Similarity Search Set Similarity Join

Nikolaus Augsten

nikolaus.augsten@plus.ac.at Department of Computer Science University of Salzburg

WS 2022/23

Version January 24, 2023

Outline

- Filters for the Set Similarity Join
 - Motivation
 - Signature-based Filtering
 - Signatures for Overlap Similarity
 - Signatures for Hamming Distance
- 2 Implementations of Set Similarity Joins
 - Other Similarity Functions
 - Table of Set Similarity Join Algorithms and their Signatures
- Conclusion

Outline

- Filters for the Set Similarity Join
 - Motivation
 - Signature-based Filtering
 - Signatures for Overlap Similarity
 - Signatures for Hamming Distance
- 2 Implementations of Set Similarity Joins
 - Other Similarity Functions
 - Table of Set Similarity Join Algorithms and their Signatures
- 3 Conclusion

- Scenario: A social network company stores user interests.
- Example: user table with interests:

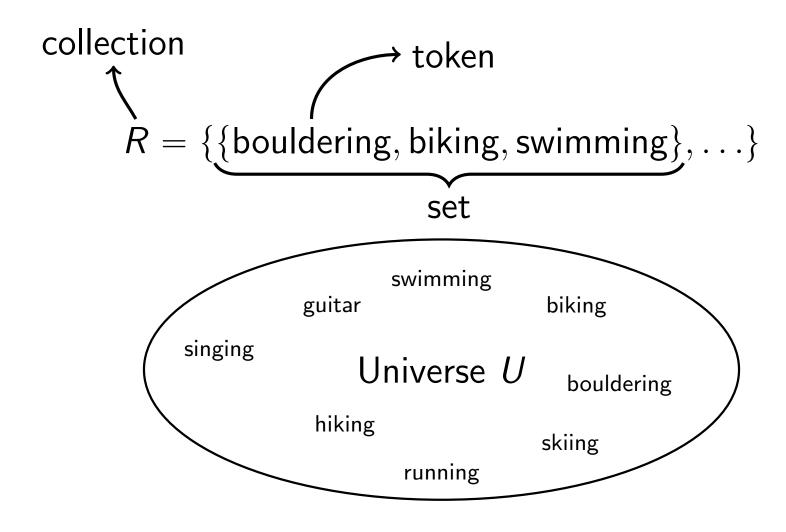
R

Motivation

id	name	interests
S	Sebastian	{bouldering, biking, swimming}
n	Nathan	{bouldering, swimming, guitar, singing}
р	Philippides	{hiking, running}
m	Maria	{bouldering, hiking, running}
r	Rosa	{bouldering, skiing, hiking}

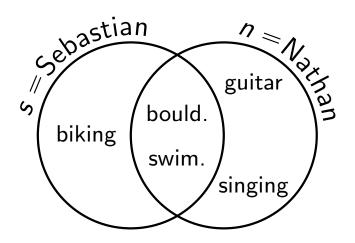
• Task: Recommend new friends based on similar interests!

Notation



Measuring Similarity of Sets

- Goal: measure the similarity of two sets r, s
- Similarity Function:
 - Sim(r, s) is high for similar sets, low for dissimilar sets
 - Example: Overlap $|r \cap s|$
- Distance Function:
 - Dis(r, s) is *low* for similar sets, *high* for dissimilar sets
 - Example: Hamming distance $|r \triangle s| = |(r \backslash s) \cup (s \backslash r)| = |r \cup s| |r \cap s|$
- Example:



$$|s \cap n| = 2$$

$$|s\triangle n|=3$$

The Join Approach

Solution: Compute the set similarity join

Definition (Set Similarity Join)

Given two collections of sets R and S, the set similarity join computes

$$R \stackrel{\sim}{\bowtie} S = \{(r, s) \in R \times S \mid Sim(r, s) \geqslant t\}$$

for a similarity function Sim or

$$R \overset{\sim}{\bowtie} S = \{(r, s) \in R \times S \mid \mathsf{Dis}(r, s) \leqslant t\}$$

for a distance function Dis and threshold t.

- Naive Approach:
 - 1. Compute all pairs $R \times S$
 - 2. Test if $Sim(r, s) \ge t$ or $Dis(r, s) \le t$ on each tuple

Naive Join Example

• Example: self-join $R \bowtie R$, overlap similarity, threshold t=2

id	name	interests				
S	Sebastian	{bouldering, biking, swimming}				
n	Nathan	{bouldering, swimming, guitar, singing}				
p	Philippides	$\{hiking, running\}$				
m	Maria	{bouldering, hiking, running}				
r	Rosa	{bouldering, skiing, hiking}				

$$R \stackrel{\sim}{\bowtie} R = \{(s,n),(p,m),(m,r)\}$$

• 10 (non-reflexive, non-symmetric) comparisons!

Demonstration

- Experiment: Naive approach
 - self-join with varying |R|
 - average set size 10
 - universe size 1000, uniformly distributed
 - overlap similarity with threshold t = 4

R	#comparisons	runtime [s]
1000	$5 \cdot 10^5$	0.022
10000	$5 \cdot 10^7$	2.288
100000	$5 \cdot 10^9$	218.773

- A *single* similarity computation is fast (\approx 150 CPU cycles)
- But the search space grows fast: $\Theta(|R|^2)$

Outline

- Filters for the Set Similarity Join
 - Motivation
 - Signature-based Filtering
 - Signatures for Overlap Similarity
 - Signatures for Hamming Distance
- 2 Implementations of Set Similarity Joins
 - Other Similarity Functions
 - Table of Set Similarity Join Algorithms and their Signatures
- 3 Conclusion

Reducing the Search Space using Filters

- Filtering: Reduce the search space by removing dissimilar pairs of sets
- Set similarity Join: Most filters are signature-based

Definition (Signature Scheme)

A signature scheme Sign is a function that maps a set of tokens to a set of signatures such that for any two sets of tokens, r and s:

$$Sim(r, s) \geqslant t \Rightarrow Sign(r) \cap Sign(s) \neq \emptyset$$

for a similarity function Sim and

$$\mathsf{Dis}(r,s) \leqslant t \Rightarrow \mathsf{Sign}(r) \cap \mathsf{Sign}(s) \neq \emptyset$$

for a distance function Dis.

Intuition: Similar sets share at least one signature.

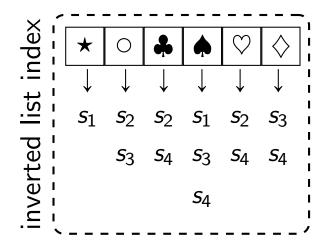
Signature-based Set Similarity Join

- Idea: Similar sets share signatures.
 - 1. Find all pairs sharing signatures (candidates)
 - 2. Test if $Sim(r, s) \ge t$ or $Dis(r, s) \le t$ on each tuple
- How do we find pairs sharing signatures?
 - 1. Compute all pairs $R \times S$
 - 2. Test if $Sign(r) \cap Sign(s) \neq \emptyset$ on each tuple
- Likely slower than naive approach!
- Index: Build a simple index to find sets for each signature

Inverted-list Index

- Inverted-list Index: Stores mappings from content (e.g., signatures) to locations (e.g., sets)
 - 1. Compute signatures Sign(s) for set s
 - 2. Store a pointer to s in the list I_{sig} of each signature $sig \in Sign(s)$
- Example:

$$R = \{s_1, s_2, s_3, s_4\}$$
 $Sign(s_1) = \{\star, \spadesuit\}$
 $Sign(s_2) = \{\circ, \clubsuit, \heartsuit\}$
 $Sign(s_3) = \{\circ, \spadesuit, \diamondsuit\}$
 $Sign(s_4) = \{\clubsuit, \spadesuit, \heartsuit, \diamondsuit\}$



 A good signature scheme is both easy to compute and results in few false positives (= number of unnecessary verifications).

Signature-based Framework

```
Algorithm 1: Signature-based Framework
Data: Collection R, threshold t
Result: All similar pairs M \subseteq R \times S
I \leftarrow \emptyset // inverted list index
forall s \in S do
                                                                         // indexing
    forall signatures sig \in Sign(s) do
    I_{sig} \leftarrow I_{sig} \cup \{s\}
M \leftarrow \emptyset, C \leftarrow \emptyset
forall r \in R do
                                                                          // probing
    forall signatures sig \in Sign(r) do
      C \leftarrow C \cup \{(r,s) \mid s \in I_{sig}\} 
forall candidate pairs (r, s) \in C do
    M \leftarrow M \cup (r, s) \text{ if } Sim(r, s) \geqslant t (or Dis(r, s) \leqslant t)
return M
```

Outline

- Filters for the Set Similarity Join
 - Motivation
 - Signature-based Filtering
 - Signatures for Overlap Similarity
 - Signatures for Hamming Distance
- 2 Implementations of Set Similarity Joins
 - Other Similarity Functions
 - Table of Set Similarity Join Algorithms and their Signatures
- 3 Conclusion

Identity Signature

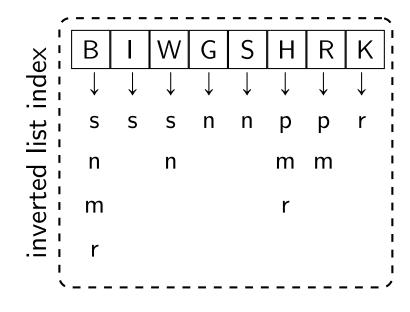
• Simplest signature scheme (for overlap) is identity (Sign = Id):

$$|r \cap s| \geqslant t \Rightarrow \operatorname{Id}(r) \cap \operatorname{Id}(s) \neq \emptyset$$

 $\Leftrightarrow |r \cap s| \geqslant t \Rightarrow |r \cap s| \geqslant 1$ assuming $t \geqslant 1$

- Every token is a signature
- Example:

id	interests
S	$\{Bould., blking, sWim.\}$
n	$\{Bould., sWim., Guitar, Sing.\}$
p	$\{ \mathbf{H} iking, \ \mathbf{R} unning \}$
m	$\{Bould., Hiking, Running\}$
r	$\{Bould., sKiing, Hiking\}$



Identity Signature

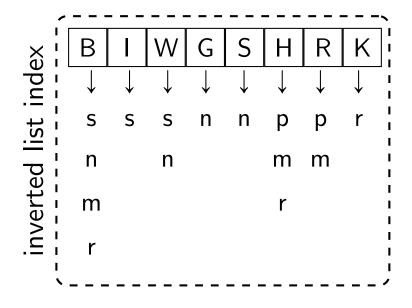
Simplest signature scheme (for overlap) is identity (Sign = Id):

$$|r \cap s| \geqslant t \Rightarrow \operatorname{Id}(r) \cap \operatorname{Id}(s) \neq \emptyset$$

 $\Leftrightarrow |r \cap s| \geqslant t \Rightarrow |r \cap s| \geqslant 1$ assuming $t \geqslant 1$

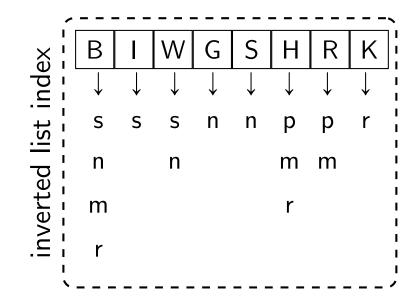
- Every token is a signature
- Example:

id	interests			
S	{B, I, W}			
n	$\{B, W, G, S\}$			
p	{H, R}			
m	{B, H, R}			
r	{B, K, H}			



Identity Signature Example

id	interests
S	{B, I, W}
n	$\{B, W, G, S\}$
p	{H, R}
m	$\{B, H, R\}$
r	$\{B,K,H\}$



• Probing:

- 1. Set s: $C \leftarrow \emptyset \cup \{(s,n),(s,m),(s,r)\}$
- 2. Set $n: C \leftarrow C \cup \{(n, m), (n, r)\}$
- 3. Set $p: C \leftarrow C \cup \{(p, m), (p, r)\}$
- 4. Set $m: C \leftarrow C \cup \{(m,r)\}$
- 8 (non-reflexive, non-symmetric) comparisons!
- Most candidates are the result of the long list B.

Demonstration

- Experiment: Identity signature¹
 - self-join with varying |R|
 - average set size 10
 - universe sizes |U| = 1000 and |U| = 10000, uniformly distributed
 - overlap similarity with threshold t = 4

R	U	#comparisons	runtime [s]
1000	1000	$4.7 \cdot 10^4$	0.0
	10000	$4.8\cdot 10^3$	0.0
10000	1000	$4.7 \cdot 10^6$	0.01
	10000	$5 \cdot 10^5$	0.005
100000	1000	$4.7 \cdot 10^8$	1.6
	10000	$4.9 \cdot 10^7$	0.19
1000000	1000	$4.7\cdot 10^{10}$	241
	10000	$4.9 \cdot 10^9$	23

- Large improvement over naive approach
- Universe size heavily influences performance

¹Implementation includes some optimizations compared to framework

Prefix Signature

 Idea: Exploit token order to construct a signature that is based on a subset of tokens.

Definition (Prefix Signature Scheme)

The prefix signature Pre(r) of a set r for overlap threshold t is constructed as follows:

- 1. Order the tokens of r by any fixed global^a order.
- 2. Each of the first |r| t + 1 tokens in the ordered set is a prefix signature.

В

• Example:

Set n,
$$t=2$$

2. take first
$$4-2+1=3$$
 tokens

2. take first
$$4-2+1=3$$
 tokens

W

S

W

G

• $Pre(n) = \{B, G, S\}$

^aglobal: the same order must be used for all sets

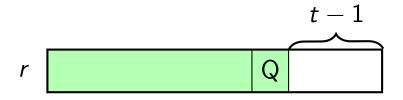
Lemma

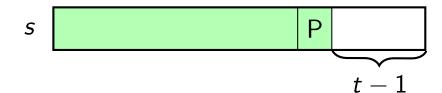
Pre is a signature scheme for overlap similarity, i.e.,

$$|r \cap s| \geqslant t \Rightarrow |\operatorname{Pre}(r) \cap \operatorname{Pre}(s)| \geqslant 1$$

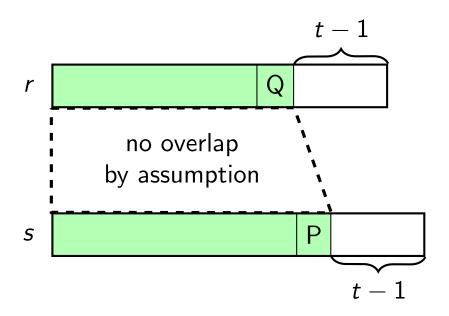
We show the contraposition, i.e.,

$$|\operatorname{Pre}(r) \cap \operatorname{Pre}(s)| = 0 \Rightarrow |r \cap s| < t$$

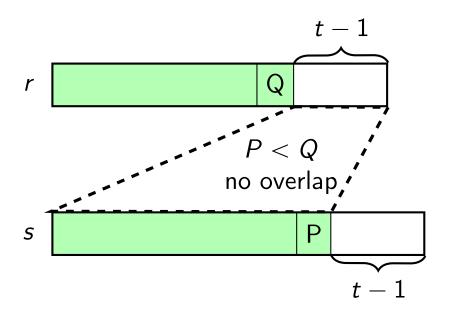




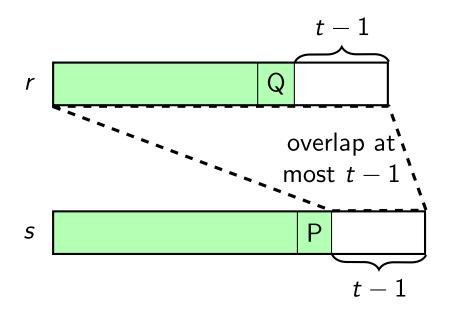
- Consider sets r, s; Q and P are the largest tokens in the respective prefixes, wlog. assume P < Q.
- Assume $Pre(r) \cap Pre(s) = \emptyset$. We bound $|r \cap s|$:
 - $|\operatorname{Pre}(r) \cap \operatorname{Pre}(s)| = 0$ by assumption
 - $|(r \setminus Pre(r)) \cap Pre(s)| = 0$ as P < Q
 - $|r \cap (s \setminus Pre(s))| \le t 1$ as $|s \setminus Pre(s)| = t 1$
 - Hence, $|r \cap s| < t$.



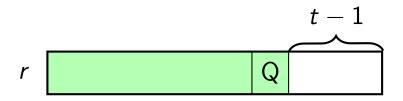
- Consider sets r, s; Q and P are the largest tokens in the respective prefixes, wlog. assume P < Q.
- Assume $Pre(r) \cap Pre(s) = \emptyset$. We bound $|r \cap s|$:
 - $|\operatorname{Pre}(r) \cap \operatorname{Pre}(s)| = 0$ by assumption
 - $|(r \setminus Pre(r)) \cap Pre(s)| = 0$ as P < Q
 - $|r \cap (s \setminus Pre(s))| \le t 1$ as $|s \setminus Pre(s)| = t 1$
 - Hence, $|r \cap s| < t$.

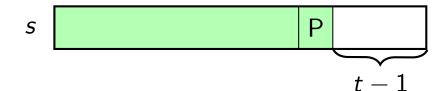


- Consider sets r, s; Q and P are the largest tokens in the respective prefixes, wlog. assume P < Q.
- Assume $Pre(r) \cap Pre(s) = \emptyset$. We bound $|r \cap s|$:
 - $|\operatorname{Pre}(r) \cap \operatorname{Pre}(s)| = 0$ by assumption
 - $|(r \setminus \operatorname{Pre}(r)) \cap \operatorname{Pre}(s)| = 0$ as P < Q
 - $|r \cap (s \setminus \operatorname{Pre}(s))| \leq t 1$ as $|s \setminus \operatorname{Pre}(s)| = t 1$
 - Hence, $|r \cap s| < t$.



- Consider sets r, s; Q and P are the largest tokens in the respective prefixes, wlog. assume P < Q.
- Assume $Pre(r) \cap Pre(s) = \emptyset$. We bound $|r \cap s|$:
 - $|\operatorname{Pre}(r) \cap \operatorname{Pre}(s)| = 0$ by assumption
 - $|(r \setminus \operatorname{Pre}(r)) \cap \operatorname{Pre}(s)| = 0$ as P < Q
 - $|r \cap (s \setminus \mathsf{Pre}(s))| \leq t 1$ as $|s \setminus \mathsf{Pre}(s)| = t 1$
 - Hence, $|r \cap s| < t$.





- Consider sets r, s; Q and P are the largest tokens in the respective prefixes, wlog. assume P < Q.
- Assume $Pre(r) \cap Pre(s) = \emptyset$. We bound $|r \cap s|$:
 - $|\operatorname{Pre}(r) \cap \operatorname{Pre}(s)| = 0$ by assumption
 - $|(r \setminus \operatorname{Pre}(r)) \cap \operatorname{Pre}(s)| = 0$ as P < Q
 - $|r \cap (s \setminus \operatorname{Pre}(s))| \leq t 1$ as $|s \setminus \operatorname{Pre}(s)| = t 1$
 - Hence, $|r \cap s| < t$.

Prefix Signature Example

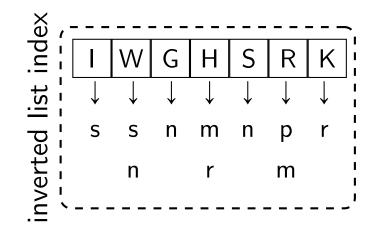
id	interests (ordered alphabetically)
S	{B, I, W}
n	{B, G, S, W}
p	{H, R}
m	{B, H, R}
r	{B, H, K}

X 1	В	 I	G	Н	S
index	\downarrow	\downarrow	\downarrow	\downarrow	$\overline{\downarrow}$
<u> </u>	S	S	n	p	n ¦
i	n			m	
inverted	m			r	! !
<u>;</u>	r				1

- Overlap threshold t = 2
- Indexing: all tokens except the last, alphabetical order
- Probing:
 - 1. Set s: $C \leftarrow \emptyset \cup \{(s,n),(s,m),(s,r)\}$
 - 2. Set $n: C \leftarrow C \cup \{(n, m), (n, r)\}$
 - 3. Set $p: C \leftarrow C \cup \{(p, m), (p, r)\}$
 - 4. Set $m: C \leftarrow C \cup \{(m,r)\}$
- still 8 comparisons!
- removing B from the prefix could help

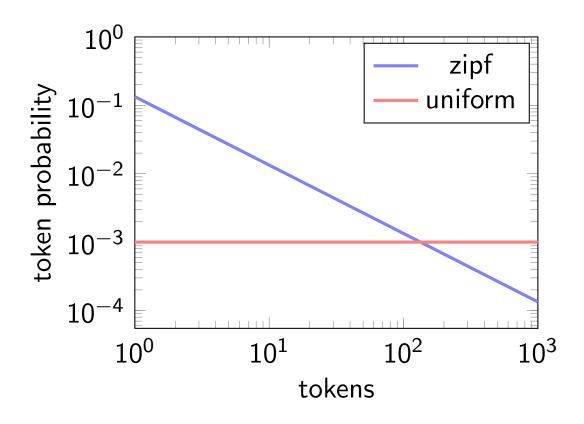
Prefix Signature Example: Order Makes a Difference

id	interests (ordered by frequency)
S	{I, W, B}
n	{G, S, W, B}
p	{R, H}
m	{R, H, B}
r	{K, H, B}



- Overlap threshold t = 2
- Indexing: all tokens except the last, ordered by ascending frequency
- Probing:
 - 1. Set s: $C \leftarrow \emptyset \cup \{(s,n)\}$
 - 2. Set $n: C \leftarrow C \cup \emptyset$
 - 3. *Set* $p: C \leftarrow C \cup \{(p, m)\}$
 - 4. Set $m: C \leftarrow C \cup \{(m,r)\}$
- only 3 comparisons!
- Heuristic: Ordering by ascending token frequency reduces candidates

Two Distributions



- Distribution: Real-world set-data often follow a zipfian distribution
- Skew: Some tokens appear frequently, a large number of tokens is uncommon. This favors the prefix signature.

Demonstration

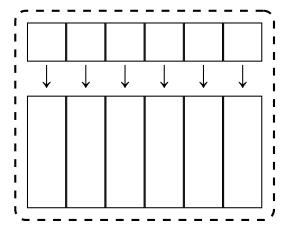
- Experiment: Identity signature vs. Prefix signature²
 - self-join with |R| = 100000
 - average set size 10
 - universe sizes |U| = 10000, uniform and zipfian distribution
 - overlap similarity with threshold $t \in \{4, 6, 8\}$
 - global order: ascending token frequency

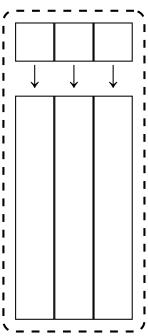
Identity				Prefix			
dist.	t	#comp.	runtime [s]	dist.	t	#comp.	runtime [s]
uni.	4	$5.0 \cdot 10^{7}$	0.187	uni.	4	$2.9 \cdot 10^{7}$	0.449
	6	$5.0 \cdot 10^7$	0.186		6	$1.8 \cdot 10^7$	0.349
	8	$5.0 \cdot 10^7$	0.186		8	$8.9 \cdot 10^{6}$	0.145
zipf	4	$3.4 \cdot 10^9$	16.358	zipf	4	$3.1 \cdot 10^8$	3.935
	6	$3.4 \cdot 10^9$	16.862		6	$6.2 \cdot 10^7$	0.873
	8	$3.4 \cdot 10^{9}$	16.842		8	$1.2 \cdot 10^7$	0.197

 $^{^2\}mbox{Implementation}$ includes some optimizations compared to framework

Impact of Universe Size

- Identity and Prefix: individual tokens used as signatures
- Runtime: proportional to sum of all pairs in each list
- Problem: small universe size reduces filtering effectiveness





- Uniform distribution: halving the universe doubles the list lengths and runtime
- Idea: use a more selective signature than individual tokens

Subset Signature I

Lemma

$$|r \cap s| \geqslant t$$

$$\Leftrightarrow$$

$$\exists p \subseteq U : |p| = t \land p \subseteq r \land p \subseteq s$$

• Similar sets have at least one common subset of size t. This proves correctness of the following signature:

Definition (Subsets Signature)

The subsets signature Sub(r) of a set r is defined as:

$$\mathsf{Sub}(r) = \{ p \subseteq r \mid |p| = t \}$$

for overlap threshold t.

Subset Signature II

Sub is stronger than required for signature schemes. It also holds that

$$\mathsf{Sign}(r) \cap \mathsf{Sign}(s) \neq \emptyset \Rightarrow \mathsf{Sim}(r,s) \geqslant t.$$

Therefore, verification is not necessary.

- For set r and threshold t, we have $|\operatorname{Sub}(r)| = {|r| \choose t}$, growing very quickly depending on both |r| and t.
- Example: $n = \{B, W, G, S\}, t = 2$

Sub
$$(n)$$
 = $\{\{B, W\}, \{B, G\}, \{B, S\}\}$
 $\{W, G\}, \{W, S\}, \{G, S\}\}$

Demonstration

- Experiment: Prefix signature vs. Subsets signature³
 - self-join with |R| = 1000000
 - average set size 6
 - universe sizes $|U| \in \{1000, 10000\}$, uniform distribution
 - overlap similarity with threshold $t \in \{3, 4, 5\}$

	efix		Subsets			
U	t	runtime [s]	U	t	runtime [s]	
1000	3	336	1000	3	25.6	
	4	233		4	41.0	
	5	138		5	42.8	
10000	3	40.7	10000	3	32.0	
	4	24.7		4	53.9	
	5	14.9		5	66.2	

- Sub outperforms Pre for small set sizes and small universes
- Pre scales better wrt. set size and threshold for large universes

Augsten (Univ. Salzburg)

³Implementation includes some optimizations compared to framework

Outline

- Filters for the Set Similarity Join
 - Motivation
 - Signature-based Filtering
 - Signatures for Overlap Similarity
 - Signatures for Hamming Distance
- 2 Implementations of Set Similarity Joins
 - Other Similarity Functions
 - Table of Set Similarity Join Algorithms and their Signatures
- 3 Conclusion

Partitioning I

Definition (Partition)

A partition P of universe U is a family of sets $P = \{p_1, \dots, p_n\}$ with the following properties:

- 1. Ø *∉ P*
- 2. $\bigcup_{p \in P} p = U$
- 3. For any $p_i, p_j, i \neq j$, we have $p_i \cap p_j = \emptyset$

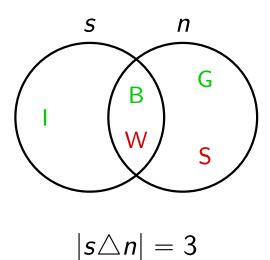
Lemma

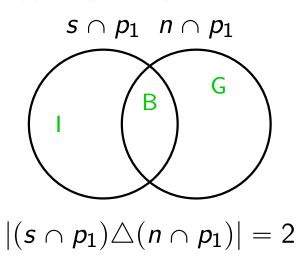
For any partition P of universe U and any two sets $r, s \subseteq U$, we have

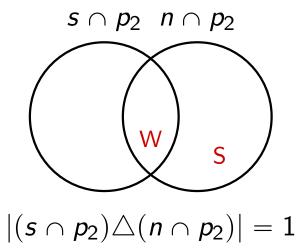
$$Ham(r,s) = \sum_{p \in P} Ham(r \cap p, s \cap p)$$

Partitioning II

• Example: $P = \{\{B, G, H, I\}, \{K, R, S, W\}\} = \{p_1, p_2\}$







Partition Signature

Definition (Partition Signature)

The partition signature Par(r) of a set r is constructed as follows:

- 1. Fix any partition P of U into t + 1 parts (for Hamming distance t)
- 2. $Par(r) = \{(r \cap p_i, i) \mid p_i \in P\}$
- Example: $P = \{\{B, G, H, I\}, \{K, R, S, W\}\} = \{p_1, p_2\}$
 - $Par(\{I, B, W\}) = \{(\{I, B\}, 1), (\{W\}, 2)\}$
 - $Par(\{S, W\}) = \{(\emptyset, 1), (\{S, W\}, 2)\}$

Correctness of the Partition Signature

Lemma (Correctness of Par)

$$Ham(r,s) \leqslant t \Rightarrow Par(r) \cap Par(s) \neq \emptyset$$

We show the contraposition $Par(r) \cap Par(s) = \emptyset \Rightarrow Ham(r, s) > t$

Proof.

Assume $Par(r) \cap Par(s) = \emptyset$.

- For any $p_i \in P$, if $r \cap p_i \neq s \cap p_i$, then $Ham(r \cap p_i, s \cap p_i) \geqslant 1$.
- Hence, $Ham(r,s) = \sum_{p \in P} Ham(r \cap p, s \cap p) \geqslant |P| = t + 1 > t$.

Demonstration

- Experiment: Prefix signature vs. Partition signature
 - self-join with |R| = 1000000
 - average set size 20
 - universe sizes $|U| \in \{1000, 10000\}$, uniform distribution
 - Hamming distance with threshold $t \in \{3, 4, 5\}$

Prefix			Partition		
U	t	runtime [s]	U	t	runtime [s]
1000	3	326	1000	3	4
	4	451		4	23
	5	576		5	144
10000	3	34	10000	3	4
	4	46		4	23
	5	70		5	144

- Par outperforms Pre for large set sizes and small universes
- Par is less sensitive to universe size compared to Pre
- Pre works better for large universes and small set sizes

⁴Adapted to work with Hamming distance

The Empty Par Signature

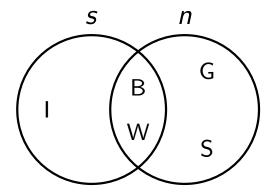
• Consider partitioning $P = \{ \{A, B, C\}, \{D, E, F\}, \{G, H, I\} \}, t = 2$:

	Α	В	C	D	Е	F	G	Н	I
r	1	1					1	1	
5	1		1				1		1
и		1	1					1	1

- Although all pairs of sets are at Hamming distance 4, they all share the red signature.
- Hence, all pairs of sets are candidates!
- This can happen for small sets or heavily skewed distributions.
- More sophisticated partitioning and more flexible searching in each partition can remedy this problem.

Enumeration: Idea

• How can we make *s* and *n* the same?



- By removing I from s and both S and G from n.
- Idea: By removing at most t tokens, all pairs of sets in Hamming distance t can be made equal.

Enumeration Signature

Definition (Enumeration Signature)

The enumeration signature En(r) of a set r for Hamming distance with threshold t is given by:

$$\mathsf{En}(r) = \{ p \subseteq r \mid |p| \geqslant |r| - t \}$$

- Example: t = 2
 - $En(\{I,B,G\}) = \{\{I,B,G\},\{I,B\},\{I,G\},\{B,G\},\{I\},\{B\},\{G\}\}\}$
 - $En({H,R}) = {{H,R},{H},{R},\varnothing}$

Lemma (Correctness of En)

$$Ham(r,s) \leqslant t \Rightarrow En(r) \cap En(s) \neq \emptyset$$

Correctness of the Enumeration Signature

Proof.

- Assume $Ham(r,s) = |(r \setminus s) \cup (s \setminus r)| \leq t$.
- Hence, $|r \setminus (r \setminus s)| \ge |r| t$ and $|s \setminus (s \setminus r)| \ge |s| t$
- Consider the set $r \setminus (r \setminus s) = r \cap s = s \setminus (s \setminus r)$
- As $r \cap s \subseteq r$ and $|r \cap s| \geqslant |r| t$, $r \cap s \in \text{En}(r)$.
- Similarly, $r \cap s \in \text{En}(s)$.
- So $r \cap s \in \operatorname{En}(r) \cap \operatorname{En}(s)$.

Demonstration

- Experiment: Partition signature vs. Enumeration signature⁵
 - self-join with |R| = 1000000
 - average set size $|r| \in \{8, 16\}$
 - universe size |U| = 10000, uniform distribution
 - Hamming distance with threshold $t \in \{1, 2, 3\}$

Partition				Enumeration		
r	t	runtime [s]	$\overline{ r }$	t	runtime [s]	
8	1	4	8	1	12	
	2	141		2	42	
	3	1034		3	165	
16	1	1	16	1	21	
	2	3		2	170	
	3	14		3	(out of memory)	

- En can outperform Par for small thresholds and set sizes
- For large thresholds and sets, En generates too many signatures

⁵Implemented using an optimization called *asymmetric signature scheme* that avoids false positives.

Implementations of Set Similarity Joins

Real implementations of set similarity join algorithms typically

- also support similarity functions other than overlap and Hamming
- use a combination of multiple signature schemes
- extend the algorithmic framework to optimize for their signature schemes
- use additional filters (e.g., based on set length or the positions of matching signatures)

Outline

- 1 Filters for the Set Similarity Join
 - Motivation
 - Signature-based Filtering
 - Signatures for Overlap Similarity
 - Signatures for Hamming Distance
- 2 Implementations of Set Similarity Joins
 - Other Similarity Functions
 - Table of Set Similarity Join Algorithms and their Signatures
- 3 Conclusion

Other Similarity Functions

- Normalization: often, normalized similarity functions are preferred
 - $r = \{A, B, C\}, s = \{A, B\}, u = \{A, B, C, D, E, F, G, H, I\}$
 - The pair (r, u) has higher overlap than the pair (r, s)
 - Still, (r, s) might appear more similar due to fewer different tokens
 - Normalizations also consider set sizes and take values in [0,1]
- Jaccard: $Jac(r,s) = \frac{|r \cap s|}{|r \cup s|} = \frac{|r \cap s|}{|r| + |s| |r \cap s|}$
- Dice: Dice $(r,s) = \frac{2|r \cap s|}{|r|+|s|}$
- Cosine: $Cos(r, s) = \frac{|r \cap s|}{\sqrt{|r| \cdot |s|}}$
- Example:

$$Jac(r,s) = \frac{|\{A,B\}|}{|\{A,B,C\}|} = \frac{2}{3}$$

$$Jac(r,u) = \frac{|\{A,B,C\}|}{|\{A,B,C,D,E,F,G,H,I\}|} = \frac{3}{9} = \frac{1}{3}$$

Adapting the Prefix Signature for Jaccard

- The prefix signature operates with overlap similarity
- Idea: Bound minimum overlap s.t. two sets r, s can have $Jac(r, s) \ge t$

$$\frac{|r \cap s|}{|r| + |s| - |r \cap s|} \ge t$$

$$\Leftrightarrow \qquad |r \cap s| \ge t(|r| + |s| - |r \cap s|)$$

$$\Leftrightarrow \qquad |r \cap s| \ge \frac{t}{1 + t}(|r| + |s|) =: eqo_J(r, s)$$

- eqo_J depends on the sizes of two sets. As we want to handle all
 possible size combinations, we have to get rid of one of them.
- Possible Solution: Assume minimal value |s|=1, but better bounds are possible.

Length Bounds for Jaccard

Lemma

If
$$Jac(r, s) \ge t$$
, then $t|r| \le |s| \le \frac{|r|}{t}$.

Lemma

If $Jac(r, s) \ge t$, then

$$|r \cap s| \ge \operatorname{eqo}_{J}(r, s)$$

 $\ge \operatorname{eqo}_{J}(r, t|r|)$
 $= t|r|$

• Hence, for each set r use $\lceil t | r | \rceil$ as the overlap and proceed as in Pre.

Outline

- Filters for the Set Similarity Join
 - Motivation
 - Signature-based Filtering
 - Signatures for Overlap Similarity
 - Signatures for Hamming Distance
- 2 Implementations of Set Similarity Joins
 - Other Similarity Functions
 - Table of Set Similarity Join Algorithms and their Signatures
- 3 Conclusion

Algorithm	Signature ⁶	Remarks
AllPairs [BMS07]	Length + Pre	
PPJoin [XWLY08]	Length + Pre	additional filter based on position of prefix matches
SkipJoin [WQL ⁺ 19]	Length + Pre	tighter length filter using prefix positions, removes unmatchable entries from index, can leverage knowledge of set similarity "transitively"
SizeAware [DTL18]	Sub (small sets) + Id (large sets)	avoids enumerating all subsets in Sub by exploiting an order on subsets, han- dles small and large sets differently
PartEnum [AGK06]	Length $+$ Par $+$ En	partitions sets into smaller subets, enumerates in each partition
PartAlloc [DLWF15]	Length $+$ Par $+$ En	more flexible than PartEnum, has tighter filtering condition
GPH [QXW ⁺ 21]	Par + En	more flexible than PartAlloc, opti- mizes how partitions are chosen

⁶Refers to the closest signature discussed during the lecture; the listet algorithms

Augsten (Univ. Salzburg)

Similarity Search

WS 2022/23

47 / 48

Summary

- Naive set similarity join inefficient due to large search space
- Signature-based filters speed up join:
 - Id and Pre: single tokens as signatures
 - Sub: all subsets of overlap size as signatures
 - Par: non-overlapping subsets as signatures
 - En: all subsets in Hamming distance as signatures
- Performance depends on dataset's characteristics

- Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik.

 Efficient exact set-similarity joins.

 In Umeshwar Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim, editors, *Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006*, pages 918–929. ACM, 2006.
- Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant.
 Scaling up all pairs similarity search.
 In Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy, editors, *Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007*, pages 131–140. ACM, 2007.
- Dong Deng, Guoliang Li, He Wen, and Jianhua Feng.

 An efficient partition based method for exact set similarity joins.

 Proc. VLDB Endow., 9(4):360–371, 2015.

- Dong Deng, Yufei Tao, and Guoliang Li.
 Overlap set similarity joins with theoretical guarantees.
 In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein, editors, *Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018*, pages 905–920. ACM, 2018.
- Jianbin Qin, Chuan Xiao, Yaoshu Wang, Wei Wang, Xuemin Lin, Yoshiharu Ishikawa, and Guoren Wang.

 Generalizing the pigeonhole principle for similarity search in hamming space.
 - IEEE Trans. Knowl. Data Eng., 33(2):489-505, 2021.
- Xubo Wang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. Leveraging set relations in exact and dynamic set similarity join. *VLDB J.*, 28(2):267–292, 2019.
- Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity joins for near duplicate detection.

In Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang, editors, *Proceedings of the 17th International Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008*, pages 131–140. ACM, 2008.