
UV Distributed Information Management
Summer semester 2023

Assignment 01

Summary:

Deadline: April 19, 2023, 11:55 pm (aka 23:55) CET.
Extended Deadline: April 26, 2023, 11:55 pm (aka 23:55) CET.
Submission: Submit a compressed archive (e.g., a zip or a tar.gz le) that contains your
Python3 code and the answers to the questionnaire via Blackboard.
Grading: 55% Python3 code, 45% answers (incl. meeting; cf. Section 5 for details).

1 General Remarks

e purpose of this assignment is to get in touch with a widely used general-purpose database
system (DBS), namely PostgreSQL. PostgreSQL1 is an open-source database system that is based
on the relational data model2. It is rather intuitive to use and accessible using the Python3
programming language3 (i.e., in combination with the psycopg24 module).
Please submit your nal Python3 code and the answers to the questionnaire until April 19,

2023, 11:55 pm (aka 23:55) CET via Blackboard5 (late submission until April 26, 2023, 11:55 pm
(aka 23:55) CET). Furthermore, please keep in mind that the exams contribute 46% to your nal
grade, hence you need to submit at least one assignment (partially) to pass the course.

1.1 Formaing Conventions

Commands for the Linux command-line tool (terminal), the command-line tool of PostgreSQL
(psql), and Python3 code are wrien in TrueType font6. In addition, all commands are in a box
that species the used command-line tool at the beginning of the title (separated by a dash –, i.e.,
terminal for Linux and psql for PostgreSQL). Listing 1 shows an example command executed
in the Linux terminal:

Listing 1: terminal – Show directories.
1 dbtutorial@database -tutorial:∼# ls -l

e Linux terminal shows a prex dbtutorial@database-tutorial:∼# that consists of

• the name of the user that executes the command; dbtutorial is the default user of the
virtual machine (VM) (this may be dierent if you do not use the given VM),

1PostgreSQL: https://de.wikipedia.org/wiki/PostgreSQL
2e relational model: https://en.wikipedia.org/wiki/Relational model
3e Python programming language: https://en.wikipedia.org/wiki/Python (programming language)
4https://www.psycopg.org/ and https://pypi.org/project/psycopg2/
5Blackboard: https://elearn.sbg.ac.at
6TrueType font: https://en.wikipedia.org/wiki/TrueType

1

https://de.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.psycopg.org/
https://pypi.org/project/psycopg2/
https://elearn.sbg.ac.at
https://en.wikipedia.org/wiki/TrueType

• the name of the machine; database-tutorial is the name of the given VM, and
• a delimiter that separates the actual command from the “user@machine” string; “:∼#” is
the default delimiter of the given VM (where ∼ denotes the current directory).

Contrarily, Listing 2 exemplies a command in PostgreSQL’s command-line tool:

Listing 2: psql – Show all entries in table t.
1 dbtutorial=> SELECT * FROM t;

For commands that are to be executed in the psql terminal, the non-bold prex dbtutorial=>

denotes the database we are currently connected to (cf. Section 2.2). Furthermore, SQL keywords
like SELECT and FROM are capitalized. More information can be found in the supplementary
material given in Section 4. Python3 code is simply wrapped in a box.

1.2 Support

Remark: Please notify the instructor as soon as possible if this assignment description is
(partially) unclear or if there is a problem with the submission.

If you have trouble understanding this assignment, please use one of the following communi-
cation channels to get help (in this order):

1. Lecture: mondays 10:15 am - 12:00 pm CET, wednesdays 01:00 - 02:30 pm CET (exception:
lecture-free periods).

2. Slack: https://dbteaching.slack.com/archives/C04QHH4TR7B (I will check regularly and do
my best to reply fast, but please do not expect me to be available 24/7).

3. Email: dkocher@cs.sbg.ac.at (as a last resort).

We recommend to start the assignment early. In case of a problem, it is easier for the instructor
and other students to provide help in time if you identify problems early.

2 Assignment Description

We highly recommend that you read this section (including all subsections) to the end before
you start working (this should be less error-prone).

is assignment is divided into ve parts and only parts 1 (depending on your choice), 4, and
5 contribute to the overall grade of this assignment. We recommend to follow these steps and
refer to the corresponding sections for more details.

1. Set up and congure PostgreSQL (PSQL); cf. Section 2.1 and Section 2.2.
2. Create tables and ll tables with data; cf. Section 2.3.
3. Familiarize yourself (i.e., play around) with SQL; cf. Section 2.4.
4. Write an example application that accesses the database in Python3; cf. Section 2.5.
5. Answer the questionnaire; cf. Section 2.6.

2.1 PostgreSQL Setup

is section summarizes three possible ways to set up PostgreSQL and solve this assignment:

PostgreSQL Installation Install PostgreSQL on your own system (or virtual machine) using
an operating system of your choice. is implies that you may “pollute” your system
with this installation and that the instructor may need additional information on your

2

https://dbteaching.slack.com/archives/C04QHH4TR7B
mailto:dkocher@cs.sbg.ac.at

particular setup to provide help (since wemostly work on Linux systems). Nonetheless, we
want to emphasize that it is an excellent exercise for students to perform the installation
of such a system on their own (at least once in their career). If you choose this option,
you can jump to Section 2.1.1.

PostgreSQL using a VM Congure a pre-installed PostgreSQL in a virtual machine (VM) that
runs Debian Linux. is implies that you will not experience the process of installing
PostgreSQL on your own, but it may be easier for the instructor to help since the VM runs
Debian Linux. On the one hand, it may be cumbersome if you do not have any experience
with Linux systems (and VMs), but on the other hand it may also be a nice opportunity to
familiarize yourself and play around with a Linux system (and a VM). To continue with
this option, you can jump to Section 2.1.2.

PostgreSQL using Docker Congure a pre-installed PostgreSQL in a Docker container that
runs Debian Linux. For new chipsets (e.g., Apple Silicon7) with dierent architectural
characteristics (compared to typical Intel and AMD chipsets), running VMs properly is
still problematic, triggering quite some bugs. erefore, you can also use an experimental
setup (i.e., you are among the rst students to try it out) using Docker, which basically
mimics a lightweight VM without a graphical user interface (i.e., this is the most advanced
option). For this option, you can jump to Section 2.1.3.

You can choose your preferred way and the choice itself will not inuence your grade in any
way. However, make sure that you can answer questions regarding your choice.

2.1.1 PostgreSQL Installation

Remark: If you decide to use the VM image or Docker, you can directly jump to Section 2.1.2
and Section 2.1.3, respectively. PostgreSQL is already pre-installed in both cases.

e rst step is to install a PostgreSQL server locally on your (possibly virtual) machine.
is should be possible on almost all operating systems but the specic steps may diverge
for dierent operating systems. Once PostgreSQL is installed, you can create a database and
import data. Sources on how to install PostgreSQL can be found in the supplementary material
provided in Section 4. Although PostgreSQL also provides a graphical user interface named
pgAdmin, we recommend to install PostgreSQL’s Command-Line Tools (on some systems, they
must be installed separately), which allow you to interact with the database system using the
command line. In particular, the psql command-line tool (aka psql terminal or shell) provides
the most basic way to use the database. Contrarily, the Stack Builder is not required.

2.1.2 Virtual Machine Setup

We provide a so-called virtual machine (VM) image, which consists of a pre-installed Debian
Linux as operating system and a pre-installed PostgreSQL instance. In this case, you may have
to familiarize yourself with the concept of a VM and how to host the corresponding image (see
Assignment 0 for details). Essentially, a virtual machine8 is a soware that is designed to provide
you with a substitute of a real machine, that is, it runs another operating system on top of your
regular operating system – it virtualizes the hardware of another system. For this assignment,
it suces to install a soware named VirtualBox9 that acts as a host for virtual machines. Aer
you successfully installed VirtualBox, the VM image can be used to set up the virtual machine

7Apple Silicon chipset: https://en.wikipedia.org/wiki/Apple silicon
8Virtual machine: https://en.wikipedia.org/wiki/Virtual machine
9VirtualBox: https://www.virtualbox.org/manual/ch02.html

3

https://en.wikipedia.org/wiki/Apple_silicon
https://en.wikipedia.org/wiki/Virtual_machine
https://www.virtualbox.org/manual/ch02.html

that can be used for this assignment. e image (as .ova le) can be downloaded from our
Nextcloud10 and runs Debian Linux11 as operating system with an installation of PostgreSQL.

Aer downloading the debian-postgresql-vm.ova le, this le must be imported into Virtu-
alBox. ere are many online tutorials12 on how to accomplish this and it primarily consists of
two steps (see also Assignment 0): (1) Choose the image to import (navigate to the downloaded
le) and (2) check/modify the seings of the virtual machine (typically no modications are
required, but sometimes, for example, you may have to disable the USB port). Once you click
on the Import buon, VirtualBox should import the image and set up the virtual machine that
can be used for this assignment. VirtualBox then shows a new VM on the le-hand side, which
can be started/booted with a double-click.

For this VM, there exist two users: (1) dbtutorial and (2) root. If you are not familiar with the
concept of a root user (or superuser), please check out the corresponding article13 on Wikipedia.
In essence, the root user has all privileges whereas the dbtutorial user has not. By default, we
will work with the dbtutorial user but we will temporarily switch to the root user if we need
additional privileges. e password for both users is the same: dbpwd1

Once you logged into the VM and before you start working on the actual assignment, try to
familiarize yourself a bit with Debian Linux (unless you already have experience using Linux
systems and/or solved Assignment 0). For example, open a Linux terminal (aka Linux shell or
command-line tool) and try some basic commands (some links can be found in the supplementary
material, cf. Section 4). In particular, we will use PostgreSQL’s psql terminal (aka psql shell or
command-line tool), which provides the most basic way to use PostgreSQL.

Remark: Note that you may not be able to use the typical CTRL+C and CTRL+V sequence to copy
and paste between your regular system and the VM as the clipboard is not shared by default14.

2.1.3 Docker Setup (Experimental)

Remark: is is the most advanced option (i.e., no graphical user interface is available) and
still experimental (i.e., you are among the rst students to try it out).

Please install Docker Desktop15 for your system conguration: Installations exist for Linux,
Windows, MacOS with Intel chipset, and MacOS with Apple Silicon chipset. e documentation
provides information on how to install and start Docker for your particular system.

Docker16 is a soware package that also virtualizes at the level of an operating system (e.g.,
you can run Debian Linux within Windows or MacOS) but follows a dierent philosophy.
Traditional VMs are stateful, meaning that the state of your VM can be stored and you are able
to resume from it later on. Contrarily, Docker is designed to be stateless, meaning that it is not
as easy to store the state and resume from it. is typically implies that the eects of all your
commands are lost once you shut down Docker (or the terminal it is running in); but we will
learn about a workaround to avoid this later in this section. Furthermore, Docker operates at
the (ner) granularity of so-called containers where a container is meant to be a lightweight
building block with a single responsibility, i.e., it typically runs a single service. en, multiple
of these containers can be used to implement a broader functionality (the containers can be
“stacked” like in a dock). In contrast, a traditional VM is a full-edged, virtualized machine that
may run many dierent services at once.

10VM image for this assignment: https://kitten.cosy.sbg.ac.at/index.php/s/AeBcR5kMAApm33L/download
11Debian Linux: https://en.wikipedia.org/wiki/Debian
12Virtual machine import: https://docs.oracle.com/cd/E26217 01/E26796/html/qs-import-vm.html
13e root user: https://en.wikipedia.org/wiki/Superuser
14Shared clipboards in VirtualBox: https://www.youtube.com/watch?v=fqrJ7qlhJu0
15Geing Started with Docker: https://www.docker.com/get-started/
16e Docker soware package: https://en.wikipedia.org/wiki/Docker (software)

4

https://kitten.cosy.sbg.ac.at/index.php/s/AeBcR5kMAApm33L/download
https://en.wikipedia.org/wiki/Debian
https://docs.oracle.com/cd/E26217_01/E26796/html/qs-import-vm.html
https://en.wikipedia.org/wiki/Superuser
https://www.youtube.com/watch?v=fqrJ7qlhJu0
https://www.docker.com/get-started/
https://en.wikipedia.org/wiki/Docker_(software)

For this assignment, we will use Docker similar to our VM image: It uses Debian Linux
with a pre-installed PostgreSQL server. To this end, please download a so-called Dockerle
from our Nextcloud17. You can then build and run the Docker image in your Linux or MacOS
terminal as well as Windows’ Powershell18 as shown in Listing 3. Line 1 builds the Docker
image and pulls a Debian image from the world wide web (i.e., you must be connect to the
internet) and tags/names the resulting image as postgresql. In line 2, we run the built Docker
image by referring to its tag/name (run -it postgresql) and specify a directory that is shared
between Docker and your “regular” operating system (in this case, the current directory ${PWD}
can be accessed within Docker in /home/dbtutorial). Finally, we end up as user dbtutorial
in the running Docker image as shown in line 3; and a (at rst sight) cryptic machine name
(6fb3eb1459c7 in this example). Recall that Docker uses containers and 6fb3eb1459c7 uniquely
identies the current container (as virtual machine, if you want).
Remark: e container hash will be dierent on your machine.

Listing 3: terminal – Build and run the Docker image (mind the trailing dot in line 1).
1 dbtutorial@database -tutorial:∼$ docker build --pull -f "Dockerfile" -t postgresql .
2 dbtutorial@database -tutorial:∼# docker run -v ${PWD}:/home/dbtutorial/ -it postgresql
3 dbtutorial@6fb3eb1459c7:∼$

Within this container, we can now use Debian Linux (cf. Section 2.2) but we only have
a command-line interface (no graphical user interface). To this end, we briey study a few
additional Linux commands that may be helpful in the course of this assignment:

touch assignment1.py Creates a new, empty le named assignment1.py within the cur-
rent working directory. If you create this le within /home/dbtutorial, the le will also
be available on your host system through the shared directory mentioned above.
nano assignment1.py Opens a command-line editor named nano19 to modify the le
assignment1.py. At the boom of nano, you nd the most important keyboard shortcuts
to interact with the editor, e.g., CTRL+O saves (i.e., overwrites) the le and CTRL+X closes
nano. As an alternative, you may also use a command-line editor named vim20.

If we close the Docker container using the exit command, we lose the eects of all commands
that have been executed in our container (including les that we created within the container).
is is also reected by the fact that the container has a dierent hash (name) if we run it again
(cf. line 2 in Listing 3). For convenience, we may want to save the state (although it is not in
line with the Docker philosophy). We can accomplish this by opening another terminal (or
Powershell) outside of our Docker container and executing the commands shown in Listing 4.

Listing 4: terminal – Commit and resume a container (in this case 6fb3eb1459c7).
1 dbtutorial@database -tutorial:∼$ docker commit 6fb3eb1459c7 postgresql-save
2 sha256 :6cab
3 dbtutorial@database -tutorial:∼$ docker images
4 REPOSITORY TAG IMAGE ID CREATED SIZE
5 postgresql -save latest 6cab 19 seconds ago 630MB
6 dbtutorial@database -tutorial:∼# docker run -it 6cab........
7 dbtutorial@c69e4ff74ef6:∼$

First, we use docker commit with the hash of our Docker container (which is still running)
and a name, e.g., postgresql-save (line 1). is “saves” the current state of our Docker container
17Dockerle for this assignment: https://kitten.cosy.sbg.ac.at/index.php/s/ZCTiTkksrqKe4NY/download
18Windows’ Powershell: https://en.wikipedia.org/wiki/PowerShell
19e nano editor: https://en.wikipedia.org/wiki/GNU nano
20e vim editor: https://en.wikipedia.org/wiki/Vim (text editor)

5

https://kitten.cosy.sbg.ac.at/index.php/s/ZCTiTkksrqKe4NY/download
https://en.wikipedia.org/wiki/PowerShell
https://en.wikipedia.org/wiki/GNU_nano
https://en.wikipedia.org/wiki/Vim_(text_editor)

into an image, which has a unique image ID that is dierent from the hash of our running Docker
container. We can conrm this by executing docker images (line 3), which lists all commied
images. To resume this specic Docker container, we must use the image ID (not the hash of
the container) combined with docker run -it (line 6). Line 7 then shows a dierent container
hash (i.e., c69e4ff74ef6) but this container resembles the state that has been commied before.
Remark: Any feedback on the current Docker setup is very much appreciated; by “experts”
that are familiar with Docker as well as by students that are new to Docker.

2.2 PostgreSQL Configuration

During installation, PostgreSQL creates a default database named postgres. Depending on your
particular setup, you may be asked for a server, a database, a port, and/or credentials (username
+ password). In this case, use the following default conguration:

• Server: localhost (or leave blank)
• Database: postgres (or leave blank)
• Port: 5432 (or leave blank)
• Username: postgres (or leave blank)
• Password: e password you set during the installation (in case of doubt: dbpwd1).

Before we use the database, we create a database user named dbtutorial. ere are two types
of users: (i) Users of the operating system and (ii) users of PostgreSQL (i.e., within the database
system). First, we open a Linux terminal and switch to the system’s root user (cf. Listing 5).

Listing 5: terminal – Switch to the root user (mind the trailing dash).
1 dbtutorial@database -tutorial:∼$ su -
2 Password:
3 root@database -tutorial:∼#

Remark: e dbtutorial@database-tutorial:∼$ (as well as root@database-tutorial:∼#) at
the beginning should already be displayed in your terminal and is not part of the command
itself (which is su -). Do not get confused by the fact that nothing is shown when you type in
the password (not even asterisks “*”, which are oen used for passwords). is is the default
behavior of Linux and you will be asked again if the password is incorrect.

en, we switch to the system’s postgres user (which also exists in our database) and connect
to the default database named postgres (indicated by postgres=>; cf. Listing 6):

Listing 6: terminal – Switch to the postgres user and start the psql terminal.
1 root@database -tutorial:∼# su - postgres
2 postgres@database -tutorial:∼$ psql
3 postgres=#

Now, we are in the psql terminal and can directly send commands to the PostgreSQL database.
All available databases can be viewed by executing the \l command (mind the backslash) in the
psql terminal as shown in Listing 7.
Remark: e postgres=> at the beginning should already be displayed in your psql terminal
and is not part of the command.

Listing 7: psql – List all available databases.
1 postgres=# \l

6

ere should be three databases: postgres, template0, and template1. e next step is to
create a new user21 with restricted privileges as shown in Listing 8:

Listing 8: psql – Create a new user dbtutorial within your database.
1 postgres=# CREATE USER dbtutorial WITH CREATEDB LOGIN PASSWORD ’dbpwd1’ NOSUPERUSER;
2 CREATE USER
3 postgres=#

Once the database’s dbtutorial user exists, we can switch back to the system’s dbtutorial
user and reconnect again without root privileges. is is the common and more secure way
to use our database (it is typically never a good idea to work with root privileges all the time).
To this end, we rst close the connection to our database using the \q command as shown in
Listing 9 and then exit root mode by typing the exit command twice (rst to switch back from
the postgres user to root and then to switch back to our regular dbtutorial user). Finally, we
can start using PostgreSQL with our newly created database user (still on the default database;
indicated by -h localhost postgres; cf. Listing 10).

Listing 9: psql – Close the connection to PostgreSQL.
1 postgres=# \q
2 postgres@database -tutorial:∼$

Listing 10: terminal – Connect to the postgres database from our default Linux user.
1 postgres@database -tutorial:∼$ exit
2 exit
3 root@database -tutorial:∼# exit
4 logout
5 dbtutorial@database -tutorial:∼$ psql -U dbtutorial -h localhost postgres
6 postgres=>

e command in line 5 of Listing 10 now uses the psql command with multiple options:

-U dbtutorial Tells the psql terminal to use the dbtutorial user to connect to the
database (instead of PostgreSQL’s default user, i.e., postgres).
-h localhost Tells the psql terminal that PostgreSQL is running on our current machine
(and not on some other machine that we want to access remotely). localhost is a dened
name that refers to the machine on which the respective command is performed22.
postgres Tells the psql terminal to connect to a database named postgres.

Comparing Listing 7 and 10, we notice that the prex in the psql terminal changed: It shows
our new user dbtutorial followed by => (instead of =#). e laer means that we do not have
root privileges. We can check the privileges of all users with the \du command (cf. Listing 11):

Listing 11: psql – Show the privileges of all database users.
1 dbtutorial=> \du
2
3 Role name | Attributes | Member of
4 ------------+--+-----------
5 dbtutorial | Create DB | {}
6 postgres | Superuser , Create role , Create DB, ... | {}
7
8 dbtutorial=>

21Create a new user in PostgreSQL: https://www.postgresql.org/docs/current/sql-createuser.html
22Localhost: https://en.wikipedia.org/wiki/Localhost

7

https://www.postgresql.org/docs/current/sql-createuser.html
https://en.wikipedia.org/wiki/Localhost

Importantly, we observe that our dbtutorial user has the privilege to create a new database
(Create DB). Although there is a default database, we create a dedicated database named
assignment1 for this assignment. erefore, we execute the command shown in Listing 12:

Listing 12: psql – Create a new database named assignment1.
1 dbtutorial=> CREATE DATABASE assignment1;
2 CREATE DATABASE
3 dbtutorial=>

Remark: Database creation can take some time, hence please wait for the command to nish.
Line 2 in Listing 12 is not to be entered by you: is is a feedback from the database to you,
indicating that the preceding CREATE DATABASE command has been successfully executed.
Aerwards, the \l command (cf. Listing 7) should print one additional database, namely

assignment1. Please use assignment1 as database for this assignment. In order to use our
new database assignment1, you must connect to it aer creating it (the creation itself does not
connect to the newly created database; indicated by the fact that postgres=> is still displayed
in our psql terminal). erefore, we use the command \c assignment1 to connect to the new
database. Aer the connection is established, the psql terminal should display assignment1=>

(instead of postgres=>). We can also connect to our assignment1 database using the Linux
terminal in a similar manner. Aer closing the connection to our database (cf. Listing 9), we
can reconnect to our assignment1 database as shown in Listing 13.

Listing 13: terminal – Connect to the assignment1 database from our default Linux user.
1 dbtutorial@database -tutorial:∼$ psql -U dbtutorial -h localhost assignment1
2 assignment1=>

2.3 Data Initialization

Once your database is ready, the database contains no data, i.e., it is empty. By executing the \d
command (cf. Listing 14), the database will report that no relations (i.e., tables) have been found.

Listing 14: psql – List all tables in our database assignment1.
1 assignment1=> \d
2 Did not find any relations.

erefore, we have to populate the database with some data. In the course of this assignment,
we will use parts of the publicly available Internet Movie Database (IMDB)23. First, we must
download the data from our Nextcloud24 and unzip it. Second, we use the data denition
language (DDL) of PostgreSQL to create the tables that will store the data. Finally, we ll the
tables with the data of two given plain les that are to be imported into our database.

Aer unzipping the data le, we nd a new directory named imdb with three les:

name.basics no header array format.tsv Contains actor names.
titles.basics no header array format.tsv Contains movie titles.
create db.sql Contains the CREATE TABLE statements for this assignment.

e data for this assignment can either be downloaded using a Browser (Firefox, Chrome, and
the likes) or with the curl tool in the Linux terminal (cf. Listing 15). is may be particularly
useful if you use Docker or the VM without a shared directory.
23e Internet Movie Database (IMDB): https://www.imdb.com/interfaces/
24Data for this assignment: https://kitten.cosy.sbg.ac.at/index.php/s/4jdyWRCKMxRfDF7/download

8

https://www.imdb.com/interfaces/
https://kitten.cosy.sbg.ac.at/index.php/s/4jdyWRCKMxRfDF7/download

Listing 15: terminal – Download the data with curl (user@machine string shortened).
1 dbtutorial (...):∼$ curl https://kitten.cosy.sbg.ac.at/index.php/s/4jdyWRCKMxRfDF7/download \
2 --output assignment1-data.zip

create db.sql is an SQL script that contains the statements to create the tables. Please study
these statements to know about the structure of our tables. ere are two possible ways to
execute the statements. Either you execute the script directly from the psql command-line
tool using \i create db.sql (cf. Listing 16), or you copy and execute each statement separately
using the psql terminal.

Listing 16: psql – Create two tables using the given SQL script.
1 assignment1=> \i /path/to/imdb/directory/create db.sql
2 CREATE TABLE
3 CREATE TABLE
4 assignment1=>

Remark: e commands shown in Listings 16–18 must either be executed using the correct
absolute/relative path to the script/le, or you must navigate into the directory where the
script/le is located and execute the corresponding command from the current directory (e.g.,
\i create db.sql).

Again, PostgreSQL provides feedback to the user: It prints CREATE TABLE twice, i.e., once
per tables that has been created. To ll the tables with data, we provide two plain les and
recommend to execute the two commands shown in Listing 17 (one aer another; mind the
semi-colon at the end) in your psql terminal.

Listing 17: psql – Import the two plain les into our tables.
1 assignment1=> \COPY titles FROM title.basics no header array format.tsv WITH DELIMITER E’\t’;
2 COPY 5447872
3 assignment1=> \COPY names FROM name.basics no header array format.tsv WITH DELIMITER E’\t’;
4 COPY 8991013

Remark: e le import will take some time, hence please wait for the commands to nish.

On some systems, the encoding must be specied explicitly when importing the data from le.
If you run into problems during the le import, please try the commands shown in Listing 18
(where => is the shortened version of assignment1=> to t the line width):

Listing 18: psql – Import the two plain les into our tables using UTF8 encoding.
1 => \COPY titles FROM title.basics no header array format.tsv WITH DELIMITER E’\t’ ENCODING ’UTF8’;
2 COPY 5447872
3 => \COPY names FROM name.basics no header array format.tsv WITH DELIMITER E’\t’ ENCODING ’UTF8’;
4 COPY 8991013

Aer the import, PostgreSQL provides feedback on the number of tuples that have been
imported, i.e., 5,447,872 and 8,991,013 tuples have been imported into the tables titles and
names, respectively. Aerwards, you can see all available tables by executing \d (cf. Listing 7).
ere should be two tables in the database: names (of actors) and titles (of movies). You can
also study the schema of a particular table using the command shown in Listing 19:

Listing 19: psql – List the schema information of table names.
1 assignment1=> \d names

9

2.4 Introduction to SQL

Once the data has been successfully imported into our assignment1 database, try to further
familiarize yourself with the psql terminal. We provide four SQL queries (cf. Listings 20–23)
that can be executed out of the box by entering them into the psql terminal (one aer another;
mind the trailing semi-colon):

Listing 20: psql –ery Q1.
1 assignment1=> SELECT * FROM names WHERE primaryName = ’Chris Hemsworth’;

Listing 21: psql –ery Q2.
1 assignment1=> SELECT * FROM titles WHERE primaryTitle = ’The Avengers’ AND titleType = ’movie’;

Listing 22: psql –ery Q3.
1 assignment1=> SELECT primaryTitle FROM names, titles
2 WHERE names.birthYear = titles.startYear AND names.primaryName = ’Scarlett Johansson’;

Listing 23: psql –ery Q4.
1 assignment1=> EXPLAIN SELECT * FROM titles
2 WHERE primaryTitle = ’The Avengers’ and titleType = ’movie’;

SELECT, FROM, and WHERE clauses have briey been covered in the lecture. e * in the SELECT
clause species that all columns of the table that is given in the FROM clause are retrieved.

In queryQ2, the WHERE clause consists of two conditions that are linked using the AND operator.
is means that every tuple that is part of the result must satisfy both conditions. For example,
a TV series that is named “e Avengers” is not found because it is not a movie.
ery Q3 joins the two tables based on the condition in the WHERE clause. A join links

tuples of two (or more) tables. In this specic case, we link the year of birth of the actors
(names.birthYear) with the year of publication of the movies (titles.startYear). Moreover,
we specify that only actors with the name “Scarle Johansson” should be considered. Intuitively,
this means that we ask the database system to show all movies that started in the year of birth
of Scarle Johansson. In this case, the FROM clause contains two tables that are separated by a
comma. Without the WHERE clause, this results in the Cartesian product25: Without condition in
the WHERE clause, every row of the rst table (names)is linked with every row in the second table
(titles). is can result in a very large join result and very high runtimes, hence we restrict the
join using the condition(s) in the WHERE clause.
e last query, Q4, is basically Q2 with a small extension: We put the EXPLAIN keyword26

in front of the query. EXPLAIN shows the so-called query plan, that is, information about the
steps PostgreSQL plans to execute in order to determine the result (without executing the actual
query). As an exercise (not part of this assignment), the other queries could also be extended
with the EXPLAIN keyword.

2.5 Access the Data Using Python3

Although the psql terminal can be used to execute queries, a database system is typically
accessed by an application. erefore, the fourth part of this assignment is to write a small
Python3 application. We recommend to use the psycopg2 module (or driver) for Python3 to (a)

25Cartesian product: https://en.wikipedia.org/wiki/Cartesian product
26PostgreSQL’s EXPLAIN statement: https://www.postgresql.org/docs/current/using-explain.html

10

https://en.wikipedia.org/wiki/Cartesian_product
https://www.postgresql.org/docs/current/using-explain.html

establish a connection to your local database, (b) execute the queries and retrieve the results,
and (c) close the connection to your local database. Your application should execute the queries
Q1, Q2, and Q4 as provided in Section 2.4 and print the respective results (i.e., all tuples that
are returned by PostgreSQL; output format does not maer as long as it is human-readable).

For query Q3, you are required to do a small modication: Q3 as given in Section 2.4 returns
a list of tuples that satisfy the condition in the WHERE clause. In your Python3 code, Q3 should
only return the number of tuples that satisfy the condition in the WHERE clause. is can either
be accomplished by modifying the SQL command itself to count the number of tuples (Hint:
Use the COUNT aggregate function27) or by adapting the Python3 code such that not all the tuples
are printed but only the number of tuples (Hint: Use the len() function28). In any case, think
about the consequences of your choice and the implications of the alternative option.

Remark: Please do not confuse the psycopg2module with the (relatively) new psycopg3module
for Python3. We use to the psycopg2 module in combination with Python3.

Template Code ere are many tutorials regarding the installation29 and the usage of
psycopg230 in combination with PostgreSQL. Nonetheless, we provide a minimum template
code in Python3 that can be used as a starting point.

Listing 24: Python3 template code to access our database using psycopg2.
1 #!/usr/bin/python3
2
3 import psycopg2 as pg2
4
5 def main ():
6 try:
7 # Connect to database 'assignment1 ' with user 'user' and password 'pw '.
8 connection = pg2.connect(
9 "user='user' password='pw' host='localhost ' dbname='assignment1 '")
10 except:
11 print("Unable to establish a connection to {}".format('assignment1 '))
12
13 # Retrieve a so-called cursor in order to interact with the database.
14 cursor = connection.cursor ()
15
16 try:
17 # Send a simple SELECT query to the database.
18 cursor.execute("""SELECT * FROM names WHERE primaryName = ’Christian Bale’""")
19
20 # Retrieve the entire result of the query.
21 # cursor.fetchone () would retrieve only the first tuple of the result.
22 records = cursor.fetchall ()
23
24 # Print the retrieved result.
25 for record in records:
26 print("{}".format(record))
27 except:
28 print("Unable to execute simple SELECT query.")
29 finally: # The finally -branch is always executed (independently of an exception).
30 if cursor is not None:
31 cursor.close () # Close the cursor.
32
33 if connection is not None:
34 connection.close() # Close the connection.
35
36 if name == " main ":
37 main()

27e COUNT aggregation: https://www.postgresql.org/docs/current/functions-aggregate.html
28Python’s len() function: https://docs.python.org/3/library/functions.html#len
29Installation of the psycopg2 module: https://www.psycopg.org/, https://pypi.org/project/psycopg2/
30psycopg2 tutorial: https://wiki.postgresql.org/wiki/Psycopg2 Tutorial

11

https://www.postgresql.org/docs/current/functions-aggregate.html
https://docs.python.org/3/library/functions.html#len
https://www.psycopg.org/
https://pypi.org/project/psycopg2/
https://wiki.postgresql.org/wiki/Psycopg2_Tutorial

2.6 estionnaire

e questionnaire contains questions about this assignment. ese questions are potentially
discussed during the aer-assignment meetings. e questionnaire can be found in a separate
text le named assignment1-questionnaire.txt.

3 Submission

Please submit a single compressed archive (e.g., .zip or .tar.gz) that contains exactly two les:
(a) Your Python3 code and (b) the answers to the questionnaire.

Code

Remark: Please consider removing the database credentials (i.e., username and password)
before you submit your code (in case you did not use the default ones as described in Section 2.1).

Please submit a single Python3 le (.py) that contains the full code for this assignment, i.e.,
the connection to the database and the execution of the four queries. e code must print the
results of all four queries Q1–Q4 (one aer another) when executed as submied. We will
not debug your code, for example, change some variable to make it work. erefore, please
double-check that your Python3 code works as expected and that all four queries are executed
(recall that query Q3 needs to be modied as described in Section 2.5).

estionnaire

Remark: e recommended formats are .txt and .pdf.

You can answer the questions directly in the text le assignment1-questionnaire.txt. If
you prefer to use a dierent application to answer the questions (e.g., Microso Word and the
likes), you are welcome to do so. In any case, the submied le must be in one of the following
formats: .txt, .pdf, .odt, .doc, or .docx.

4 Supplementary Material

is section provides a list of pointers to material that may be helpful to solve this assignment.

• PostgreSQL: https://www.postgresql.org/
• Download PostgreSQL: https://www.postgresql.org/download/
• e full PostgreSQL documentation (in particular, Chapter 1 may be helpful):
https://www.postgresql.org/docs/current/

• Other resources regarding installation and usage of PostgreSQL:
– One of the many “Geing Started” guides: https://www.youtube.com/watch?v=

BLH3s5eTL4Y

– Installing PostgreSQL: https://www.postgresqltutorial.com/install-postgresql/
– PostgreSQL on Windows: https://www.postgresql.org/download/windows/

• Documentation of the EXPLAIN statement: https://www.postgresql.org/docs/current/
using-explain.html

• Python Modules: https://docs.python.org/3/installing/index.html
• e psycopg2 module: https://www.psycopg.org/
• Installation of the psycopg2 module for Python:

– Ocial website: https://www.psycopg.org/install

12

https://www.postgresql.org/
https://www.postgresql.org/download/
https://www.postgresql.org/docs/current/
https://www.youtube.com/watch?v=BLH3s5eTL4Y
https://www.youtube.com/watch?v=BLH3s5eTL4Y
https://www.postgresqltutorial.com/install-postgresql/
https://www.postgresql.org/download/windows/
https://www.postgresql.org/docs/current/using-explain.html
https://www.postgresql.org/docs/current/using-explain.html
https://docs.python.org/3/installing/index.html
https://www.psycopg.org/
https://www.psycopg.org/install

– e Python Package Index: https://pypi.org/project/psycopg2/

• e psycopg2 tutorial in the PostgreSQL wiki:
https://wiki.postgresql.org/wiki/Psycopg2 Tutorial

• One of themany “Geing Started” guides: https://www.youtube.com/watch?v=2PDkXviEMD0
• One of the many introductions to the Linux terminal: https://www.digitalocean.com/
community/tutorials/an-introduction-to-the-linux-terminal

5 Grading

For the sake of transparency, this section provides more details on the grading of this assignment,
i.e., which part contributes how many points to the total number of 18 points.

Code e code contributes at most 10 points and is evaluated based on the following criteria
(if the code is executed as submied; disregarding the credentials):

Max. Points Criterion
2 Q1 is executed and the correct result is printed to the command line.
2 Q2 is executed and the correct result is printed to the command line.
2 Modied Q3 is executed and the correct result is printed to the command line.
2 Q4 is executed and the correct result is printed to the command line.
1+1 Answer 2 questions w.r.t. your submission in the aer-assignment meeting.
10

estionnaire e questionnaire contributes at most 8 points and is evaluated based on the
following criteria (taking the discussion in the aer-assignment into account):

Max. Points Criterion
2 Correctness of answer A1.
1+1 Correctness of answer A2.
2 Correctness of answer A3.
2 Correctness of answer A4.
8

13

https://pypi.org/project/psycopg2/
https://wiki.postgresql.org/wiki/Psycopg2_Tutorial
https://www.youtube.com/watch?v=2PDkXviEMD0
https://www.digitalocean.com/community/tutorials/an-introduction-to-the-linux-terminal
https://www.digitalocean.com/community/tutorials/an-introduction-to-the-linux-terminal

	General Remarks
	Formatting Conventions
	Support

	Assignment Description
	PostgreSQL Setup
	PostgreSQL Installation
	Virtual Machine Setup
	Docker Setup (Experimental)

	PostgreSQL Configuration
	Data Initialization
	Introduction to SQL
	Access the Data Using Python3
	Questionnaire

	Submission
	Supplementary Material
	Grading

