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Introduction



Motivation

The amount of data is growing rapidly in many dierent domains.

We do not collect data to simply store it, but we want to

• access it fast at any time and from any place,

• search it (for exact and similar paerns),

• aggregate it (partially),

• join it with other data,

• have multiple users working on the data concurrently,

• make sense out of it.
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Motivation

“But I can organize my data without the overhead of a dedicated system!”

Theoretically yes, but this implies:

• Organizing your data in multiple independent (plain) files.

• Other users may have trouble to understand your organization.

• Taking care of all the requirements yourself.

• You drop flexibility and scalability.

What can possibly go wrong?
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Example Application

Managing the DAS faculty members using CSV files and Python3.

Members: (name;employment;department;)

Daniel Kocher;Postdoc. Researcher;CS;

Thomas Hütter;Postdoc. Researcher;CS;

Tijn De Vos;PhD Student;CS;

Christoph Kirsch;Full Professor;CS;

Simon Kirchgasser;PhD Student;AIHI;

Roland Kwitt;Full Professor;AIHI;

Bernd Resch;Assoc. Professor;GI;

Simon Blatt;Assoc. Professor;Mathematics;

Departments: (name;location;)

CS;Science City Salzburg;

AIHI;Science City Salzburg;

GI;Science City Salzburg;

Mathematics;Faculty of Nat. Sciences (NAWI);
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Example Application

ery: Find the names of all members that belong to the “CS” department.

i f name == ” ma in ” :
with open ( ”members . c s v ” , ” r ” ) as f i n :

for l i n e in f i n . r e a d l i n e s ( ) :
p a r t s = l i n e . s p l i t ( ” ; ” )

name = pa r t s [ 0 ]
employment = p a r t s [ 1 ]
department = p a r t s [ 2 ]

i f department == ”CS” :
print ( name )
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Problems in Data Management

Redundancy and Inconsistency:

• Several copies of a datum may exist (possibly stored dierently).

• Redundancy: Higher storage requirements. How about accessing the data?

⇒Multiple file accesses (which is slow).

• Inconsistency: What happens if you have to update the data?
⇒We must not forget a single copy.

• Goal: Minimize redundancy and prevent inconsistency.

Example: Update “CS” to “Computer Science”.
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Example Application

ery: Update “CS” to “Computer Science”.

Members: (name;employment;department;)

Daniel Kocher;Postdoc. Researcher;CS;

Thomas Hütter;Postdoc. Researcher;CS;

Tijn De Vos;PhD Student;CS;

Christoph Kirsch;Full Professor;CS;

Simon Kirchgasser;PhD Student;AIHI;

Roland Kwitt;Full Professor;AIHI;

Bernd Resch;Associate Professor;GI;

Simon Blatt;Assoc. Professor;Mathematics;

Departments: (name;location;)

Computer Science;Science City Salzburg;

AIHI;Science City Salzburg;

GI;Science City Salzburg;

Mathematics;Faculty of Nat. Sciences (NAWI);
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Problems in Data Management

Data Access and Analysis:

• We want to analyze our data. How to link related data?

⇒ Each analysis requires a tailored program.

• Goal: Generic analysis and linkage of related data.

Example: List all members that belong to the “AIHI” department with their location.
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Example Application
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Problems in Data Management

Data Integrity Issues:

• Updates may violate the integrity of your data.

• How do you ensure data integrity?

⇒ Each single application must respect all consistency constraints.

• Goal: Global definition and monitoring of consistency constraints.

Example: Insert “Nikolaus Augsten” as member of the “AIHI” department.

11



Problems in Data Management

Data Integrity Issues:

• Updates may violate the integrity of your data.

• How do you ensure data integrity?
⇒ Each single application must respect all consistency constraints.

• Goal:

Global definition and monitoring of consistency constraints.

Example: Insert “Nikolaus Augsten” as member of the “AIHI” department.

11



Problems in Data Management

Data Integrity Issues:

• Updates may violate the integrity of your data.

• How do you ensure data integrity?
⇒ Each single application must respect all consistency constraints.

• Goal: Global definition and monitoring of consistency constraints.

Example: Insert “Nikolaus Augsten” as member of the “AIHI” department.

11



Problems in Data Management

Data Integrity Issues:

• Updates may violate the integrity of your data.

• How do you ensure data integrity?
⇒ Each single application must respect all consistency constraints.

• Goal: Global definition and monitoring of consistency constraints.

Example: Insert “Nikolaus Augsten” as member of the “AIHI” department.

11



Problems in Data Management

Concurrency Issues:

• Multiple users should be able to access and update the data simultaneously. How
do you ensure consistency over all applications that access the data?

• Anomalies: Inconsistencies, e.g., lost updates.

• Eiciency: If one user locks a file, then the other user must wait.

• Goal: Out-of-the-box multi-user operation without anomalies.

Example: User A inserts “Nikolaus Augsten” as member while user B inserts “Ana
Sokolova” as member of the “CS” department simultaneously.
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Example Application

Scenario: User A inserts “Nikolaus Augsten” as member while user B inserts “Ana
Sokolova” as member of the “CS” department simultaneously.

Members: (name;employment;department;)

Daniel Kocher;Postdoc. Researcher;CS;

Thomas Hütter;Postdoc. Researcher;CS;

Tijn De Vos;PhD Student;CS;

Christoph Kirsch;Full Professor;CS;

Simon Kirchgasser;PhD Student;AIHI;

Roland Kwitt;Full Professor;AIHI;

Bernd Resch;Associate Professor;GI;

Simon Blatt;Assoc. Professor;Mathematics;

Ana Sokolova;Associate Professor;CS;
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Problems in Data Management

Atomicity and Recovery:

• Data must neither be lost nor inconsistent when the system crashes.

• Atomicity: Data may be inconsistent if an operation is only applied partially
⇒ Execute an operation in an all-or-nothing manner.

• Recovery: Backup of data may not reflect the latest state.

• Goal: Prevent data loss and inconsistencies by design.

Example: Update all “CS” members to belong to the “Computer Science” department.
Your system crashes in between “Tijn De Vos” and “Christoph Kirsch”.
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Example Application

Scenario: Update all “CS” members to belong to the “Computer Science” department.
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Bernd Resch;Associate Professor;GI;
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Problems in Data Management

Other Issues:

• Eiciency: Eicient algorithms are required to analyze large amounts of data.

• General-purpose: The problems of application developers will partially overlap.

• Security issues: Flexible and fine-grained access rights for multiple users.
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Database Management Systems

A database management system (DBMS) is

(i) a collection of interrelated data, the database, and

(ii) a set of programs to access the data.

In other words, you do not have to care about how to store the data (physically), how to
analyze it (eiciently), how to (partially) update data, or how to deal with multiple users.
A DBMS organizes all this for you.

DBMSs are at the core of many applications.

17



When Not to Use a DBMS

• The data are too complex to model it.

• Specific requirements like real-time queries or special operations.

• The overhead of a DBMS is too high or unnecessary.

• No or low return on investment (ROI).

18



One Size Fits All?



General-Purpose DBMS

A DBMS that tries to fit as many application scenarios as possbile with a single system.
This implies higher complexity but also a large user base.

Examples:
• PostgreSQL (open source)

• MySQL (open source)

• MonetDB (open source)

• SQLite (open source)

• IBM DB2 (closed source)

• Oracle Database (closed source)

• Microso SQL Server (closed source)

• . . .
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General-Purpose DBMS

“But this sounds good, no?”

Problems:

• Unnecessary overhead (e.g., recovery or strong consistency)

• Limited performance

• Application-specific operations are not supported natively

• Limited flexibility
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One Size Fits All (OSFA)

“One Size Fits All”: An Idea Whose Time Has Come and Gone

Michael Stonebraker1 and Ugur Cetintemel (2005)

A one size fits all database doesn’t fit anyone

Werner Vogels2 (2018)

1Database Systems Researcher at the MIT. Won the Turing Award in 2014.
2Computer Scientist and CTO at Amazon.
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Special-Purpose DBMS

A DBMS that is tailored to fit a specific purpose best, i.e., provide all the functionality
that is required while also providing the best performance and flexilibity (with respect to
the specific application domain).

Synonyms: Specialized DBMS, purpose-built DBMS.
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Special-Purpose DBMS

Temporal Data: A temporal DBMS is optimized to manage and analyze data that
references time (i.e., they are timestamped). For example, a time series
x =

〈
xt1, xt2, . . . , xtn

〉
is oen a sequence of n data points that are spaced at strictly

increasing times (ti < ti+1 with i = 1, . . . , n − 1).

Requirements:

• Exact/Approximate matching of (parts of) time series.

• Eicient compression mechanisms.

• Serve specific aspects like valid time or transaction time.

• . . .
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Special-Purpose DBMS

Real-Time Data: A real-time DBMS manages data that is changed continuously. A
DBMS that operates in real time answers the queries within a guaranteed time frame
(the response time, i.e., it has a deadline).

Requirements:

• Answer every query in a given time frame.

• ery scheduling (or queuing).

• Consistency may not be that important.

• . . .
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Special-Purpose DBMS

Process Mining Data: Process mining engines manage business event logs. An example
event log is the sequence of activities if you place an order in some online shop. These
systems are required to analyze large amounts of data in real time.

Requirements:

• Optimized, domain-specific language.

• Real-time performance for best user experience.

• . . .
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Special-Purpose DBMS

Multiple specific aspects may need to be combined to serve a novel application scenario.
This may also result in a new special-purpose DBMS.

A modern application is not monolithic, i.e., dierent DBMSs may be used to implement
dierent parts of an application.
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One Size Fits All

Towards a One Size Fits All Database Architecture

Jens Dirich3 and Alekh Jindal. 2011.

One Size Fits all, Again! The Architecture of the Hybrid OLTP&OLAP Database
Management System HyPer

Alfons Kemper4 and Thomas Neumann5. 2011.

3Database Systems Researcher at Saarland University.
4Database Systems Researcher at the TU Munich co-author of the book Datenbanksysteme.
5Database Systems Researcher at the TU Munich.
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Database Fundamentals



Basic Terminology

Data are facts that are to be stored.

Information is data combined with semantics (meaning).

Knowledge is information combined with an application.
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Example Application

What are data, information, and knowledge in our example?

Members:

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS
Simon Kirchgasser PhD Student AIHI
Roland Kwi Full Prof. AIHI
Bernd Resch Assoc. Prof. GI
Simon Bla Assoc. Prof. Math.

Departments:

name location
CS Science City Salzburg
AIHI Science City Salzburg
GI Science City Salzburg
Math. Faculty of Nat. Sciences (NAWI)
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Basic Terminology

A database (DB) is a collection of interrelated data.

Metadata provides us with information about the structure of a database. All the
metadata are stored in a catalog.

A database system (DBS) is also referred to as the combination of a database, the
corresponding metadata, and a DBMS (which in this case only provides the set of
programs). The terms DBS and DBMS are oen used interchangeably.
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Example Application

Members:

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
. . . . . . . . .

Departments:

name location year
CS Science City Salzburg 2022
AIHI Science City Salzburg 2022
. . . . . . . . .

Catalog: Tables Metadata: Columns Metadata:

relation rowCount
Members 8
Departments 4

columnName dataType relation
name TEXT Departments
year INTEGER Departments
name TEXT Members
. . . . . . . . .
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Database System

User

DBS

eries and applications

DBMS
Set of programs to answer queries

Set of programs to access the data

Metadata

Database

32



More Terminology

A table consists of multiple tuples, each of which is a sequence of aributes.
Informally, a tuple can be imagined as a row of a table, whereas an aribute can be
imagined as a column.

A key is subset of aributes. A primary key is a key of minimum length that uniquely
identifies a tuple. A foreign key is a reference to a primary key.
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More Terminology

A schema describes the overall structure of the data (oen using tables) and is typically
stable (i.e., rarely modified).

An instance is the information that is stored at a particular point in time (e.g., of a single
tuple, a table, or an entire database). The instance may be frequently subject to changes.

Each level has its own schema with the logical schema being the most important one.

A valid instance satisfies all structural requirements and consistency constraints.
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Data Modeling

Data-Definition Language (DDL): Specify the structure of your data and the
consistency constraints that are enforced.

• Schema: Describes the structure of your data and how the data are interrelated,
e.g., a department has 3 columns: name, location, and year.

• Consistency Constraints: Describe integrity constraints that must be satisfied at
any given point in time, e.g., the year of establishment is an integer ≥ 1622.
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Example Application

Members:

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
. . . . . . . . .

Departments:

name location year
CS Science City Salzburg 2022
AIHI Science City Salzburg 2022
. . . . . . . . .

Pseudo-DDL (simplified):

CREATE TABLE Members (

name TEXT KEY,

employment TEXT,

department TEXT REFERENCES(Departments.name)

)

CREATE TABLE Departments (

name TEXT KEY,

location TEXT,

year INTEGER (>= 1622)

)
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Data Modeling

Data-Manipulation Language (DML):ery and manipulate your data.

• ery Language: Allows you to query your data without modifying it, e.g., get all
members of the “CS” department or get all departments located in the “Science
City Salzburg”.

• Manipulation Language: Allows you to modify your data, e.g., insert a new
professor, delete an existing person, update the name of a particular department.

A query is a statement that requests some information. Informally, your query “asks”
and the database system answers by returning the corresponding information.

Caveat: The term query language oen refers to both DML parts.
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Example Application

Members:

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
. . . . . . . . .

Departments:

name location year
CS Science City Salzburg 2022
AIHI Science City Salzburg 2022
. . . . . . . . .

Pseudo-DML (simplified):

SELECT department FROM Members

WHERE name = 'Daniel Kocher'

SELECT name FROM Members

WHERE employment = 'Postdoc.'

INSERT INTO Members

VALUES ('Nikolaus Augsten', 'Full Prof.', 'CS')

UPDATE Departments

SET name = 'Computer Science'

WHERE name = 'CS'
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ery Languages

Imperative Languages6: Describe a sequence of operations to retrieve the desired data.

Declarative Languages: Describe what data you are interested in (no specific steps).

Pure Languages: Form the (theoretical) foundation underneath the languages that are
used in practice. Examples include relational algebra (imperative) or tuple calculus
(declarative).

Our Focus: Declarative languages (and a bit of imperative languages).

6Imperative and procedural are oen used synonymously.
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Real-World Analogy

Send someone to the supermarket to get milk.
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The SQLery Language

The Structuredery Language (SQL) was developed by IBM and is the de-facto
standard language in database systems.

SQL is a declarative query language and includes DDL and DML elements.

The SQL standard (last revision: 2016) comprehensively summarizes all elements.

Inventing new approaches is like “trying to swim up the Niagara Falls”.

Michael Stonebraker in Information Age. 2010.
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Exampleeries in SQL

Data Definition:

CREATE TABLE Members (

name VARCHAR(50) PRIMARY KEY,

employment VARCHAR(50),

department VARCHAR(100) REFERENCES Departments(name)

);

CREATE TABLE Departments (

name VARCHAR(100) PRIMARY KEY,

location VARCHAR(75),

year INTEGER NOT NULL CHECK(year >= 1622)

);

• VARCHAR(n), INTEGER: Domain of a single column (data types).

• NOT NULL, CHECK: Constraints on a single column.

• PRIMARY KEY, REFERENCES: Constraints on an entire table.
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Exampleeries in SQL

eries:

SELECT department FROM Members

WHERE name = 'Daniel Kocher';

SELECT name FROM Members

WHERE employment = 'Postdoc.';

• SELECT: Specifies the column to retrieve.

• FROM: Specifies the tables to consider.

• WHERE: Specifies the condition(s) the result must satisfy.
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Exampleeries in SQL

eries:

INSERT INTO Members(name, employment, department)

VALUES ('Nikolaus Augsten', 'Full Prof.', 'CS');

UPDATE Departments SET name = 'Computer Science'

WHERE year = 2022;

• INSERT INTO . . .VALUES: Adds new tuple to a table based on the given values.

• UPDATE . . .SET: (Partially) changes the values of a tuple.
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Data Abstraction

Abstraction: Hide the complexity of the system (from people without deep computer
science background) while providing all the functionality. Everyone should be able to
use a database system.

Three Levels of Data Abstraction (boom-up):7

1. Physical: How the data is stored (e.g., as sequence of bytes on hard disk, SSD, . . . ).

2. Logical: What data are stored and what relationships exist.

3. View: Specific views on the data (e.g., on a specific part of the entire database).

7Cf. also ANSI/SPARC architecture.
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Three Levels of Data Abstraction

The physical level defines the physical data structures that are used to store,
organize, and access the data eiciently. Examples include tables or access paths (e.g.,
using so-called indexes as shortcuts).

The logical level defines the schemata and constraints of the entire database.
Physical data structures may be used underneath, but the user does not have to know
them. ⇒ physical data independence.

The view level reduces the complexity by providing only information that is
necessary for the respective user. Irrelevant data are not shown and the focus is to
simplify the interaction with the database system.
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The Physical Level – Example

What is a physical representation8 of ourMembers table?

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS
Simon Kirchgasser PhD Student AIHI
Roland Kwi Full Prof. AIHI
Bernd Resch Assoc. Prof. GI
Simon Bla Assoc. Prof. Math.

Daniel Kocher;Postdoc.;CS;

Thomas Hütter;Postdoc.;CS;

Tijn De Vos;PhD Student;CS;

Christoph Kirsch;Full Prof.;CS;

Simon Kirchgasser;PhD Student;AIHI;

Roland Kwitt;Full Prof.;AIHI;

Bernd Resch;Assoc. Prof.;GI;

Simon Blatt;Assoc. Prof.;Mathematics;

A sequence of tuples with special characters as delimiters for aributes (;) and tuples
(newline), respectively.

8This is an example – there are many possible physical representations.
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The Physical Level – Example

What is a physical representation8 of ourMembers table?

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS
Simon Kirchgasser PhD Student AIHI
Roland Kwi Full Prof. AIHI
Bernd Resch Assoc. Prof. GI
Simon Bla Assoc. Prof. Math.

Daniel Kocher;Postdoc.;CS;

Thomas Hütter;Postdoc.;CS;

Tijn De Vos;PhD Student;CS;

Christoph Kirsch;Full Prof.;CS;

Simon Kirchgasser;PhD Student;AIHI;

Roland Kwitt;Full Prof.;AIHI;

Bernd Resch;Assoc. Prof.;GI;

Simon Blatt;Assoc. Prof.;Mathematics;

A sequence of tuples with special characters as delimiters for aributes (;) and tuples
(newline), respectively.

8This is an example – there are many possible physical representations.
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The Logical Level – Example

What is a logical representation9 of ourMembers table?

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS
Simon Kirchgasser PhD Student AIHI
Roland Kwi Full Prof. AIHI
Bernd Resch Assoc. Prof. GI
Simon Bla Assoc. Prof. Math.

CREATE TABLE Members (

name VARCHAR(50) PRIMARY KEY,

employment VARCHAR(50),

department VARCHAR(100) REFERENCES Departments(name)

);

Our table consists of three aributes with type definitions (VARCHAR(n)), constraints
(PRIMARY KEY), and interrelationships (REFERENCES Departments(name)).

9Again, this is an example – there exist multiple dierent logical representations.
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The Logical Level – Example

What is a logical representation9 of ourMembers table?

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS
Simon Kirchgasser PhD Student AIHI
Roland Kwi Full Prof. AIHI
Bernd Resch Assoc. Prof. GI
Simon Bla Assoc. Prof. Math.

CREATE TABLE Members (

name VARCHAR(50) PRIMARY KEY,

employment VARCHAR(50),

department VARCHAR(100) REFERENCES Departments(name)

);

Our table consists of three aributes with type definitions (VARCHAR(n)), constraints
(PRIMARY KEY), and interrelationships (REFERENCES Departments(name)).

9Again, this is an example – there exist multiple dierent logical representations.
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The View Level – Example

What is a view of ourMembers table?

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS
Simon Kirchgasser PhD Student AIHI
Roland Kwi Full Prof. AIHI
Bernd Resch Assoc. Prof. GI
Simon Bla Assoc. Prof. Math.

name employment department
Tijn De Vos PhD Student CS
Simon Kirchgasser PhD Student AIHI

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS

Secretaries at the university may only have access to specific members depending on
their area of responsibility (PhD students) or ailiation (CS department).
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The View Level – Example

What is a view of ourMembers table?

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS
Simon Kirchgasser PhD Student AIHI
Roland Kwi Full Prof. AIHI
Bernd Resch Assoc. Prof. GI
Simon Bla Assoc. Prof. Math.

name employment department
Tijn De Vos PhD Student CS
Simon Kirchgasser PhD Student AIHI

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS

Secretaries at the university may only have access to specific members depending on
their area of responsibility (PhD students) or ailiation (CS department).
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Three Levels of Data Abstraction

User 1 User n

View 1 . . . View nView levelParts End user

Mapping between
view and logical level.

Logical levelLogical levelWhat Database administrator

Application developer

Mapping between logi-
cal and physical level.

Physical levelPhysical levelHow
Database developer

Database

Mappings are used to link the abstraction levels.
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Instance vs. Schema Revisited

A schema describes the overall structure of the data (oen using tables) and is typically
stable (i.e., rarely modified).

An instance is the information that is stored at a particular point in time (e.g., of a single
tuple, a table, or an entire database). The instance may be frequently subject to changes.

Each level has its own schema with the logical schema being the most important one.

A valid instance satisfies all structural requirements and consistency constraints.
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Instance vs. Schema Revisited

Schemata:

Members:

name employment department

Departments:

name location year

Instances:

Members:

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
. . . . . . . . .

Departments:

name location year
CS Science City Salzburg 2022
AIHI Science City Salzburg 2022
. . . . . . . . .
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Data Independence

Logical Data Independence: The ability to update the logical schema
transparently, i.e., no change on the view level is required.

Physical Data Independence: The ability to update the physical schema
transparently, i.e., no change on the logical level is required.

Benefits:

• Only the mapping between the levels need to be adapted.

• No change in the application required (it operates on the views).
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(Declarative)ery Processing

Example SQLery (+ Result):

SELECT name FROM Members

WHERE employment = 'Postdoc.';
⇒

?
⇒

name
Daniel Kocher
Thomas Hüer

ery processing describes the process of extracting data from a database. In other
words: What happens in a database when we issue a (declarative) query?
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(Declarative)ery Processing

SELECT name FROM Members

WHERE employment = 'Postdoc.';
⇒

?
⇒

name
Daniel Kocher
Thomas Hüer

query parser and
translator

relational
algebra

expression

optimizer
execution

plan
evaluation
engine

query
output

datastatistics
about data
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(Declarative)ery Processing

On a high level, three major components are used to process a query:

1. Parser: Translates the query into an internal representation.

2. Optimizer: Chooses the most eicient way to evaluate the query.

3. Evaluation Engine: Executes the evaluation plan and returns the result.

query parser and
translator

relational
algebra

expression

optimizer
execution

plan
evaluation
engine

query
output

datastatistics
about data
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(Declarative)ery Processing

An evaluation plan typically consists of multiple operation. Optimization is done based
on the estimated costs of all involved operations.

For a given query, multiple valid evaluation plans may exist and must be compared
eiciently (with respect to their estimated costs).

The estimated costs considermany dierent factors including access to hard disk,
time to execute the query on the CPU, or network communication costs.
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Data Models



Types of Data Models

3 types of data models that are somewhat related to the 3 levels of data abstraction.

Conceptual data models: High level, i.e., only the schema is reflected but no instances.
Related to the view level. Examples include Entity-Relationship (ER) and Unified
Modeling Language (UML) models.

Logical data models: Depicts the instances and can be used to implement a database.
Related to the logical level. Examples include the relational and the object-based models.

Physical data models: Low level, i.e., as close to the physical storage as possible.
Related to the physical level and is typically system-specific.
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Types of Data Models – Examples

Logical Model (Relational):

Members:

name employment department
Daniel Kocher Postdoc. CS
Thomas Hüer Postdoc. CS
. . . . . . . . .

Departments:

name location year
CS Science City Salzburg 2022
AIHI Science City Salzburg 2022
. . . . . . . . .

Conceptual Model (ER):

Members

nameemployment

Departments

name location

yearworks for
n 1

59



Relational Data Model

Intuitive and widely used model. An example of a record-based model.

A collection of relations (tables) stores records of data as rows. A tuple (row) is
an entity of the real world, an aribute (column) is a property of an entity. The
structure of a record is fixed.

A relation has a name and a set of (unique) aributes. An aribute has a name and
a predefined domain, i.e., values originate from a specific domain.

Tables are filled row-wise and a row represents the state of an entity.
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Relational Data Model

The set of columns is called relation schema, and the set of relation schemata over all
tables is called the database schema.

Intrarelational constraints: Dependencies inside a single table, Σi

Interrelational constraints: Dependencies between dierent tables, Σ

Relation schema: Ri = ({Ai1,Ai2, . . . ,Aim} , Σi)10.

Database schema: D = ({R1, R2, . . . , Rn} , Σ).

10Aij . . .Name of the j-th aribute (column) of the i-th relation (table).
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Relational Data Model – Example

Members:

name employment year of empl. department
Daniel Kocher Postdoc. 2021 CS
Thomas Hüer Postdoc. 2022 CS
. . . . . . . . . . . .

Departments:

name location year
CS Science City Salzburg 2022
AIHI Science City Salzburg 2022
. . . . . . . . .

Relation schemata:
Members = ({name, employment, year of empl., department} , {name, year of empl. → employment})

Departments = ({name, location, year} , {name, year → location})

Database schema:
DASFaculty = ({Members,Departments} , {Members.department ⊆ Departments.name})
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Relational Data Model

Normalization: Reduce anomalies (which lead to inconsistencies) by distributing
aributes among tables and linking them using foreign key constraints.

Referential Integrity: Values of foreign keys exist as values in the referenced table, i.e.,
the referenced table contains at least one tuple that holds the value of the foreign key.
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Relational Data Model – Example11

Members:

id name employment year of empl. department
1 Daniel Kocher Postdoc. 2021 CS
2 Thomas Hüer Postdoc. 2022 CS
3 Tijn De Vos PhD Student 2020 CS
4 Christoph Kirsch Full Prof. 1995 CS
5 Simon Kirchgasser PhD Student 2016 AIHI
6 Roland Kwi Full Prof. 2019 AIHI
7 Bernd Resch Assoc. Prof. 2018 GI
8 Simon Bla Assoc. Prof. 2017 Math.

Departments:

id name location year
201 CS Science City Salzburg 2022
202 AIHI Science City Salzburg 2022
203 GI Science City Salzburg 2010
204 Math. NAWI 1967

11This is an example with synthetic data
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Relational Data Model – Example

Members:

id name employment year of empl. department
1 Daniel Kocher Postdoc. 2021 CS
2 Thomas Hüer Postdoc. 2022 CS
3 Tijn De Vos PhD Student 2020 CS
4 Christoph Kirsch Full Prof. 1995 CS
5 Simon Kirchgasser PhD Student 2016 AIHI
6 Roland Kwi Full Prof. 2019 AIHI
7 Bernd Resch Assoc. Prof. 2018 GI
8 Simon Bla Assoc. Prof. 2017 Math.

Departments:

id name location-id year
201 CS 402 2022
202 AIHI 402 2022
203 GI 402 2010
204 Math. 403 1967

Locations:

id name
402 Science City Salzburg
403 NAWI
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Relational Data Model

Drawbacks:

• Relations may not be optimal to represent the data.

• Everything is a relation (semantic overloading).

• Homogeneous structure of data.

• Limited flexibility and data types.

Drawbacks and new challenges gave rise to non-relational data models.
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Object-Based Data Model

Many programming languages are object-oriented, i.e., based on the concept of objects.

Objects contain data and provide functionality, and interact with each other (e.g., like
human beings in the real world).

Example Objects:
Person
- name: String
- birthyear: Integer
talkTo(Person p)

Member
- employment: String
- year of empl.: Integer
works()

Department
- name: String
- location: String
- year: Integer
employs(Member m)

* *
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Object-Based Data Model

Three Options:

1. Object-relational data model: Extends relational data model with
object-oriented features.

2. Object-relational mapping (ORM):Maps objects to tuples in the relational
model and handles the translation.

3. Object-oriented data model: Implements an object-based data model natively.
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Key-Value Data Model

Prototype of a schemaless model where each tuple is a pair of two strings (k, v). k is a
unique key that is associated with an arbitrary value v .

Data are accessed using the key and values are not interpreted by any means.
Example operations:

• put(k, v): Inserts a new pair key-value pairs (k, v)
• get(k): Retrieves the value associated with k.

• delete(k): Deletes the tuple(s) associated with k.

Caveat: In programming oen referred to as hash table or dictionary (Python).
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Key-Value Data Model

Only keys can be searched, values cannot be searched. Combinations of values must
be done by the application that accesses the data.

Easy to distribute ⇒ Good for data-intensive applications.

Example Key-Value Store:

UserID Shopping Cart
1002 → Shoe, Jordans, red, 37 # Computer game “Diablo”, Blizzard # Headset, Razer, Kraken Kiy
1003 → Wilson American Football, NFL, Replica # Hail Mary, Gloves Receiver, 2.0, Black & White
1004 → Book “Database System Concepts”, 7th Edition, Silberschatz
. . . . . .
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Document-Based Data Model

A document stores data in a semi-structured and nested text format (e.g., XML or JSON).

Each document has a unique identifier, but the value is a document structured in a
specific format that is interpretable (as opposed to a key-value store).

JavaScript Object Notation (JSON): Human-readable text format for data structures.
A JSON document consists of possibly nested key-value pairs.
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Document-Based Data Model

A JSON document consists of a JSON object, which is enclosed by curly braces, { . . . }.
Inside, keys and the corresponding values are separated by a colon, and a value can be a
JSON object itself.

Example Document Store:

UserID Shopping Cart
1002 → {

“1”: { “type”: “Shoe”, “name”: “Jordans”, “color”: “red”, “size”: 37 },
“2”: { “type”: “Computer game”, “name”: “Diablo”, “publisher”: “Blizzard” },
“3”: { “gear”: “Headset”, “producer”: “Razer”, “model”: “Kraken Kiy” }

}
. . . . . .
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Graph-Based Data Model

Graphs: Informally, graphs are structures that represent data (as nodes) and their
interrelation (as edges in between) by design. Both nodes and edges may carry
information. Eicient graph operations are supported natively.

Data and their relationship are distinct naturally (cf. semantic overloading of the
relational data model).

Example Graph:

Type: Member
Name: Daniel

Type: Member
Name: Thomas

Type: Member
Name: Prof. Kirsch

knows

knows

knows

employs
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Graph-Based Data Model

Property Graph Model: Multiple types for nodes/edges (multi-relational), each of
which may contain multiple properties (aributes) as name-value pairs (similar to
key-value pairs).

Example Property Graph:

Type: Member
Name: Daniel

Type: Member
Name: Thomas

Type: Member
Name: Prof. Kirsch

Type: knows
Year: 2014

Type: knows

Type: knows
Year: 2002

Type: employs
Year: 2022
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Extensible Record Data Model

Also referred to as wide column data model and a generalization of Google’s
BigTable12 system.

Table cells are represented as (2-dimensional) key-value pairs, with row (unique) and
column (repeatedly) being the keys.

Example: Access table cell (4:employment).
id name employment year of empl. department
1 Daniel Kocher Postdoc 2022 CS
2 Thomas Hüer Postdoc NULL CS
3 Tijn De Vos PhD Student 2020 CS
4 Christoph Kirsch Full Prof. 1995 CS
5 Simon Kirchgasser PhD Student 2016 AIHI
. . . . . . . . . . . . . . .

12Chang et al. Bigtable: A Distributed Storage System for Structured Data. OSDI, 2006.
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Extensible Record Data Model

Also referred to as wide column data model and a generalization of Google’s
BigTable12 system.

Table cells are represented as (2-dimensional) key-value pairs, with row (unique) and
column (repeatedly) being the keys.

Example: Access table cell (4:employment).
id name employment year of empl. department
1 Daniel Kocher Postdoc 2022 CS
2 Thomas Hüer Postdoc NULL CS
3 Tijn De Vos PhD Student 2020 CS
4 Christoph Kirsch Full Prof. 1995 CS
5 Simon Kirchgasser PhD Student 2016 AIHI
. . . . . . . . . . . . . . .

12Chang et al. Bigtable: A Distributed Storage System for Structured Data. OSDI, 2006.
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Extensible Record Data Model

id name employment year of empl. department
1 Daniel Kocher Postdoc 2022 CS
2 Thomas Hüer Postdoc NULL CS
3 Tijn De Vos PhD Student 2020 CS
4 Christoph Kirsch Full Prof. 1995 CS
5 Simon Kirchgasser PhD Student 2016 AIHI
. . . . . . . . . . . . . . .

considered as

1
name
Daniel Kocher

employment
Postdoc

year of empl.
2022

department
CS

2
name
Thomas Hüer

employment
Postdoc

department
CS

. . .
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Extensible Record Data Model

Column Families: Group columns that are accessed simultaneously (at the same time).

1
name
Daniel Kocher

employment
Postdoc

year of empl.
2022

department
CS

2
name
Thomas Hüer

employment
Postdoc

department
CS

. . .

PersonInfo:

1
name
Daniel Kocher

department
CS

2
name
Thomas Hüer

department
CS

. . .

EmploymentInfo:

1
employment
Postdoc

year of empl.
2022

2
employment
Postdoc

. . .
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Extensible Record Data Model

Encourages de-normalization (redundancy) for higher performance and provides
more flexibility, i.e., every row may be composed of dierent columns.

The query workload defines how the data is modeled⇒ Know your workload.

Full key access to a value: (<rowid>:<columnfamily>:<columnname>).
For example: (2:EmploymentInfo:employment) returns Postdoc.
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Array-Based Data Model

Complex structures (like 2-dimensional satellite or n-dimensional sensor data) are
organized along multiple dimensions.

An array cell contains a tuple of a specific length and a tuple element may contain a
value or another array (allowing arbitrary nestings).

Specialized array functionality is natively supported (e.g., joins and aggregations).
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Workloads & Challenges



Outline

• New data management challenges.

• Basics of distributed database systems (also compared to parallel DBS).

• Consistency guarantees: ACID vs. BASE.

• The CAP Theorem.

• Workloads: OLTP vs. OLAP, batch vs. stream processing.
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New Data Management Challenges

• Data may be organized in complex structures (e.g., graphs).

• Data may be schemaless (e.g., not comply to a fixed schema).

• Data may be sparse (e.g., values may be non-existent).

• Data or schema may be constantly changing (e.g., schema evolution).

• Data may be distributed over multiple machines.
• Access must be transparent (i.e., user need not know where data resides).
• Systems must scale horizontally (i.e., new machines come and go).
• Systems must cope with large data volumes.
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New Data Management Challenges

NoSQL (Not Only SQL):

• Class of non-relational DBSs.

• Weaker consistency guarantees (e.g., BASE13)

• Support for schema independence.

• Highly scalable.

NewSQL:

• Class of relational DBSs.

• Aim to
• Provide NoSQL-like scalability (for OLTP9 workloads).
• Retain strong consistency guarantees like RDBMS (e.g., ACID9).

13We will cover this term subsequently.
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Parallel Database Systems

Parallel database management systems (PDBMSs) have multiple processors and hard
disks that are connected via a fast interconnection.

Performance characteristics:

• Throughput: Number of tasks (e.g., queries) that can be completed in a given time
frame. Example: eries per seconds.

• Response time: Time it takes to complete a single task (e.g., query).
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Parallel Database System Architectures

Shared memory DBMSs have many processors and disks that share a common
memory (typically via a bus).

+ Eicient communication between
processors (< 1𝜇s).

- Limited scalability (≤ 64 processors;
interconnection to memory becomes the
boleneck).

P

P

P

P

P

M

P . . . processor, M . . .memory, . . . disks.
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Parallel Database System Architectures

Shared disk DBMSs have many processors (with isolated memory) that share all disks
(typically via a bus).

+ Scale to a larger number of processors.

- Communication between processors is
slower (ms; boleneck now at
interconnection to disks).

P

P

P

P

P

M

M

M

M

M

P . . . processor, M . . .memory, . . . disks.
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Parallel Database System Architectures

Shared nothing DBMSs have many processors with isolated memory and disk(s). The
combination of a processor with isolated memory and disk(s) is also referred to as node.

+ Scale to thousands of processors.

- Communication between processors is
slow; access to non-local disk data is slow.

P

P

P

P

P

M

M

M

M

M

P . . . processor, M . . .memory, . . . disks.
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Distributed Database Systems

Distributed database management systems (DDBMSs) are DBMSs that operate on
multiple machines that are located at geographically separated sites14.

Network

Site A

Site B

Site C

Machine 1 Machine 2

Machine 3 Machine 4

14A site can be imagined as a data center with multiple machines. 87



DDBMS vs. Shared-Nothing PDBMS

• Sites within a DDBMS are typically
• geograpically separated (i.e., not a single data center)
⇒ lower bandwidth (less throughput), higher latency (higher response time).

• separately administered (i.e., retain some degree of autonomy).

• PDBMS can deal with node failures, whereas DDBMS can deal with failures of
entire sites (e.g., due to natural disasters).

• DDBMS distinguish between local and global transactions.
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Homogeneous vs. Heterogeneous DDBMS

A DDBMS is called homogeneous if the nodes share a common global database
schema, perform the same tasks (e.g., run the same soware), and actively cooperate in
processing. Goal: View of a single database.

A DDBMS is called heterogeneous if the nodes have dierent schemata, perform
dierent tasks (e.g., run dierent soware), and may not be aware of other nodes.
Goal: Integrate dierent databases.
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Transactions

A transaction refers to a sequence of operations that accesses and (possibly) updates
various data items. A transaction transitions the database from one consistent state
into another consistent state.

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

account balance
A 800
B 2000

→ account balance
A 300
B 2500
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Transactions

A DBMS must deal with two major issues:

• System crash: Soware or hardware failures.

• Concurrency: Many dierent users may work at the same time (i.e., multiple
transactions are executed).

A DBS implements particular consistency guarantees. Most relational DBMS manage
transactions according to the so-called ACID properties: Atomicity, Consistency,
Isolation, and Durability.

The ACID properties are considered strong consistency guarantees.
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ACID Properties

Atomicity: Execute all operations of a transaction or none of them (“all or nothing”).

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

account balance
A 800
B 2000

What happens if the system crashes aer step 4?
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ACID Properties

Atomicity: Execute all operations of a transaction or none of them (“all or nothing”).

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

account balance
A 800
B 2000

What happens if the system crashes aer step 4?
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ACID Properties

Consistency: Aer a transaction, all values in the database are correct (i.e., consistency
is preserved).

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

account balance
A 800
B 2000

→ account balance
A 300
B 2500

What is a consistency constraint in the above example?

A + B is the same before and
aer the transaction.
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ACID Properties

Consistency: Aer a transaction, all values in the database are correct (i.e., consistency
is preserved).

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

account balance
A 800
B 2000

→ account balance
A 300
B 2500

What is a consistency constraint in the above example? A + B is the same before and
aer the transaction.

93



ACID Properties

Isolation: A transaction must be unaware of other simultaneously executing
transactions (otherwise an inconsistent state may be encountered)15.

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

What does BEGIN; READ(A); READ(B); print(A + B); COMMIT in between steps 4 and 5 print?
15For every pair of transactions Ti and Tj , it appears to Ti that either Tj finished execution before Ti started or Tj started execution before Ti finished.
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ACID Properties

Durability: Successful transaction results persist in the database, even if the system
crashes.

Example: Transfer EUR 500 from bank account A to bank account B.

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

If the system crashes and the EUR 500 are lost, nobody is happy.
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Transactions in PostgreSQL
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Transaction Management

Programmers must ensure to properly define the transactions to preserve consistency.

A DBS typically includes a so-called transaction manager, which ensures that the
transactions comply to the consistency guarantees (e.g., the ACID properties).

A transaction has commied if it completes successfully. Otherwise, the transaction is
aborted. Undoing the changes of an aborted transaction is referred to as rollback.
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Transaction Management – Atomicity

Before the DBS changes the database, it writes some information (transaction identifier,
old/new values) about the changes into a so-called log file.

Example: Transfer EUR 500 from bank account A (EUR 800) to account B (EUR 2,000).

Transaction T1:

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

---[ CRASH ]---

7. WRITE(B)

8. COMMIT

Pseudo log file:

T1: OLD(A=800), NEW(A=300)

Database:

UPDATE(A=300)

ROLLBACK T1 on restart
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Transaction Management – Isolation

Strict serial execution of concurrent transactions guarantees isolation, but severely
limits the performance.

A concurrency-control scheme ensures that transactions can execute concurrently
(i.e., their operations can be interleaved). Interleaving the operations of a transaction is
called schedule and may result in a correct database state, or not!

A concurrent schedule is serializable if an equivalent serial schedule exists, i.e., the
outcome of executing the transactions concurrently is the same as if they would have
been executed serially.
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Transaction Management – Isolation (Lock-Based)

Example: Transfer EUR 500 from bank account A (EUR 800) to account B (EUR 2,000).

Transaction T1:

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

Transaction T2:

1. BEGIN

2. READ(A)

3. A = A + 1,000

4. WRITE(A)

5. COMMIT

Database:

LOCK(A, T1) OK

UPDATE(A=300)

LOCK(A, T2) Conflict

LOCK(B, T1) OK

UNLOCK(A, T1), UNLOCK(B, T1) OK
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Transaction Management – Durability

Updating the persistent data may be postponed to improve performance, i.e., the data is
provisionally updated in main memory (RAM). Data in main memory is volatile, i.e., it is
lost on system restart.

Excursion: Nowadays, data can be considerd persistent if it is wrien to hard disk.
DBMSs aim to be eicient/fast, thus they try to avoid or postpone expensive/slow
operations like accesses to hard disk. Multiple data structures are maintained in main
memory, which are commly referred to as buers. The content of the buers is only
wrien to disk if inevitable.
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Memory Hierarchy

Magnetic band

Optical disk (CD, DVD, . . . )

Magnetic disk (HDD)

Flash memory (SSD)

Main memory (RAM)

Cache

Registers < 1ns

> 1ns

≈ 100ns

≈ 100𝝁s

≈ 10ms (10,000,000ns)

> 1s

factor: 105

Brain

Room

City

Pluto
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Transaction Management – Durability

Example: Transfer EUR 500 from bank account A (EUR 800) to account B (EUR 2,000).

Transaction T1:

1. BEGIN

2. READ(A)

3. A = A - 500

4. WRITE(A)

5. READ(B)

6. B = B + 500

7. WRITE(B)

8. COMMIT

Pseudo log file:

T1: OLD(A=800), NEW(A=300)

T1: OLD(B=2,000), NEW(B=2,500)

Database:

postponed UPDATE(A=300)

postponed UPDATE(B=2,500)

---[ CRASH ]---
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PSQL Transactions in Action



Distributed Transaction Management

A DDBMS must consider additional aspects:

• Distributed data storage (replication and fragmentation).

• Distributed transactions (local and global).
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Distributed Data Storage

Assume the tables of our faculty database and the relational data model.

Members:

name employment department
Daniel Kocher Postdoc CS
Thomas Hüer Postdoc CS
. . . . . . . . .

Departments:

name location year
CS Science City Salzburg 2022
AIHI Science City Salzburg 2022
. . . . . . . . .

Network

N1

N2

N3

M

D

What if N1 gets disconnected?
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Distributed Data Storage – Replication

Replication: Data are replicated among multiple sites, i.e., a copy (replica) of the same
data exists in dierent sites (intentional redundancy).

Example Replication:

Network

N1

N2

N3

M D

M D

M
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Distributed Data Storage – Replication

Full replication: A copy of a relation is stored at all sites.

Network

N1

N2

N3

M D

M D

M D

Fully replicated database: Every site contains a copy of the entire database.

Pros: Higher availability and performance, reduced data transfer.
Cons: Increased update costs and higher complexity of concurrency control.

108



Replication in MongoDB (Document-Based)

109



MongoDB Replication in Action



Distributed Data Storage – Fragmentation

Fragmentation: Data are partitioned into fragements stored at distinct sites, i.e., a
specific part of the data is stored at a site.

Horizontal fragmentation: Relation is split row- or tuple-wise, and each row/tuple
resides at a separate site. Allows parallel processing on fragments of a relation.

Vertical fragmentation: Relation is split into smaller subschemata (based on the
columns/aributes), and each subschema resides at a separate site. Allows parallel
processing on a relation.
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Example Horizontal Fragmentation

Members M1:

name employment department
Daniel Kocher Postdoc CS
Thomas Hüer Postdoc CS

Departments D1:

name location year
CS Science City Salzburg 2022
AIHI Science City Salzburg 2022

Members M2:

name employment department
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS

Departments D2:

name location year
GI Science City Salzburg 2010
Math. NAWI 1967

Members M3:

name employment department
Simon Kirchgasser PhD Student AIHI
Roland Kwi Full Prof. AIHI
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Example Horizontal Fragmentation

Network

N1

N2

N3

M1 D1

M2 D2

M3

Members M1:

name employment department
Daniel Kocher Postdoc CS
Thomas Hüer Postdoc CS

Members M2:

name employment department
Tijn De Vos PhD Student CS
Christoph Kirsch Full Prof. CS

Members M3:

name employment department
Simon Kirchg. PhD Student AIHI
Roland Kwi Full Prof AIHI
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Distributed Data Storage – Fragmentation

Horizontal and vertical fragmentation can bemixed. In any case, the fragmented data
must be reconstructable.

Pros: Higher performance (parallel processing), beer locality (reduced data transfer).
Cons: Increased costs on site failure and if data is retrieved from dierent sites.
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Distributed Data Storage – Replication, Fragmentation, and Transparency

Fragmentation and Replication can be combined:

• Relation is partitioned into several fragments.

• System maintains several identical replicas of each such fragment.

Data Transparency: User may be unaware of how and where data items are stored.

• Fragmentation transparency

• Replication transparency

• Location transparency
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Distributed Transactions

Local transactions access/update data at only one (local) site. A local transaction
manager enforces the ACID properties.

Global transactions access/update data at multiple (local) sites. Local subtransaction
are executed at each site. Enforcing the ACID properties is much more complex.

Each site has a local transaction manager and a transaction coordinator.
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Distributed Transactions

The local transaction manager ensures that the ACID properties hold for local
transactions and maintains the local log files.

The transaction coordinator starts transactions that are initiated at one site,
distributes the subtransactions to other sites, and ensures that a transaction either
executes at all sites or at none.

Network

N1

N2

N3

TC1 TM1

TC2 TM2

TC3 TM3
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Distributed Transactions – Commit Protocols

Required because we must ensure atomicity across all sites, e.g., we are not allowed to
commit a transaction at node N1 but abort the same transaction at node N2.

List of Protocols:

• Two-Phase Commit (2PC; used in practice).

• Three-Phase Commit (3PC; solves issues of 2PC but impracticable).

• Persistent Messaging (PM).

118



Distributed Transactions – 2PC in a Nutshell

Transaction T is initiated at node Ni with transaction coordinator TCi .

Phase 1: TCi “asks” other participants to prepare to commit (and logs it beforehand).
Each transaction manager determines if it can commit, logs it, and “reports” it to TCi .

Phase 2: If TCi receives a single abort message, then all participants are informed to
abort T. Otherwise, all participants are notified to commit T . Prior to that, TCi logs
the decision locally. The involved transaction managers comply to the decision.
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Consistency

Dierent notions of consistency to specify desired properties in a DDBMS. Ideally, all
updates appear immediately at all sites in the same order (illusion of a single data copy).

Strong consistency refers to this ideal scenario, but this is oen expensive (or even
impracticable). Weak consistency relaxes the consistency constraints to improve the
performance or the availability of a DDBMS.
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Availability

High Availability: A DDBMS with extremely low downtime (about 99.99% available).

In large systems, a failure happens frequently (nodes may be down or the network may
partition).

Trade (or sacrifice) consistency in order to achieve high availability.
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Brewer’s CAP Theorem

A distributed database system has three properties:

• Consistency: All replicated copies are in the same state.

• Availability: System runs even in case of failures due to replication.

• Partition-tolerance: System runs even if the network is partitioned.

Network partition: Network decomposes into multiple parts/subsystems that cannot
reach one another.

CAP Theorem: You can have at most two of the three properties. Precisely, in case of
an error, one of the 3 properties Consistency, Availability, or Partition-tolerance is lost.
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Brewer’s CAP Theorem

A

C P

In presence of a network failure:

Pick two
CA AP

CP
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Brewer’s CAP Theorem

AP Systems: Sacrifice consistency in case of a network Partition, but stay Available.
Inconsistencies must be resolved once the network partition is resolved.

CP Systems: Sacrifice availability in case of a network Partition, but maintain
Consistency.

CA Systems: “Ideal” Consistency and Availability. No availability and consistency
guarantees in case of a network partition.

Reality: AP or CP

• CP and CA systems are similar since CA systems are unavailable if the network partitions.

• Network partitions are rare but unpredictable.

• estion: How does the DDBMS trade Consistency and Availability if network partitions?
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Abadi’s PACELC Theorem

PAC stands for CAP (rewrien) and covers the DDBMS properties in case of an error.
ELC stands for Else (DDBMS is running without error): How does the DDBMS trade
Latency and Consistency?

PACELC 161718 extends CAP and considers the tradeo between Latency and
Consistency that a DDBMS has to make when it operates regularly.

Even if a DDBMS operates without failure, we have a tradeo between Latency and
Consistency. This is due to data replication that is a prerequisite for high availability.

16https://en.wikipedia.org/wiki/PACELC theorem
17http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
18http://www.cs.umd.edu/∼abadi/papers/abadi-pacelc.pdf
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The BASE Properties

BASE is an alternative consistency model that is not as strict as the ACID properties
and favors availability over consistency.

Basically Available: The system appears to work most of the time, i.e., reads/writes
should be allowed even if the network partitions, but without consistency guarantee.

So State: The state of the database may not be precisely defined all the time, i.e.,
replicas do not have to be mutually consistent (e.g., in case of writes).

Eventually Consistent: Once the network partitioning is resolved, the states of all
replicas converge, i.e., all replicas become consistent eventually (i.e., over time).
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Eventual Consistency

No new updates ⇒Writes are propagated to all replicas and all replicas converge
towards a common state.

Inconsistent replicas must be identified because two replicas may be updated
independently (e.g., version-vector scheme).

Inconsistent updates may need to be merged (e.g., in the worst case, human
interaction is required – comparable to a merge conflict in git).
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Workloads

With regard to database systems, a workload is a set of queries/updates that reflects a
typical usage paern (load).

Dierent database systems perform beer/worse on particular workloads.

Transaction Processing Performance Council (TPC): An independent consortium
that releases standardized benchmarks for various workloads, the TPC benchmarks 19.

19http://www.tpc.org/
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OLTP Workloads

Online Transaction Processing (OLTP): Short-lived read/write transactions with
a small footprint (i.e., only a small portion of the data is touched). Many transactions
must be processed as fast as possible (high throughput, low response time). The TPC-C
benchmark provides typical OLTP workloads.

OLTP system

1s

T1
T2
T3
T4

Tn−2
Tn−1
Tn

. . .

ok
ok

ok

ok

123,456 trans./sec.

Throughput:
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OLAPWorkloads

Online Analytical Processing (OLAP): Long-running read-only queries that
exploratory analyze a large portion of the overall data (to support decisions). This oen
involves complex join operations and the main focus is low response time. The
TPC-DS benchmark provides typical OLAP workloads; “Data Warehouse”.

OLAP system

T1

T2

T3

Tm−1

Tm

. . .

123ms

4,5678ms

357ms

1,987ms

9ms

Response time:
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Workloads – Batches vs. Streams

Batch Workloads: A batch is a large but bounded static dataset. Before data can be
processed, all data must be completely available (e.g., on hard disk).

StreamWorkloads: A stream is an unbounded evolving dataset. Data items are
processed as they stream into the system one aer another, i.e., the data does not have
to be completely available.
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Systems Potpourri



Continuous Development

Picture taken from Davoudian et al. A Survey on NoSQL Stores. ACM Computing Surveys, 2018.
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Continuous Development

In-Memory Database Systems: Relies on main memory (RAM) for storing the
data rather than hard disks (HDDs) or SSDs. Very low response times
(microseconds) but must deal with durability (logs).

Database as a Service (DBaaS): A cloud-based platform (service) that provides
computing infrastructure, data storage ,and database functionality in the cloud. The
clients (you) do not have to set up their own database system on their own hardware,
but just access and use a database that runs in the cloud.
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Key-Value Stores – Redis

The REmote DIctionary Server 20 is an in-memory NoSQL database system based on
the key-value data model that supports durability (i.e., data can be made persistent).

• Redis is a CP system.

• In-memory, i.e., very fast (avg. read/write performance: < 1ms).

• Collection of useful, high-performance data structures (lists, sets, bitmaps, . . . ).

• Replication and persistence support.

• Supports many programming languages incl. Java, Python, C/C++, and JavaScript.

20https://redis.io
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Key-Value Stores – Redis

Use Case: Cache between application and database system – Cache Hit.

Redis as cache

DBS

Application

1. Data request 2. Hit: Read from cache
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Key-Value Stores – Redis

Use Case: Cache between application and database system – Cache Miss.

Redis as cache

DBS

Application

1. Data request

2. Miss: Read from DB 3. Update cache

4. Serve request
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Key-Value Stores – Other Systems

Riak KV 21 is a distributed persistent key-value store with support for advanced data
types (e.g., JSON). It is inspired by Amazon’s DynamoDB 22 and provides high
availability (i.e., is an AP system).

Memcached 23 (“Mem-Cash-Dee”) is a distributed in-memory key-value store with a
performance similar to Redis. However, Memcached supports only the simple
key-value data model and has no support for durability. Not a database system!

21https://riak.com/products/riak-kv/
22https://aws.amazon.com/dynamodb/
23https://memcached.org/
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Document Stores – MongoDB

MongoDB 24 is a distributed NoSQL database system based on the document-oriented
data model with a focus on consistency, high read availability, and horizontal scalability.

• MongoDB is a CP system (single leader based system).

• Uses JSON as document format (specifically, a binary JSON format called BSON).

• Shared-nothing system architecture.

• JSON-based query language (limited support for joins as we know it).

• Replication and sharding (aka fragmentation) support through replica sets.

24https://www.mongodb.com/
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Document Stores – Other Systems

Apache CouchDB 25 is a distributed document store with support formaster-master
replication 26 and a conflict resolution protocol. It is an AP system that uses the plain
JSON format.

Couchbase 27 is a distributed document store with a built-in in-memory cache
(memcached) and an SQL-like query language (N1QL). It uses CouchDB as back end.

25https://couchdb.apache.org/
26https://en.wikipedia.org/wiki/Multi-master replication
27https://www.couchbase.com/
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HandsOn: N1QL 28

28https://query-tutorial.couchbase.com/

https://query-tutorial.couchbase.com/


Graph Stores – Neo4J

Neo4j 29 is a NoSQL database system based on the graph data model with ACID
guarantees. Neo4j is a native graph store.

• Neo4j is a CP system (as of version 3.5).

• Shared-nothing system architecture.

• Set of core servers (serve write+read) and many read replicas.

• Emphasis on read availability (full replication).

• SQL-inspired query language (Cypher) to describe graph paerns (ASCII art).

29https://neo4j.com/
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HandsOn: Neo4j



Graph Stores – Neo4j

https://neo4j.com/docs/operations-manual/current/clustering/introduction/.
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Graph Stores – Other Systems

Tigergraph 30 is a distributed native graph store that supports parallel computation and
advanced analytics. It has its own query language GSQL.

ArangoDB 31 is a multi-model database system that supports the graph-based model in
JSON format.

OrientDB 32 is another multi-model database system that supports the graph-based
model. It uses an SQL-like syntax that is extended for graphs.

30https://www.tigergraph.com/
31https://www.arangodb.com/
32https://orientdb.org/
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Extensible Record Store – Apache Cassandra

Apache Cassandra 33 is a distributed NoSQL database system based on the extensible
record (or wide column) data model. It is a decentralized and “master-less” DDBMS that
supports eventual consistency.

• Apache Cassandra is an AP system (but can be configured as CP system).

• Shared-nothing system architecture.

• Support for nested column families (so-called super column families).

• The Cassandra query language (CQL) resembles SQL.

33https://cassandra.apache.org/
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Extensible Record Store – Apache Cassandra

Master-less architecture ⇒ No single point of failure.

Consistent Hashing (Token Ring)

1

25

34

0-19

20-39
40-59

60-79

80-99
Hash function h(.) determines node.

Data h(.) Node

Daniel Kocher Postdoc 18 1
Thomas Hüer Postdoc 21 2
Tijn De Vos PhD Student 67 4
Christoph Kirsch Full Prof. 70 4
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Extensible Record Store – Apache Cassandra
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Other Systems

• RDBMS: PostgreSQL 34, SQLite 35, Oracle 36, Microso SQL Server 37, . . .

• NewSQL Systems: CockroachDB 38, VoltDB 39, . . .

• In-Memory OTLP & OLAP Systems: HyPer 40, SAP Hana 41, . . .

• Cloud Services: Amazon DynamoDB 42, Snowflake Cloud Data Warehouse 43, . . .
34https://www.postgresql.org/
35https://www.sqlite.org/
36https://www.oracle.com/database/
37https://www.microsoft.com/en-us/sql-server/sql-server-2019
38https://www.cockroachlabs.com/
39https://www.voltdb.com/
40https://hyper-db.de/
41https://www.sap.com/products/hana.html
42https://aws.amazon.com/dynamodb/
43https://www.snowflake.com/
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Additional Material

Use the database of databases 44 for a first impression and cross references.

A 37-page survey on NoSQL database systems 45.

Books on NoSQL database systems 46 47.

44https://dbdb.io/
45Davoudian et al. A Survey on NoSQL Stores. ACM Computing Surveys, 2018.
46Sadalage and Fowler. NoSQL Distilled – A Brief Guide to the Emerging World of Polyglot Persistence.
Addison-Wesley, 2013.
47Redmond and Wilson. 7 Databases in 7 Weeks - A Guide to Modern Databases and the NoSQL Movement.
Pragmatic Bookshelf, 2012.
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