0	1	2	1	1	0	2

Outline

- Binary Branch Distance
 - Binary Representation of a Tree
 - Binary Branches
 - Lower Bound for the Edit Distance
 - Complexity
- 2 Conclusion

Binary Branch Distance [YKT05]

Definition (Binary Branch Distance)

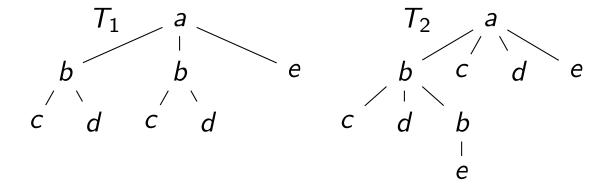
Let $BBV(T) = (b_1, \ldots, b_k)$ and $BBV(T') = (b'_1, \ldots, b'_k)$ be binary branch vectors of trees T and T', respectively. The binary branch distance of T and T' is

$$\delta_B(\mathsf{T},\mathsf{T}') = \sum_{i=1}^k |b_i - b_i'|.$$

• Intuition: We count the binary branches that do not match between the two trees.

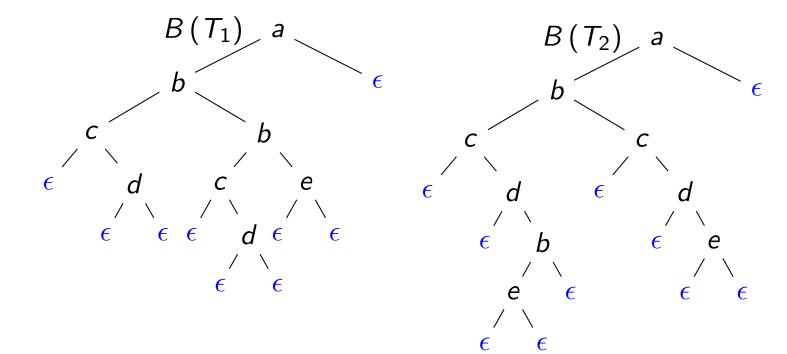
Example: Binary Branch Distance

• We compute the binary branch distance between T_1 and T_2 :



Example: Binary Branch Distance

• The normalized binary tree representations are:



Example: Binary Branch Distance

• The binary branch vectors of T_1 and T_2 are:

$BiB_{sort}(S)$	$ab\epsilon$	bcb	bcc	bce	$be\epsilon$	$c\epsilon d$	$d\epsilon b$	$d\epsilon e$	$d\epsilon\epsilon$	$e\epsilon\epsilon$
$BBV(T_1)$	1	1	0	1	0	2	0	0	2	1
$BBV(T_2)$	1	0	1	0	1	2	1	1	0	2

The binary branch distance is

$$\delta_{B}(\mathsf{T}_{1},\mathsf{T}_{2}) = \sum_{i=1}^{10} |b_{1,i} - b_{2,i}|
= |1 - 1| + |1 - 0| + |0 - 1| + |1 - 0| + |0 - 1| +
|2 - 2| + |0 - 1| + |0 - 1| + |2 - 0| + |1 - 2|
= 9,$$

where $b_{1,i}$ and $b_{2,i}$ are the *i*-th dimension of the vectors $BBV(T_1)$ and $BBV(T_2)$, respectively.

Lower Bound Theorem

Theorem (Lower Bound)

Let T and T' be two trees. If the tree edit distance between T and T' is $\delta_t(T,T')$, then the binary branch distance between them satisfies

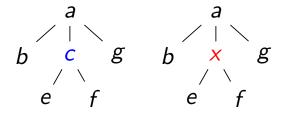
$$\delta_B(\mathsf{T},\mathsf{T}') \leq 5 \times \delta_t(\mathsf{T},\mathsf{T}').$$

Proof (Sketch — Full Proof in [YKT05]).

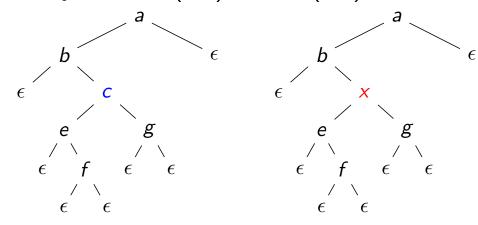
- Each node v appears in at most two binary branches.
- Rename: Renaming a node causes at most two binary branches in each tree to mismatch. The sum is 4.
- Similar rational for *insert* and its complementary operation *delete* (at most 5 binary branches mismatch).

Proof Sketch: Illustration for Rename

• transform T_1 to T_2 : ren(c, x)



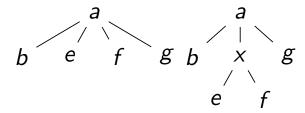
• binary trees $B(T_1)$ and $B(T_2)$



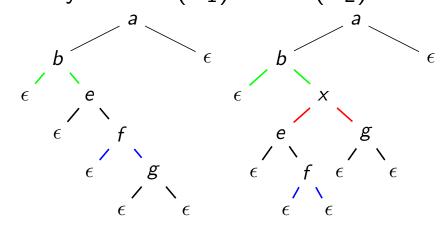
- Two binary branches $(b \in c, ceg)$ exist only in $B(T_1)$
- Two binary branches $(b \in x, x = g)$ exist only in $B(T_2)$
- $\delta_t(\mathsf{T}_1,\mathsf{T}_2) = 1$ (1 rename)
- $\delta_B(\mathsf{T}_1,\mathsf{T}_2)=4$ (4 binary branches different)

Proof Sketch: Illustration for Insert

• transform T_1 to T_2 : ins(x, a, 2, 2)



• binary trees $B(T_1)$ and $B(T_2)$



- Two binary branches $(b \in e, f \in g)$ exist only in $B(T_1)$
- Tree binary branches $(b\epsilon x, f\epsilon \epsilon, xeg)$ exist only in $B(T_2)$
- $\delta_t(\mathsf{T}_1,\mathsf{T}_2) = 1$ (1 insertion)
- $\delta_B(\mathsf{T}_1,\mathsf{T}_2)=5$ (5 binary branches different)

Proof Sketch

- In general it can be shown that
 - Rename changes at most 4 binary branches
 - Insert changes at most 5 binary branches
 - Delete changes at most 5 binary branches
- Each edit operation changes at most 5 binary branches, thus

$$\delta_B(\mathsf{T},\mathsf{T}') \leq 5 \times \delta_t(\mathsf{T},\mathsf{T}').$$

Outline

- Binary Branch Distance
 - Binary Representation of a Tree
 - Binary Branches
 - Lower Bound for the Edit Distance
 - Complexity
- 2 Conclusion

Complexity: Binary Branch Distance

• Compute the distance between two trees of size O(n):

$$(S = \{T_1, T_2\}, n = \max\{|T_1|, |T_2|\})$$

- Construction of the binary branch vectors $BBV(T_1)$ and $BBV(T_2)$:
 - 1. BiB(S) compute the binary branches of T_1 and T_2 : O(n) time and space (traverse T_1 and T_2)
 - 2. $BiB_{sort}(S)$ sort *serialized* binary branches of BiB(S): $O(n \log n)$ time and O(n) space
 - 3. construct $BBV(T_1)$ and $BBV(T_2)$:
 - (a) traverse all binary branches: O(n) time and space
 - (b) for each binary branch find position i in $BiB_{sort}(S)$: $O(n \log n)$ time (binary search in $BiB_{sort}(S)$ for n binary branches)
 - (c) BBV(T)[i] is incremented: O(1)
- Computing the distance:
 - the two binary branch vectors are of size O(n)
 - computing the distance has time complexity O(n) (subtracting two binary branch vectors)
- The overall complexity is $O(n \log n)$ time and O(n) space.

Improving the Time Complexity with a Hash Function

- Note: Improvement using a hash function:
 - we assume a hash function that maps the O(n) binary branches to O(n) buckets without collision
 - we do *not* sort BiB(S)
 - position i in the vector BBV(T) is computed using the hash function
 - O(n) time (instead of $O(n \log n)$) and O(n) space
- In the following we assume the sort algorithm with $O(n \log n)$ runtime.

Complexity for Similarity Joins

- Join two sets with *N* trees each (tree size: *n*):
- Compute Binary Branch Vectors (BBVs): $O(Nn \log(Nn))$ time, $O(N^2n)$ space
 - BBVs are of size O(Nn)
 - time: sort O(Nn) binary branches / O(Nn) binary searches in BBVs
 - space: O(N) BBVs must be stored
- Compute Distances: $O(N^3n)$ time
 - computing the distance between two trees has O(Nn) time complexity (subtracting two binary branch vectors)
 - $O(N^2)$ distance computations required
- Overal Complexity: $O(N^3n + Nn \log n)^{\dagger}$ time and $O(N^2n)$ space

Augsten (Univ. Salzburg)

Summary

- Binary Branch Distance
 - lower bound of the unit cost tree edit distance
 - trees are split into binary branches (small subgraphs)
 - similar trees have many common binary branches
 - complexity $O(n \log n)$ time

Rui Yang, Panos Kalnis, and Anthony K. H. Tung. Similarity evaluation on tree-structured data.

In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 754–765, Baltimore, Maryland, USA, June 2005. ACM Press.