# Advanced Databases Concurrency Control

#### Nikolaus Augsten

nikolaus.augsten@plus.ac.at Department of Computer Science University of Salzburg



WS 2022/23

Version 18. Oktober 2022

Adapted from slides for textbook "Database System Concepts" by Silberschatz, Korth, Sudarshanhttp://codex.cs.yale.edu/avi/db-book/db6/slide-dir/index.html

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

1/70

Lock-Based Protocols

#### Outline

- Lock-Based Protocols
- 2 Timestamp-Based Protocols
- 3 Validation-Based Protocols
- 4 Multiversion Schemes
- 5 Insert, Delete, and Concurrency in Indexes
- 6 Weak Levels of Consistency

#### Outline

- Lock-Based Protocols
- 2 Timestamp-Based Protocols
- Validation-Based Protocols
- Multiversion Schemes
- 5 Insert, Delete, and Concurrency in Indexes
- 6 Weak Levels of Consistency

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

WS 2022/23

2/

Lock-Based Protocols

# Lock-Based Protocols/1

- A lock is a mechanism to control concurrent access to a data item.
- Data items can be locked in two modes:
  - exclusive (X) mode. Data item can be both read as well as written.
     X-lock is requested using lock-X instruction.
  - 2. shared (S) mode. Data item can only be read. S-lock is requested using lock-S instruction.
- Lock requests are made to the concurrency-control manager by the programmer. Transaction can proceed only after request is granted.

ADB - Concurrency Control

Augsten (Univ. Salzburg) ADB – Concurrency Control WS 2022/23 3/70 Augsten (Univ. Salzburg)

#### Lock-Based Protocols/2

• Lock-compatibility matrix

|   | S     | X     |
|---|-------|-------|
| S | true  | false |
| X | false | false |

- A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on the item by other transactions.
- Any number of transactions can hold shared locks on an item,
- If any transaction holds an exclusive lock on the item no other transaction may hold any lock on the item.
- If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other transactions have been released. The lock is then granted.

Augsten (Univ. Salzburg)

ADB – Concurrency Contro

WS 2022/23

5/7

Lock-Based Protocols

# The Two-Phase Locking Protocol/1

- This protocol ensures conflict-serializable schedules.
- Phase 1: Growing Phase
  - Transaction may obtain locks
  - Transaction may not release locks
- Phase 2: Shrinking Phase
  - Transaction may release locks
  - Transaction may not obtain locks
- The protocol assures serializability. It can be shown that the transactions can be serialized in the order of their lock points (i.e., the point where a transaction acquired its final lock).

Lock-Based Protocols

## Lock-Based Protocols/3

• Example of a transaction performing locking:

 $T_2: \quad \begin{aligned} & \textbf{lock-S}(A) \\ & & \textbf{read}(A) \\ & & \textbf{unlock}(A) \\ & & \textbf{lock-S}(B) \\ & & \textbf{read}(B) \\ & & \textbf{unlock}(B) \\ & & \textbf{display}(A+B) \end{aligned}$ 

- Locking as above is not sufficient to guarantee serializability if A and B get updated in-between the read of A and B, the displayed sum would be wrong.
- A locking protocol is a set of rules followed by all transactions while requesting and releasing locks. Locking protocols restrict the set of possible schedules.

Augsten (Univ. Salzburg)

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

6/7

Lock-Based Protocols

# The Two-Phase Locking Protocol/2

- There can be conflict serializable schedules that cannot be obtained if two-phase locking is used.
- However, in the absence of extra information (e.g., ordering of access to data), two-phase locking is needed for conflict serializability.

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

70

ADB - Concurrency Control

WS 2022/23

#### **Lock Conversions**

- Two-phase locking with lock conversions:
  - First Phase:
    - can acquire lock-S on item
    - can acquire lock-X on item
    - can convert lock-S to lock-X (upgrade)
  - Second Phase:
    - can release lock-S on item
    - can release lock-X on item
    - can convert lock-X to lock-S (downgrade)

Lock-Based Protocols

• This protocol assures serializability. But still relies on the programmer to insert the various locking instructions.

Augsten (Univ. Salzburg)

ADB – Concurrency Contro

WS 2022/23

9 / 70

#### Automatic Acquisition of Locks/2

```
write(D) is processed as:
```

```
if T_i has a lock-X on D then write(D)
```

#### else begin

if necessary wait until no other transaction has any lock on D

if  $T_i$  has a lock-S on D then

upgrade lock on D to lock-X

else

grant  $T_i$  a **lock-X** on D

end if

write(D)

end

end if

Augsten (Univ. Salzburg)

• All locks are released after commit or abort

ADB – Concurrency Control

WS 2022/23

11 / 70

Lock-Based Protocols

## Automatic Acquisition of Locks/1

- A transaction  $T_i$  issues the standard read/write instruction, without explicit locking calls.
- The operation read(D) is processed as:

```
if T_i has a lock on D then read(D) else begin if necessary wait until no other transaction has a lock-X on D grant T_i a lock-S on D read(D)
```

Augsten (Univ. Salzburg)

end if

ADB - Concurrency Control

Lock-Based Protocols

WS 2022/23

10 / 7

# Deadlocks/1

• Consider the partial schedule

$$T_3$$
  $T_4$ 
 $lock$ - $x(B)$ 
 $read(B)$ 
 $B := B - 50$ 
 $write(B)$ 
 $lock$ - $s(A)$ 
 $read(A)$ 
 $lock$ - $s(B)$ 

- Neither  $T_3$  nor  $T_4$  can make progress executing **lock-S**(B) causes  $T_4$  to wait for  $T_3$  to release its lock on B, while executing **lock-X**(A) causes  $T_3$  to wait for  $T_4$  to release its lock on A.
- Such a situation is called a deadlock.
- ullet To handle deadlock, one of  $T_3$  or  $T_4$  must be aborted and its locks released.

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

#### Deadlocks/2

- Two-phase locking does not ensure freedom from deadlocks.
- In addition to deadlocks, there is a possibility of starvation.
- Starvation occurs if the concurrency control manager is badly designed. For example:
  - A transaction may be waiting for an X-lock on an item, while a sequence of other transactions request and are granted an S-lock on the same item.
  - The same transaction is repeatedly rolled back due to deadlocks.
- Concurrency control manager can be designed to prevent starvation.

Augsten (Univ. Salzburg)

ADB - Concurrency Control

Lock-Based Protocols

WS 2022/23

Augsten (Univ. Salzburg)

ADB - Concurrency Control

Lock-Based Protocols

Lock-Based Protocols

• The potential for deadlock exists in most locking protocols.

• When a deadlock occurs there is a possibility of cascading rollbacks.

this, follow a modified protocol called strict two-phase locking — a

• Rigorous two-phase locking is even stricter. Here, all locks are held till

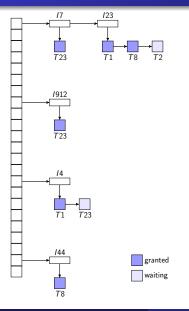
commit/abort. In this protocol transactions can be serialized in the

transaction must hold all its exclusive locks till it commits/aborts.

• Cascading roll-back is possible under two-phase locking. To avoid

Deadlocks are a necessary evil.

order in which they commit.


## Implementation of Locking

- A lock manager can be implemented as a separate process to which transactions send lock and unlock requests
- The lock manager replies to a lock request by sending a lock grant messages (or a message asking the transaction to roll back, in case of a deadlock)
- The requesting transaction waits until its request is answered
- The lock manager maintains a data-structure called a lock table to record granted locks and pending requests
- The lock table is usually implemented as an in-memory hash table indexed on the name of the data item being locked

Deadlocks/3

WS 2022/23

Lock Table



- Dark blue rectangles indicate granted locks; light blue indicate waiting requests
- Lock table also records the type of lock granted or requested
- New request is added to the end of the queue of requests for the data item, and granted if it is compatible with all earlier
- Unlock requests result in the request being deleted, and later requests are checked to see if they can now be granted
- If transaction aborts, all waiting or granted requests of the transaction are deleted
  - lock manager may keep a list of locks held by each transaction, to implement this efficiently

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

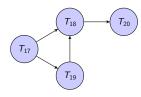
ADB - Concurrency Control

WS 2022/23

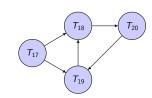
#### **Deadlock Handling**

- A system is deadlocked if there is a set of transactions such that every transaction in the set is waiting for another transaction in the set.
- How to deal with deadlocks?
  - 1. Detection and Recovery: Allow deadlocks to happen and recover from them.
  - Prevention: Ensure that the system will never enter into a deadlock state.

Augsten (Univ. Salzburg)


ADB – Concurrency Contro

WS 2022/23


17 / 70

Lock-Based Protocols

# Deadlock Detection/2



Wait-for graph without a cycle



Wait-for graph with a cycle

Lock-Based Protocols

#### Deadlock Detection/1

- Deadlocks can be described as a wait-for graph, which consists of a pair G = (V, E),
  - *V* is a set of vertices (all the transactions in the system)
  - E is a set of edges; each element is an ordered pair  $T_i \to T_i$ .
- If  $T_i o T_j$  is in E, then there is a directed edge from  $T_i$  to  $T_j$ , implying that  $T_i$  is waiting for  $T_i$  to release a data item.
- When  $T_i$  requests a data item currently being held by  $T_j$ , then the edge  $T_i \to T_j$  is inserted in the wait-for graph. This edge is removed only when  $T_i$  is no longer holding a data item needed by  $T_i$ .
- The system is in a deadlock state if and only if the wait-for graph has a cycle. Must invoke a deadlock-detection algorithm periodically to look for cycles.

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

18 /

Lock-Based Protocols

## Deadlock Recovery

- When deadlock is detected:
  - Pick a victim: Some transaction will have to be rolled back (made a victim) to break deadlock.
    - select that transaction as victim that will incur minimum cost
    - starvation happens if same transaction is always chosen as victim
    - include the number of rollbacks in the cost factor to avoid starvation
  - How far to roll back victim transaction?
    - total rollback: abort the transaction and then restart it
    - more efficient to roll back transaction only as far as necessary to break deadlock

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2022/23 19 / 70 Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2022/23 20 / 70

#### Deadlock Prevention Strategies/1

1. Predeclaration: Require that each transaction locks all its data items before it begins execution.

#### 2. Lock Order:

- Impose a (partial) order on all data items. Transaction can lock only in the specified order.
- Works also with 2PL if data items are always locked in ascending order.
  - easy to implement on top of existing 2PL implementation
  - problem: need to know data items to be locked upfront

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

21 / 70

21 / 70

#### Lock-Based Protocols

# Deadlock Prevention Strategies/3

- Wait-Die: non-preemptive
  - older transaction may wait for younger one to release data item (older means smaller timestamp).
  - Younger transactions never wait for older ones; they are rolled back instead
- Wound-Wait: preemptive
  - older transaction wounds (forces rollback) younger transaction instead of waiting for it.
  - Younger transactions may wait for older ones.
- Both in wait-die and in wound-wait schemes, a rolled back transactions is restarted with its original timestamp.
- Older transactions thus have precedence over newer ones, and starvation is hence avoided.

Lock-Based Protocols

## Deadlock Prevention Strategies/2

- 3. Preemptive and non-preemptive based on timestamps:
  - Use transaction timestamps for the sake of deadlock prevention alone.
  - Preemption: steal lock from a transaction that currently holds the lock by aborting it.
  - Two schemes:
    - wait-die scheme non-preemptive
    - wound-wait scheme preemptive

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

22 / 7

Lock-Based Protocols

# Deadlock Prevention Strategies/4

- 4. Timeout-Based schemes:
  - A transaction waits for a lock only for a specified amount of time.
  - If the lock has not been granted within that time, the transaction is rolled back and restarted.
  - Thus, deadlocks are not possible.
  - Easy to implement, but starvation is possible.
  - Also difficult to determine good value of the timeout interval.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2022/23 23 / 70 Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2022/23 24 / 70

#### Multiple Granularity

- Define a hierarchy of data item granularities, where the small granularities are nested within larger ones.
- Can be represented graphically as a tree.
- When a transaction locks a node in the tree explicitly, it implicitly locks all the node's descendents in the same mode.
- Granularity of locking (level in tree where locking is done):
  - fine granularity (lower in tree): high concurrency, high locking overhead
  - coarse granularity (higher in tree): low locking overhead, low concurrency

Augsten (Univ. Salzburg)

ADB – Concurrency Control

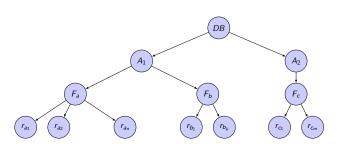
WS 2022/23

25 / 7

Augsten (Univ. Salzburg)

ADB – Concurrency Contro

WS 2022/23


26 / 1

Lock-Based Protocols

#### Intention Lock Modes

- In addition to S and X lock modes, there are three additional lock modes with multiple granularity.
- If a node *n* is locked in mode
  - intention-shared (IS), then at least one lower-level subtree of *n* is locked in shared mode:
  - intention-exclusive (IX), then at least one lower-level subtree of *n* is locked in exclusive mode;
  - shared and intention-exclusive (SIX): then n is locked in shared mode and a at least one lower-level subtree of n is locked in exclusive mode.
- Intention locks (or their absence) allow a higher level node to be locked in S or X mode without having to check all descendent nodes.

Example of Granularity Hierarchy



The levels, starting from the coarsest (top) level are

Lock-Based Protocols

- database
- area
- file
- record

Lock-Based Protocols

# Compatibility Matrix with Intention Lock Modes

• The compatibility matrix for all lock modes is:

|     | IS    | IX    | 5     | SIX   | X     |
|-----|-------|-------|-------|-------|-------|
| IS  | true  | true  | true  | true  | false |
| IX  | true  | true  | false | false | false |
| S   | true  | false | true  | false | false |
| SIX | true  | false | false | false | false |
| X   | false | false | false | false | false |

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

7 / 70

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

#### Multiple Granularity Locking Scheme

- Transaction  $T_i$  can lock a node  $Q_i$  using the following rules:
  - 1. The lock compatibility matrix must be observed.
  - 2. The root of the tree must be locked first, and may be locked in any mode.
  - 3. A node Q can be locked by  $T_i$  in S or IS mode only if the parent of Q is currently locked by  $T_i$  in either IX or IS mode.
  - 4. A node Q can be locked by  $T_i$  in X, SIX, or IX mode only if the parent of Q is currently locked by  $T_i$  in either IX or SIX mode.
  - 5.  $T_i$  can lock a node only if it has not previously unlocked any node (that is,  $T_i$  is two-phase).
  - 6.  $T_i$  can unlock a node Q only if none of the children of Q are currently locked by  $T_i$ .
- Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-to-root order.
- Lock granularity escalation: in case there are too many locks at a particular level, switch to higher granularity S or X lock

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

Timestamp-Based Protocols

#### Timestamp-Based Protocols/1

- Each transaction is issued a timestamp when it enters the system. If an old transaction  $T_i$  has time-stamp  $TS(T_i)$ , a new transaction  $T_i$  is assigned time-stamp  $TS(T_i)$  such that  $TS(T_i) < TS(T_i)$ .
- The protocol manages concurrent execution such that the time-stamps determine the serializability order.
- In order to assure such behavior, the protocol maintains for each data Q two timestamp values:
  - W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) successfully.
  - R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q) successfully.

Timestamp-Based Protocols Outline Lock-Based Protocols 2 Timestamp-Based Protocols Validation-Based Protocols 4 Multiversion Schemes Insert, Delete, and Concurrency in Indexes 6 Weak Levels of Consistency

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

Timestamp-Based Protocols

# Timestamp-Based Protocols/2

- The timestamp ordering protocol ensures that any conflicting read and write operations are executed in timestamp order.
- Suppose a transaction T<sub>i</sub> issues a read(Q)
  - 1. If  $TS(T_i) < W$ -timestamp(Q), then  $T_i$  needs to read a value of Q that was already overwritten.
    - Hence, the **read** operation is rejected, and  $T_i$  is rolled back.
  - 2. If  $TS(T_i) > W$ -timestamp(Q), then the **read** operation is executed, and R-timestamp(Q) is set to max(R-timestamp(Q),  $TS(T_i)$ ).

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

31 / 70

Augsten (Univ. Salzburg)

ADB - Concurrency Control

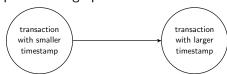
WS 2022/23

Timestamp-Based Protocols

#### Timestamp-Based Protocols/3

- Suppose that transaction Ti issues write(Q).
  - 1. If  $TS(T_i) < R$ -timestamp(Q), then the value of Q that  $T_i$  is producing was needed previously, and the system assumed that that value would never be produced.
    - Hence, the **write(Q)** operation is rejected, and  $T_i$  is rolled back.
  - 2. If  $TS(T_i) < W$ -timestamp(Q), then  $T_i$  is attempting to write an obsolete value of Q
    - Hence, this **write(Q)** operation is rejected, and  $T_i$  is rolled back.
  - 3. Otherwise, the **write(Q)** operation is executed, and W-timestamp(Q) is set to  $TS(T_i)$ .

Augsten (Univ. Salzburg


ADB - Concurrency Control

WS 2022/23

Timestamp-Based Protocols

# Correctness of Timestamp-Ordering Protocol

• The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence graph are of the form:



- Timestamp protocol ensures freedom from deadlock as no transaction ever waits.
- But the schedule may not be cascade-free, and may not even be recoverable.

Timestamp-Based Protocols

## Example Use of the Protocol

A partial schedule for several data items for transactions with timestamps 1, 2, 3, 4, 5

| $T_1$   | $T_2$   | $T_3$               | T <sub>4</sub> | $T_5$               |
|---------|---------|---------------------|----------------|---------------------|
| read(Y) | read(Y) |                     |                | read(X)             |
| 7cau(7) |         | write(Y) $write(Z)$ |                |                     |
|         | read(Z) |                     |                | read(Z)             |
| read(X) |         | . (140)             | read(W)        |                     |
|         |         | write(W)<br>abort   |                | write(Y)            |
|         |         |                     |                | write(Y) $write(Z)$ |

Augsten (Univ. Salzburg)

WS 2022/23

Timestamp-Based Protocols

# Timestamp-Ordering: Recoverability and Cascadeless

- Read rule: If i > i, then  $T_i$  is allowed to read a value written by  $T_i$ .
- Therefore, timestamp-ordering protocol allows:
  - non-recoverable schedules:  $T_i$  reads value of uncommitted  $T_i$ ;  $T_i$ commits before  $T_i$
  - cascading rollbacks:  $T_i$  reads value of uncommitted  $T_i$ ; when  $T_i$  aborts then also  $T_i$  must abort
- Solution 1:
  - writes are all performed at the end of the transaction
  - the writes form an atomic action: no transaction can read any of the written values during write
  - a transaction that aborts is restarted with a new timestamp
- Solution 2: Limited form of locking: wait for data to be committed before reading it
- Solution 3: Use commit dependencies to ensure recoverability

Augsten (Univ. Salzburg) WS 2022/23 WS 2022/23 36 / 70 ADB - Concurrency Control Augsten (Univ. Salzburg) ADB - Concurrency Control

Timestamp-Based Protocols

#### Thomas' Write Rule

- Modified version of the timestamp-ordering protocol in which obsolete write operations may be ignored under certain circumstances.
- $T_i$  attempts to write data item Q:
  - if  $TS(T_i) < W$ -timestamp(Q), then  $T_i$  is attempting to write an obsolete value of Q
  - rather than rolling back  $T_i$  (as the timestamp ordering protocol would do), this write operation can be ignored
- Otherwise this protocol is the same as the timestamp ordering protocol.
- Thomas' Write Rule allows greater potential concurrency.
  - Allows view-serializable schedules that are not conflict serializable.
  - Any view-serializable schedule that is not conflict serializable has so-called blind writes (write(Q) without preceding read(Q))

Augsten (Univ. Salzburg

ADB - Concurrency Control

WS 2022/23

Augsten (Univ. Salzburg)

Outline

Lock-Based Protocols

2 Timestamp-Based Protocols

Validation-Based Protocols

6 Weak Levels of Consistency

4 Multiversion Schemes

ADB - Concurrency Contro

WS 2022/23

Validation-Based Protocols

# Validation-Based Protocol/1

- Execution of transaction  $T_i$  is done in three phases.
  - 1. Read and execution phase: Transaction  $T_i$  writes only to temporary local variables
  - 2. Validation phase: Transaction  $T_i$  performs a "validation test" to determine if local variables can be written without violating serializability.
  - 3. Write phase: If  $T_i$  is validated, the updates are applied to the database; otherwise.  $T_i$  is rolled back.
- The three phases of concurrently executing transactions can be interleaved, but each transaction must go through the three phases in that order.
  - Assume for simplicity that the validation and write phase occur together, atomically and serially, i.e., only one transaction executes validation/write at a time.
- Also called optimistic concurrency control since transaction executes fully in the hope that all will go well during validation

Validation-Based Protocols

Validation-Based Protocols

# Validation Test for Transaction $T_i$

Insert, Delete, and Concurrency in Indexes

- Timestamp  $TS(T_i)$  is the time where validation of  $T_i$  starts, i.e.,  $TS(T_i) = validation(T_i).$
- If for all  $T_i$  with  $TS(T_i) < TS(T_i)$  either one of the following condition holds:
  - $finish(T_i) < start(T_i)$
  - $start(T_i) < finish(T_i) < validation(T_i)$  and the set of data items written by  $T_i$  does not intersect with the set of data items read by  $T_i$

then validation succeeds and  $T_i$  can be committed.

- Otherwise, validation fails, and  $T_i$  is aborted.
- Justification: Either the first condition is satisfied, and there is no overlapping execution, or the second condition is satisfied and
  - the writes of  $T_i$  do not affect reads of  $T_i$  since they occur after  $T_i$  has finished its reads
  - the writes of  $T_i$  do not affect reads of  $T_i$  since  $T_i$  does not read any item written by  $T_i$

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

39 / 70

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

Validation-Based Protocols

#### Schedule Produced by Validation

• Example of schedule produced using validation

| $T_{25}$     | $T_{26}$     |
|--------------|--------------|
| read(B)      |              |
|              | read(B)      |
|              | B := B - 50  |
|              | read(A)      |
|              | A := A + 50  |
| read(A)      |              |
| < validate > |              |
| display(A+B) |              |
|              | < validate > |
|              | write(B)     |
|              | write(A)     |

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

41/7

Augsten (Univ. Salzburg)

Outline

Lock-Based Protocols

Multiversion Schemes

2 Timestamp-Based Protocols

Validation-Based Protocols

6 Weak Levels of Consistency

ADB - Concurrency Control

Multiversion Schemes

WS 2022/23

42 / 70

Multiversion Schemes

## Multiversion Schemes

- Multiversion schemes keep old versions of data item to increase concurrency.
  - Multiversion Timestamp Ordering
  - Multiversion Two-Phase Locking
- Each successful write results in the creation of a new version of the data item written.
- Use timestamps to label versions.
- When a read(Q) operation is issued, select an appropriate version of Q based on the timestamp of the transaction, and return the value of the selected version.
- Reads never have to wait as an appropriate version is returned immediately.

Multiversion Schemes

# Multiversion Timestamp Ordering/1

5 Insert, Delete, and Concurrency in Indexes

- Each data item Q has a sequence of versions  $< Q_1, Q_2, \ldots, Q_m >$ . Each version  $Q_k$  contains three data fields:
  - Content the value of version  $Q_k$ .
  - W-timestamp( $Q_k$ ) timestamp of the transaction that created (wrote) version  $Q_k$
  - R-timestamp( $Q_k$ ) largest timestamp of a transaction that successfully read version  $Q_k$
- When a transaction  $T_i$  creates a new version  $Q_k$  of Q,  $Q_k$ 's W-timestamp and R-timestamp are initialized to  $TS(T_i)$ .
- R-timestamp of  $Q_k$  is updated whenever a transaction  $T_j$  reads  $Q_k$ , and  $TS(T_j) > R$ -timestamp $(Q_k)$ .

Augsten (Univ. Salzburg) ADB - Concurrency Control

WS 2022/23

43 / 70

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

#### Multiversion Timestamp Ordering/2

- Suppose that transaction  $T_i$  issues a **read(Q)** or **write(Q)** operation. Let  $Q_k$  denote the version of Q whose write timestamp is the largest write timestamp less than or equal to  $TS(T_i)$ .
  - 1. If transaction  $T_i$  issues a read(Q), then the value returned is the content of version  $Q_k$ .
  - 2. If transaction  $T_i$  issues a write(Q)
    - 1. if  $TS(T_i) < R$ -timestamp( $Q_k$ ), then transaction  $T_i$  is rolled back.
    - 2. if  $TS(T_i) = W$ -timestamp $(Q_k)$ , the contents of  $Q_k$  are overwritten
    - 3. else a new version of Q is created.
- Observe that
  - Reads always succeed
  - A write by  $T_i$  is rejected if some other transaction  $T_j$  that (in the serialization order defined by the timestamp values) should read  $T_i$ 's write, has already read a version created by a transaction older than  $T_i$ .
- Multiversion Timestamp Ordering schedules are
  - serializable
  - not recoverable (extension to recoverable and cascadeless schedules like for timestamp-based protocol)

Augsten (Univ. Salzburg)

ADB – Concurrency Contro

WS 2022/23

45 / 7

110 2022/20

Multiversion Schemes

# Multiversion Two-Phase Locking/2

- When an update transaction wants to read a data item:
  - it obtains a shared lock on it, and reads the latest version.
- When an update transaction wants to write an item
  - it obtains X-lock on the item, then creates a new version of the item, finally sets this version's timestamp to  $\infty$ .
- When update transaction  $T_i$  completes, commit processing occurs:
  - $T_i$  sets timestamp on the versions it has created to ts-counter +1
  - $T_i$  increments ts-counter by 1
- Read-only transactions that start after  $T_i$  increments ts-counter will see the values updated by  $T_i$ .
- Read-only transactions that start before  $T_i$  increments the ts-counter will see the value before the updates by  $T_i$ .
- Only serializable schedules are produced.

Multiversion Schemes

# Multiversion Two-Phase Locking/1

- Differentiates between read-only transactions and update transactions
- Update transactions:
  - Acquire locks for reads and writes, and hold all locks up to the end of the transaction, i.e., follow rigorous two-phase locking.
  - Each successful write results in the creation of a new version of the data item written.
  - Each version of a data item has a single timestamp whose value is obtained from a counter ts-counter that is incremented during commit processing.
- Read-only transactions are assigned a timestamp by reading the current value of ts-counter before they start execution; they follow the multiversion timestamp-ordering protocol for performing reads.

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

46 / 7

Multiversion Schemes

# Multiversion Two-Phase Locking Example

| $T_1$       | $T_2$        | $T_3$       | $T_4$       |
|-------------|--------------|-------------|-------------|
|             | ${write(A)}$ |             |             |
| ${read(A)}$ |              |             |             |
|             |              | ${read(A)}$ |             |
|             | commit       | read(B)     |             |
| write(A)    |              | read(A)     |             |
|             |              |             | ${read(A)}$ |
| commit      |              |             |             |

# MVCC: Implementation Issues

- Creation of multiple versions increases storage overhead
  - Extra tuples
  - Extra space in each tuple for storing version information
- Versions can, however, be garbage collected
  - E.g. if Q has two versions  $Q_5$  and  $Q_9$ , and the oldest active transaction has timestamp > 9, than  $Q_5$  will never be required again

Augsten (Univ. Salzburg)

ADB – Concurrency Control

Multiversion Schemes

WS 2022/23

49 / 7

Snapshot Isolation/2

• A transaction  $T_1$  executing with Snapshot Isolation

- takes snapshot of committed data at start
- always reads/modifies data in its own snapshot
- updates of concurrent transactions are not visible to T<sub>1</sub>
- writes of  $T_1$  complete when it commits
- First-committer-wins rule:
  - Commits only if no other concurrent transaction has already written data that T<sub>1</sub> intends to write.

|                                       | Commit |                      |           |
|---------------------------------------|--------|----------------------|-----------|
|                                       |        | Start                |           |
|                                       |        | $R(X) \rightarrow 0$ |           |
|                                       |        | $R(Y) \rightarrow 1$ |           |
|                                       |        |                      | W(X := 2) |
|                                       |        |                      | W(Z := 3) |
|                                       |        |                      | Commit    |
| Concurrent updates not visible        |        | $R(Z) \rightarrow 0$ |           |
| Own updates are visible               |        | $R(Y) \rightarrow 1$ |           |
| Not first-committer of X              |        | W(X := 3)            |           |
|                                       |        | Commit-Req           |           |
| alization error, $T_2$ is rolled back |        | Abort                |           |
|                                       |        |                      |           |

Multiversion Schemes

#### Snapshot Isolation/1

- Motivation: Concurrent OLAP and OLTP queries.
  - OLAP (online analytic processing) queries read large amounts of data.
  - OLTP (online transaction processing) transactions update a few rows.
  - Combination results in many concurrency conflicts and poor performance.
- Solution 1: Give logical "snapshot" of database state to read only transactions, read-write transactions use normal locking.
  - multiversion 2-phase locking
  - works well, but how does system know a transaction is read only?
- Solution 2: Give snapshot of database state to every transaction, only updates use 2-phase locking.
  - problem: variety of anomalies such as lost update can result
- Solution 3: Snapshot isolation (next slide).
  - proposed by Berenson et al. (SIGMOD 1995)

Multiversion Schemes

 variants implemented in many database systems (e.g. Oracle, PostgreSQL, SQL Server 2005)

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

50 / 7

#### Snapshot Read

- Concurrent updates invisible to snapshot read
- $X_0 = 100, Y_0 = 0$

| $T_1$ deposits 50 in $Y$                   | $T_2$ withdraws 50 from $X$                        |
|--------------------------------------------|----------------------------------------------------|
| $r_1(X_0, 100)$                            |                                                    |
| $r_1(Y_0,0)$                               |                                                    |
|                                            | $r_2(Y_0, 0)$<br>$r_2(X_0, 100)$<br>$w_2(X_2, 50)$ |
|                                            | $r_2(X_0, 100)$                                    |
|                                            | $w_2(X_2,50)$                                      |
| $w_1(Y_1,50)$                              |                                                    |
| $r_1(X_0, 100)$ (update by $T_2$ not seen) |                                                    |
| $r_1(Y_1, 50)$ (can see its own updates)   |                                                    |
|                                            | $r_2(Y_0,0)$ (update by $T_1$ not seen)            |

•  $X_2 = 50$ ,  $Y_1 = 50$ 

Augsten (Univ. Salzburg)

#### Snapshot Write: First Committer Wins

| $T_1$ deposits 50 in $X$ | $T_2$ withdraws 50 from $X$                           |
|--------------------------|-------------------------------------------------------|
| $r_1(X_0, 100)$          |                                                       |
|                          | $r_2(X_0, 100)$<br>$w_2(X_2, 50)$                     |
|                          | $w_2(X_2,50)$                                         |
| $w_1(X_1, 150)$          |                                                       |
| $commit_1$               |                                                       |
|                          | $commit_2$ (Serialization Error $T_2$ is rolled back) |

- Variant: "First-updater-wins"
  - Check for concurrent updates when write occurs by locking item
    - but lock should be held till all concurrent transactions have finished
  - Differs only in when abort occurs, otherwise equivalent

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

ADB - Concurrency Control

WS 2022/23

Multiversion Schemes

# Snapshot Isolation/3

- Example of problem with snapshot isolation
  - T1: x := y
  - T2: y := x
  - Initially x = 3 and y = 17
    - Serial execution: x = ??, y = ??
    - if both transactions start at the same time, with snapshot isolation: x = ??, y = ??
- Called skew write
- Skew also occurs with inserts, e.g., a query that creates order numbers as follows:
  - Find max order number among all orders
  - Create a new order with ordernumber = previous max + 1

Multiversion Schemes

#### Benefits of Snapshot Isolation

- Reading is never blocked,
  - and also doesn't block other transactions' activities
- Performance similar to Read Committed
- Avoids the usual anomalies
  - No dirty read
  - No lost update
  - No non-repeatable read
  - Predicate based selects are repeatable (no phantoms)
- Problems with snapshot isolation
  - Snapshot isolation does not always give serializable executions
    - Serializable: among two concurrent transactions, one sees the effects of the other
    - In snapshot isolation: neither sees the effects of the other
  - Result: Integrity constraints can be violated

Augsten (Univ. Salzburg)

Multiversion Schemes

# **Snapshot Isolation Anomalies**

- Snapshot isolation breaks serializability when transactions modify different items, each based on a previous state of the item the other modified
  - not very common in practice
    - for example, the TPC-C benchmark runs correctly under snapshot
    - when transactions conflict due to modifying different data, there is usually also a shared item they both modify too (like a total quantity) so SI will abort one of them
  - but does occur
    - application developers should be careful about write skew
- Using snapshots to verify primary/foreign key integrity can lead to inconsistency
  - integrity constraint checking usually done outside of snapshot

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2022/23 55 / 70 ADB - Concurrency Control WS 2022/23 56 / 70 Augsten (Univ. Salzburg)

#### Snapshot Isolation in Oracle and PostgreSQL/1

- Warning: Snapshot isolation is used when isolation level is set to serializable in Oracle and PostgreSQL (versions prior to 9.1)
- Oracle implements "first updater wins" rule
  - concurrent writer check is done at time of write, not at commit time
  - allows transactions to be rolled back earlier
  - ullet Oracle and PostgreSQL < 9.1 do not support true serializable execution
- PostgreSQL 9.1 introduced "Serializable Snapshot Isolation" (SSI)
  - guarantees true serializabilty

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

57 / 70

Example transaction:

ADB - Concurrency Control

• Can sidestep snapshot isolation for specific queries by using **select** ..

• Select for update (SFU) treats all data read by the guery as if it were

WS 2022/23

Insert, Delete, and Concurrency in Indexes

#### Outline

- 1 Lock-Based Protocols
- 2 Timestamp-Based Protocols
- 3 Validation-Based Protocols
- Multiversion Schemes
- **6** Insert, Delete, and Concurrency in Indexes
- 6 Weak Levels of Consistency

Multiversion Schemes

Snapshot Isolation in Oracle and PostgreSQL/2

#### Insert and Delete Operations/1

Insert, Delete, and Concurrency in Indexes

for update in Oracle and PostgreSQL

also updated, preventing concurrent updates.

2. read value into local variable maxorder 3. insert into orders (maxorder + 1, ...)

1. select max (orderno) from orders for update

- If two-phase locking is used:
  - A delete operation may be performed only if the transaction deleting the tuple has an exclusive lock on the tuple to be deleted.
  - A transaction that inserts a new tuple into the database is given an X-mode lock on the tuple
- Insertions and deletions can lead to the phantom phenomenon:
  - $T_1$  scans a relation r (e.g., find sum of balances of all accounts in Perryridge).
  - $T_2$  inserts a tuple into relation r (e.g., insert a new account at Perryridge).
  - $T_1$  and  $T_2$  (conceptually) conflict in spite of not accessing any tuple in common.
- If only tuple locks are used, non-serializable schedules can result
  - for example, the scan transaction  $T_1$  does not see the new account, but reads some other tuple updated by transaction  $T_2$

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

59 / 70

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

Insert, Delete, and Concurrency in Indexes

#### Insert and Delete Operations/2

- The transaction scanning the relation is reading information that indicates what tuples the relation contains, while a transaction inserting a tuple updates the same information.
  - The conflict should be detected, e.g. by locking the information.
- One solution:
  - Associate a data item X with the relation, to represent the information about what tuples the relation contains.
  - Transactions scanning the relation acquire a shared lock on X.
  - Transactions inserting or deleting a tuple acquire an exclusive lock on data item X.
  - Note: locks on X do not conflict with locks on individual tuples.
- Above protocol provides very low concurrency for insertions/deletions.
- Index locking protocol
  - prevents the phantom phenomenon
  - provide higher concurrency

ADB - Concurrency Control

WS 2022/23

61 / 70

ADB - Concurrency Control

WS 2022/23

Insert, Delete, and Concurrency in Indexes

# **Next-Key Locking**

- Problem with index-locking protocol:
  - to prevent phantom reads the entire index leaf must be locked
  - results in poor concurrency if there are many inserts
- Alternative: for an index lookup
  - Lock all key values that satisfy index lookup (i.e., match lookup value or fall into lookup range).
  - Lock next key value in index (after lookup value or range) as well.
  - Lock mode: S for lookups, X for insert/delete/update.
- Ensures that range queries will conflict with inserts/deletes/updates
  - regardless of which happens first, as long as both are concurrent

Insert, Delete, and Concurrency in Indexes

## Index Locking Protocol

- Index locking protocol:
  - Every relation must have at least one index.
  - A transaction can access tuples only after finding them through one or more indices on the relation.
  - A transaction  $T_i$  that performs a lookup must lock all the index leaf nodes that it accesses, in S-mode
    - even if the leaf node does not contain any tuple satisfying the index lookup (e.g. for a range query, no tuple in a leaf is in the range)
  - A transaction  $T_i$  that inserts, updates, or deletes a tuple  $t_i$  in relation r
    - must update all indices of r
    - must obtain exclusive locks on all index leaf nodes affected by the insert/update/delete
  - The rules of the two-phase locking protocol must be observed
- Guarantees that the phantom phenomenon won't occur

Insert, Delete, and Concurrency in Indexes

# Concurrency in Index Structures/1

- Indices are unlike other database items in that their only job is to help in accessing data.
- Index-structures are typically accessed very often, much more than other database items.
  - Treating index-structures like other database items, e.g. by 2-phase locking of index nodes can lead to low concurrency.
- There are several index concurrency protocols where locks on internal nodes are released early, and not in a two-phase fashion.
  - It is acceptable to have nonserializable concurrent access to an index as long as the accuracy of the index is maintained.
  - In particular, the exact values read in an internal node of a  $B^+$ -tree are irrelevant so long as we land up in the correct leaf node.

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2022/23 63 / 70 ADB - Concurrency Control WS 2022/23 64 / 70 Augsten (Univ. Salzburg)

Insert, Delete, and Concurrency in Indexes

#### Concurrency in Index Structures/2

- Crabbing protocol for B+-trees. During search/insertion/deletion:
  - first lock the root node in shared mode.
  - after locking all required children of a node in shared mode, release the lock on the node.
  - during insertion/deletion, upgrade leaf node locks to exclusive mode.
  - when splitting or coalescing requires changes to a parent, lock the parent in exclusive mode.
- The crabbing protocol can cause deadlocks
  - searches coming down the tree deadlock with updates going up the tree
  - can abort and restart search, without affecting transaction
- *B*-link tree protocol:
  - Intuition: release lock on parent before acquiring lock on child
  - Deal with changes that may have happened between lock release and acquire.
  - Requires forward links between sibling nodes in B+-tree (in addition to the forward links between leaves that exist anyways).

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

5 / 70

\_\_\_\_

# Weak Levels of Consistency

- Degree-two consistency: differs from two-phase locking in that *S*-locks may be released at any time, and locks may be acquired at any time
  - X-locks must be held till end of transaction

Weak Levels of Consistency

- Serializability is not guaranteed, programmer must ensure that no erroneous database state will occur
- Cursor stability:
  - For reads, each tuple is locked, read, and lock is immediately released
  - X-locks are held till end of transaction
  - Special case of degree-two consistency

Outline

1 Lock-Based Protocols
2 Timestamp-Based Protocols
3 Validation-Based Protocols
4 Multiversion Schemes
5 Insert, Delete, and Concurrency in Indexes
6 Weak Levels of Consistency

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

66 /

Weak Levels of Consistency

# Weak Levels of Consistency in SQL

- SQL allows non-serializable executions
  - Repeatable read: allows only committed records to be read, and repeating a read should return the same value (so read locks should be retained)
    - however, the phantom phenomenon need not be prevented
    - $T_1$  may see some records inserted by  $T_2$ , but may not see others inserted by  $T_2$ .
  - Read committed: same as degree two consistency, but most systems implement it as cursor-stability.
  - Read uncommitted: allows even uncommitted data to be read
- In many database systems, read committed is the default consistency level.
- The isolation level can be changed when required:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2022/23 67 / 70 Augsten (Univ. Salzburg) ADB - Concurrency Control WS 2022/23 68 / 70

Weak Levels of Consistency

# Transactions across User Interaction /1

- Many applications need transaction support across user interactions
  - Can't use locking
  - Don't want to reserve database connection per user
- Application level concurrency control
  - Each tuple has a version number
  - Transaction notes version number when reading tuple
    - select r.balance, r.version into :A, :version from r where acctld = 23
  - When writing tuple, check that current version number is same as the version when tuple was read
    - update r set r.balance = r.balance + :deposit where acctld = 23 and r.version = :version

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23

69 / 70

Weak Levels of Consistency

# Transactions across User Interaction/2

- Equivalent to optimistic concurrency control without validating read set
- Used internally in Hibernate ORM system, and manually in many applications
- Unlike snapshot isolation, reads are not guaranteed to be from a single snapshot.

Augsten (Univ. Salzburg)

ADB - Concurrency Control

WS 2022/23